• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
HUANG Yong, WANG An-ting, YUAN Guo-li, LI Huan, HUANG Dan. The Content Characteristics and Source Analysis of Polycyclic Aromatic Hydrocarbons in Topsoil of Beijing City[J]. Rock and Mineral Analysis, 2022, 41(1): 54-65. DOI: 10.15898/j.cnki.11-2131/td.202104270056
Citation: HUANG Yong, WANG An-ting, YUAN Guo-li, LI Huan, HUANG Dan. The Content Characteristics and Source Analysis of Polycyclic Aromatic Hydrocarbons in Topsoil of Beijing City[J]. Rock and Mineral Analysis, 2022, 41(1): 54-65. DOI: 10.15898/j.cnki.11-2131/td.202104270056

The Content Characteristics and Source Analysis of Polycyclic Aromatic Hydrocarbons in Topsoil of Beijing City

More Information
  • Received Date: April 26, 2021
  • Revised Date: November 01, 2021
  • Accepted Date: November 10, 2021
  • Published Date: January 27, 2022
  • HIGHLIGHTS
    (1) The contents of 16 Polycyclic aromatic hydrocarbons (PAHs) in topsoil of different functional areas in Beijing City were measured by gas chromatography-mass spectrometry (GC-MS), which showed a decreased trend.
    (2) The composition of PAHs in different functional areas was different, which reflected the different sources.
    (3) Traffic exhaust emissions constituted one of the main sources of PAHs in topsoil in Beijing City.
    BACKGROUNDPolycyclic aromatic hydrocarbons (PAHs), as a typical persistent organic pollutant, widely exist in the environment and have high stability. Studying of the content distribution and source analysis of PAHs in soil will provide a technical basis for PAHs pollution prevention and control, ecological environment improvement and environmental protection policy-making.
    OBJECTIVESIn order to investigate the content, composition and source of PAHs in the soil environment of different functional areas in Beijing City.
    METHODSA large-scale sampling was carried out in the core area of Beijing City. At the same time, regional sampling was carried out for different functional areas such as industrial areas, agricultural planting areas, water source protection areas and residential areas. A total of 459 topsoil samples were collected, and the monomer contents of 16 PAHs were analyzed by gas chromatography-mass spectrometry (GC-MS).
    RESULTSThe average values of the total contents of 16 PAHs (∑16PAHs) in topsoil of the three subregions in the core area (southeast, center and northwest) were 153.7, 333.2 and 142.9μg/kg, respectively. The average values of ∑16PAHs in topsoil of the industrial zone, including Southeast Factory, Shougang Industry and Datai Coal Mine, were 1006.9, 1379.4 and 146.8μg/kg, respectively. The average values of ∑16PAHs in topsoil of the water-conserving areas, Huairou and Miyun, were 86.4μg/kg and 154.5μg/kg, respectively. The average values of ∑16PAHs in topsoil of four agricultural planting regions (Changping, Pinggu, Fangshan and Tongzhou) were 109.0, 118.3, 106.8 and 94.2μg/kg, respectively. The average value of ∑16PAHs in topsoil of residential areas was 131.1μg/kg. Compared with previous research results on the content and distribution characteristics of PAHs, the content of PAHs in the topsoil in Beijing City showed a decreased trend, which was related to the decrease in the use of coal and the increase in the use of natural gas in Beijing City in recent years. The composition of PAHs in different functional areas was different. The proportion of heavy and medium rings PAHs were higher in industrial areas. The proportion of light rings PAHs in water-conserving areas, agricultural planting regions and residential areas was higher than that in industrial areas, which might be due to the different sources of PAHs in different functional areas. The results of principal component analysis-multiple linear regression method showed that the main sources of PAHs in the core area were tail gas emissions and leakage during oil storage and transportation, which contributed 81.46% and 18.54%, respectively. The main sources of PAHs in the topsoil of the industrial area were coal combustion and tail gas emissions, which contributed 62.65% and 37.35%, respectively. The main sources of PAHs in residential areas were tail gas emissions and natural gas combustion sources, with contribution rates of 53.30% and 46.70%, respectively.
    CONCLUSIONSFurther strengthening traffic control, continuing to reduce the proportion of coal in energy structure, and increasing the proportion of clean energy are effective ways to reduce PAHs emissions and pollution in Beijing City.
  • Yuan G L, Wu L J, Sun Y, et al. Polycyclic aromatic hydrocarbons in soils of the central Tibetan Plateau, China: Distribution, sources, transport and contribution in global cycling[J]. Environmental Pollution, 2015, 203: 137-144. doi: 10.1016/j.envpol.2015.04.002
    Scheibye K, Weisser J, Borggaard O K, et al. Sediment baseline study of levels and sources of polycyclic aromatic hydrocarbons and heavy metals in Lake Nicaragua[J]. Chemosphere, 2014, 95: 556-565. doi: 10.1016/j.chemosphere.2013.09.115
    Fakhradini S S, Moore F, Keshavarzi B, et al. Polycyclic aromatic hydrocarbons (PAHs) in water and sediment of Hoor Al-Azim wetland, Iran: A focus on source apportionment, environmental risk assessment, and sediment-water partitioning[J]. Environmental Monitoring and Assessment, 2019, 191: 233. doi: 10.1007/s10661-019-7360-0
    Aydin Y M, Kara M, Dumanoglu Y, et al. Source apportionment of polycyclic aromatic hydrocarbons(PAHs)and polychlorinated biphenyls(PCBs)in ambient air of an industrial region in Turkey[J]. Atmospheric Environment, 2014, 97: 271-285. doi: 10.1016/j.atmosenv.2014.08.032
    Wang X T, Miao Y, Zhang Y, et al. Polycyclic aromatic hydrocarbons(PAHs)in urban soils of the megacity Shanghai: Occurrence, source apportionment and potential human health risk[J]. Science of the Total Environment, 2013, 447: 80-89. doi: 10.1016/j.scitotenv.2012.12.086
    Mielke H W, Wang G D, Gonzales C R, et al. PAHs and metals in the soils of inner-city and suburban New Orleans, Louisiana, USA[J]. Environmental Toxicology and Pharmacology, 2004, 18: 243-247. doi: 10.1016/j.etap.2003.11.011
    章迪, 曹善平, 孙建林, 等. 深圳市表层土壤多环芳烃污染及空间分异研究[J]. 环境科学, 2014, 35(2): 711-718. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201402047.htm

    Zhang D, Cao S P, Sun J L, et al. Occurrence and spatial differentiation of polycyclic aromatic hydrocarbons in surface soils from Shenzhen, China[J]. Environmental Science, 2014, 35(2): 711-718. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201402047.htm
    Jiang Y F, Yves U J, Sun H, et al. Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China[J]. Ecotoxicology and Environmental Safety, 2016, 126: 154-162. doi: 10.1016/j.ecoenv.2015.12.037
    沈亚婷, 王开颜, 张树才, 等. 北京地区表土中多环芳烃的源解析[J]. 农业环境科学学报, 2008, 27(2): 549-554. doi: 10.3321/j.issn:1672-2043.2008.02.027

    Shen Y T, Wang K Y, Zhang S C, et al. Source apportionment of polycyclic aromatic hydrocarbons in surface soil of Beijing, China[J]. Journal of Agro-Environment Science, 2008, 27(2): 549-554. doi: 10.3321/j.issn:1672-2043.2008.02.027
    姚成, 倪进治, 刘瑞, 等. 扬州市不同功能区表层土壤中多环芳烃的含量、来源及其生态风险[J]. 环境科学, 2020, 41(4): 1847-1854. doi: 10.3969/j.issn.1000-6923.2020.04.053

    Yao C, Ni J Z, Liu R, et al. Contents, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in surface soils of various functional zones in Yangzhou City, China[J]. Environmental Science, 2020, 41(4): 1847-1854. doi: 10.3969/j.issn.1000-6923.2020.04.053
    李欣红, 史咲頔, 马瑾, 等. 浙江省农田土壤多环芳烃污染及风险评价[J]. 农业环境科学学报, 2019, 38(7): 1531-1540. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201907014.htm

    Li X H, Shi X D, Ma J, et al. Comtamination and risk assessment of polycyclic aromatic hydrocarbons in farmland soils of Zhejiang Province, China[J]. Journal of Agro-Environment Science, 2019, 38(7): 1531-1540. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201907014.htm
    李嘉康, 宋雪英, 魏建兵, 等. 沈北新区土壤中多环芳烃污染特征及源解析[J]. 环境科学, 2018, 39(1): 379-388. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201801051.htm

    Li J K, Song X Y, Wei J B, et al. Pollution characteristics and source apportionment of polycyclic aromatic hydrocarbons in soils of Shenyang North New Area[J]. Environmental Science, 2018, 39(1): 379-388. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201801051.htm
    张道来, 刘娜, 朱志刚, 等. 山东半岛典型海岸带多环芳烃分布特征、来源解析及风险评价[J]. 岩矿测试, 2016, 35(5): 521-529. doi: 10.15898/j.cnki.11-2131/td.2016.05.011

    Zhang D L, Liu N, Zhu Z G, et al. Distribution, sources and risk assessment of polycyclic aromatic hydrocarbons in surface sediments from typical coast of Shandong Peninsulia[J]. Rock and Mineral Analysis, 2016, 35(5): 521-529. doi: 10.15898/j.cnki.11-2131/td.2016.05.011
    倪进治, 陈卫锋, 杨红玉, 等. 福州市不同功能区土壤中多环芳烃的含量及其源解析[J]. 中国环境科学, 2012, 32(5): 921-926. doi: 10.3969/j.issn.1000-6923.2012.05.023

    Ni J Z, Chen W F, Yang H Y, et al. Concentrations and sources of soil PAHs in various functional zones of Fuzhou City[J]. China Environmental Science, 2012, 32(5): 921-926. doi: 10.3969/j.issn.1000-6923.2012.05.023
    王迪, 罗铭, 张茜, 等. 天津西青区不同功能区土壤中多环芳烃分布特征研究[J]. 农业环境科学学报, 2012, 31(12): 2374-2380. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201212011.htm

    Wang D, Luo M, Zhang Q, et al. Distribution characteristics of polycyclic aromatic hydrocarbons in different functional zones of soils from Xiqing District in Tianjin, China[J]. Journal of Agro-Environment Science, 2012, 31(12): 2374-2380. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201212011.htm
    杜芳芳, 杨毅, 刘敏, 等. 上海市表层土壤中多环芳烃的分布特征与源解析[J]. 中国环境科学, 2014, 34(4): 989-995. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201404038.htm

    Du F F, Yang Y, Liu M, et al. Distribution and source apportionment of polycyclic aromatic hydrocarbons in surface soils in Shanghai[J]. China Environmental Science, 2014, 34(4): 989-995. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201404038.htm
    Peng C, Chen W P, Liao X L, et al. Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk[J]. Environmental Pollution, 2011, 159: 802-808. doi: 10.1016/j.envpol.2010.11.003
    Li X H, Ma L L, Liu X F, et al. Polycyclic aromatic hydrocarbon in urban soil from Beijing, China[J]. Journal of Environmental Sciences, 2006, 18(5): 944-950. doi: 10.1016/S1001-0742(06)60019-3
    Ma L L, Chu S G, Wang X T, et al. Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing, China[J]. Chemosphere, 2005, 58: 1355-1363. doi: 10.1016/j.chemosphere.2004.09.083
    Qu Y J, Gong Y W, Ma J, et al. Potential sources, influencing factors, and health risks of polycyclic aromatic hydrocarbons(PAHs)in the surface soil of urban parks in Beijing, China[J]. Environmental Pollution, 2020, 260: 114016. doi: 10.1016/j.envpol.2020.114016
    Tang L L, Tang X Y, Zhu Y G, et al. Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China[J]. Environment International, 2005, 31: 822-828. doi: 10.1016/j.envint.2005.05.031
    石钰婷, 何江涛, 金爱芳. 北京市东南郊不同灌区表层土壤中PAHs来源解析[J]. 现代地质, 2011, 25(2): 393-400. doi: 10.3969/j.issn.1000-8527.2011.02.025

    Shi Y T, He J T, Jin A F. Sources apportionment of PAHs in the surface soil of different irrigation areas in southeast suburb of Beijing[J]. Geoscience, 2011, 25(2): 393-400. doi: 10.3969/j.issn.1000-8527.2011.02.025
    北京市统计局. 北京统计年鉴2020[M]. 北京: 中国统计出版社, 2020.

    Beijing Municipal Bureau of Statistics. Beijing statistical yearbook 2020[M]. Beijing: China Statistics Publishing House, 2020.
    佚名. 北京焦化厂: 留住工业记忆[J]. 北京规划建设, 2009(1): 134-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GHJS200901031.htm

    Anonymous. Beijing coking plant: Retain industrial memory[J]. Beijing Planning and Construction, 2009(1): 134-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GHJS200901031.htm
    吴志远, 张丽娜, 夏天翔, 等. 基于土壤重金属及PAHs来源的人体健康风险定量评价: 以北京某工业污染场地为例[J]. 环境科学, 2020, 41(9): 4180-4196. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202009037.htm

    Wu Z Y, Zhang L N, Xia T X, et al. Quantitative assessment of human health risks based on soil heavy metals and PAHs sources: Take a polluted industrial site of Beijing as an example[J]. Environmental Science, 2020, 41(9): 4180-4196. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202009037.htm
    李宾. 首钢工业景观格局变迁研究(1919-2019)[J]. 中国园林, 2020, 36(3): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYL202003003.htm

    Li B. On the patterns of changes in Shougang industrial landscape (1919-2019)[J]. Chinese Garden, 2020, 36(3): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYL202003003.htm
    韩鹏, 孙天河, 袁国礼, 等. 首钢地区表层土壤重金属的分布特征及污染评价[J]. 现代地质, 2012, 26(5): 963-971. doi: 10.3969/j.issn.1000-8527.2012.05.016

    Han P, Sun T H, Yuan G L, et al. Distribution and assessment of heavy metals in topsoil of capital steel factory in Beijng, China[J]. Geoscience, 2012, 26(5): 963-971. doi: 10.3969/j.issn.1000-8527.2012.05.016
    邢宇鑫, 闫广新, 侯秋丽, 等. 北京门头沟矿集区土壤重金属空间分布及污染特征[J]. 农业资源与环境学报, 2016, 33(6): 499-507. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201606001.htm

    Xing Y X, Yan G X, Hou Q L, et al. Spatial distribution and pollution characteristics of heavy metals in soil of Mentougou mining area of Beijng City, China[J]. Journal of Agricultural Resources and Environment, 2016, 33(6): 499-507. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201606001.htm
    唐莹, 孙敏, 武相林, 等. 永定河上游门头沟区煤矸石及周边土壤重金属污染评价[C]//中国环境科学学会2019年科学技术年会——环境工程技术创新与应用分论坛, 2019.

    Tang Y, Sun M, Wu X L, et al. Evaluation of heavy metal pollution of coal gangue and surrounding soil in Mentougou District of the Upper Yongding River[C]//2019 Annual Scientific and Technological Conference of Chinese Society for Environmental Sciences-Sub-forum on Innovation and Application of Environmental Engineering Technology, 2019.
    Ontiveros-Cuadras J F, Ruiz-Fernandez A C, Sanchez-Cabeza J A, et al. Recent history of persistent organic pollutants(PAHs, PCBs, PBDEs) in sediments from a large tropical lake[J]. Journal of Hazardous Materials, 2019, 368: 264-273. doi: 10.1016/j.jhazmat.2018.11.010
    Harrison R M, Smith D J T, Luhana L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U. K[J]. Environmental Science and Technology, 1996, 30: 825-832. doi: 10.1021/es950252d
    Mastral A M, Callen M, Murillo R. Assessment of PAH emissions as a function of coal combustion variables[J]. Fuel Processing Technology, 1996, 75(13): 1533-1536. https://www.sciencedirect.com/science/article/pii/0016236196001202
    Lang Y H, Yang W. Source apportionment of PAHs using unmix model for Yantai costal surface sediments, China[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 92: 30-35. doi: 10.1007/s00128-013-1164-7
    Lakhani A, Querol X M. Source apportionment of particle bound polycyclic aromatic hydrocarbons at an industrial location in Agra, India[J]. The Scientific World Journal, 2012, 2012: 781291. https://pubmed.ncbi.nlm.nih.gov/22606062/
    孟祥帅, 陈鸿汉, 郑从奇, 等. 焦化厂不同污染源作用下土壤PAHs污染特征[J]. 中国环境科学, 2020, 40(11): 4857-4864. doi: 10.3969/j.issn.1000-6923.2020.11.026

    Meng X S, Chen H H, Zheng C Q, et al. Pollution characteristics of PAHs in soil at an abandoned coking plant affected by different sources[J]. China Environment Science, 2020, 40(11): 4857-4864. doi: 10.3969/j.issn.1000-6923.2020.11.026
    Achten C, Andersson J T. Overview of polycyclic aromatic compounds (PAC)[J]. Polycyclic Aromatic Compounds, 2015, 35: 177-186. doi: 10.1080/10406638.2014.994071
    Keyte I J, Harrison R M, Lammel G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons-A review[J]. Chemical Society Reviews, 2013, 42: 9333-9391. doi: 10.1039/c3cs60147a
    黄兴星, 朱先芳, 唐磊, 等. 密云水库上游某铁矿区土壤重金属含量及形态研究[J]. 中国环境科学, 2012, 32(9): 1632-1639. doi: 10.3969/j.issn.1000-6923.2012.09.014

    Huang X X, Zhu X F, Tang L, et al. Studies on the distribution and chemical speciation of heavy metals in an iron mine soil of the upstream area of Miyun Reservoir, Beijing[J]. China Environmental Science, 2012, 32(9): 1632-1639. doi: 10.3969/j.issn.1000-6923.2012.09.014
    辜敏, 赵靓, 陈倩, 等. 密云水库土壤重金属污染与生态风险评价[J]. 环境污染与防治, 2020, 42(11): 1398-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202011017.htm

    Gu M, Zhao L, Chen Q, et al. Heavy metal pollution and ecological risk assessment of soil in Miyun Reservoir[J]. Prevention and Control of Environmental Pollution, 2020, 42(11): 1398-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202011017.htm
    Olawoyin R, Heidrich B, Oyewole S, et al. Chemometric analysis of ecological toxicants in petrochemical and industrial environments[J]. Chemosphere, 2014, 112: 114-119. doi: 10.1016/j.chemosphere.2014.03.107
    Shao Y X, Wang Y X, Xu X Q, et al. Occurrence and source apportionment of PAHs in highly vulnerable karst system[J]. Science of the Total Environment, 2014, 490: 153-160. doi: 10.1016/j.scitotenv.2014.04.128
    Deng W, Li X G, Li S Y, et al. Source apportionment of polycyclic aromatic hydrocarbons in surface sediment of mud areas in the East China Sea using diagnostic ratios and factor analysis[J]. Marine Pollution Bulletin, 2013, 70: 266-273. doi: 10.1016/j.marpolbul.2013.02.032
    Shi Y, Murr L E, Soto K F, et al. Characterization and comparison of speciated atmospheric carbonaceous(soot)particulates and their polycyclic aromatic hydrocarbon contents in the context of the Paso del Norte airshed along the United States-Mexico border[J]. Polycyclic Aromatic Compounds, 2007, 27(5): 361-400. doi: 10.1080/10406630701624333
    杨靖宇, 俞元春, 王小龙. 南京市不同功能区林业土壤多环芳烃含量与来源分析[J]. 生态环境学报, 2016, 25(2): 314-319. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201602020.htm

    Yang J Y, Yu Y C, Wang X L. Characterization and sources of polycyclic aromatic hydrocarbons in urban forestry soil from different functional areas of Nanjing City[J]. Ecology and Environmental Sciences, 2016, 25(2): 314-319. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201602020.htm
    周燕. 西安市居民区土壤多环芳烃来源及健康风险评价[J]. 环境科学导刊, 2019, 38(6): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK201906016.htm

    Zhou Y. Pollution, sources and health risk assessment of polycyclic aromatic hydrocarbons in soils in residential areas of Xi'an City[J]. Environmental Science Survey, 2019, 38(6): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK201906016.htm
    王昱, 卢世国, 冯起, 等. 黑河上中游水质时空分异特征及污染源解析[J]. 中国环境科学, 2019, 39(10): 4194-4204. doi: 10.3969/j.issn.1000-6923.2019.10.020

    Wang Y, Lu S G, Feng Q, et al. Spatio-temporal characteristics and source identification of water pollutants in the upper and middle reachers of Heihe River[J]. China Environmental Science, 2019, 39(10): 4194-4204. doi: 10.3969/j.issn.1000-6923.2019.10.020
    杨安, 邢文聪, 王小霞, 等. 西藏中部河流、湖泊表层沉积物及其周边土壤重金属来源解析及风险评价[J]. 中国环境科学, 2020, 40(10): 4557-4567. doi: 10.3969/j.issn.1000-6923.2020.10.043

    Yang A, Xing W C, Wang X X, et al. Source and risk assessment of heavy metals in surface sediments of rivers, lakes and their surrounding soils in central Tibet[J]. China Environmental Science, 2020, 40(10): 4557-4567. doi: 10.3969/j.issn.1000-6923.2020.10.043
  • Related Articles

    [1]JI Ang. Development of X-ray Fluorescence Spectrometry in the 30 Years[J]. Rock and Mineral Analysis, 2012, 31(3): 383-398.
    [2]MA Tian-fang, LI Xiao-li, CHEN Yong-jun, DENG Zhen-pin, LI Guo-hui. Interchangeable Analysis of Method on the X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4): 486-490.
    [3]LI Xiaoli, AN Shuqing, XU Tiemin, YANG Lifeng, LI Guohui, ZHU Jianfeng. Determination of Major and Minor Components in Coal Ash Samples by X-ray Fluorescence Spectrometry with Fused Bead Sample Preparation[J]. Rock and Mineral Analysis, 2009, 28(4): 385-387.
    [4]ZHANG Jian-bo, LIN Li, LIU Zai-mei. Determinations of Major and Minor Components in Titanium Concentrates by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2009, 28(2): 188-190.
    [5]Determination of 31 Components in Soil Samples by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(6): 490-492.
    [6]Determination of Calcium Fluoride in Fluorspar by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(5): 419-420.
    [7]X-ray Fluorescence Spectrometric Analysis of Wollastonite[J]. Rock and Mineral Analysis, 2007, 26(3): 245-247.
    [8]Analysis of ZL205A Alloy by X-Ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2003, (4): 303-306.
    [9]Composition Analysis by X ray EDS and Magnetic Susceptibility Test of Gems and Jades[J]. Rock and Mineral Analysis, 1996, (3): 226-228.
    [10]X-Ray Fluorescence Spectrometry Integrated Analysis System[J]. Rock and Mineral Analysis, 1995, (1): 61-65.
  • Cited by

    Periodical cited type(7)

    1. 王玥,程然然,孟信刚. 气相色谱法测定新烟碱类农药研究进展. 现代农业科技. 2022(08): 89-94 .
    2. 李鸿,吕丽兰,杜国冬,甘志勇,李乾坤,陆覃昱,秦玉燕,吴静娜,时鹏涛,梁宏合. 水生蔬菜重金属污染及农药残留状况调查. 广西农学报. 2022(02): 18-24 .
    3. 秦佳琪,王焱,周同宁,张亚红,朱美霖. 不同地区枸杞中农药残留及膳食风险评估. 宁夏农林科技. 2022(03): 43-49+58 .
    4. 王彦祖,李白. 农药污染对我国生态环境的影响及对策分析. 皮革制作与环保科技. 2022(15): 77-79 .
    5. 陈永艳,吕佳,张岚,叶必雄,金宁. 在线固相萃取-超高效液相色谱-三重四极杆质谱法测定水源水和饮用水中107种典型农药及代谢产物. 色谱. 2022(12): 1064-1075 .
    6. 马健生,王卓,张泽宇,刘强,李丽君. 哈尔滨市地下水中29种抗生素分布特征研究. 岩矿测试. 2021(06): 944-953 . 本站查看
    7. 高冉,饶竹,郭晓辰. 地下水中91种农药多残留气相色谱-质谱分析方法研究及应用. 岩矿测试. 2021(06): 973-986 . 本站查看

    Other cited types(7)

Catalog

    Article views (555) PDF downloads (40) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return