ZHANG Hong, GAO Peng-xin, GAO Qing-nan. Application of Thermal Infrared Reflectance Spectroscopy in the Evaluation of Quartz Content[J]. Rock and Mineral Analysis, 2021, 40(5): 710-719. DOI: 10.15898/j.cnki.11-2131/td.202104190053
Citation: ZHANG Hong, GAO Peng-xin, GAO Qing-nan. Application of Thermal Infrared Reflectance Spectroscopy in the Evaluation of Quartz Content[J]. Rock and Mineral Analysis, 2021, 40(5): 710-719. DOI: 10.15898/j.cnki.11-2131/td.202104190053

Application of Thermal Infrared Reflectance Spectroscopy in the Evaluation of Quartz Content

More Information
  • Received Date: April 18, 2021
  • Revised Date: June 27, 2021
  • Accepted Date: July 27, 2021
  • Published Date: September 27, 2021
  • HIGHLIGHTS
    (1) A quantitative evaluation model of quartz content was established by using thermal infrared reflectance spectroscopy and QEMSCAN mineral quantitative analysis technology.
    (2) The spectral characteristic parameters of quartz (D8625, D12640 and D14450) can be used to distinguish terrigenous clastic rocks from carbonate rocks.
    (3) The quartz content estimation model based on the D8625 parameter has the best linear fitting effect and the highest accuracy. It can also be used as the optimal spectral index for quartz content evaluation.
    BACKGROUNDQuartz is not only an important prospecting indicator of hydrothermal deposits, but also a key factor affecting the evaluation of shale gas reservoir fracturing. It is of great significance to carry out the rapid evaluation of quartz content in field drilling. However, the analysis process of conventional methods (X-ray diffraction method and scanning electron microscope) is relatively long.
    OBJECTIVESTo establish a rapid and large-scale quantitative evaluation model of quartz based on thermal infrared reflectance.
    METHODSHandheld FTIR spectrometer and mineral quantitative analyzer were used to analysis the content and characteristic absorption peak intensity of quartz, from mudstone, sandstone, conglomerate, limestone and dolomite samples in the Qiangtang Basin.
    RESULTSThe relative depth (D8625, D12640, D14450) of quartz at the three characteristic center wavelength positions of 8625nm, 12640nm and 14450nm can be used to distinguish terrigenous clastic rocks from carbonate rocks. When D8625>0.14 or D12640>0.02 or D14450>0.02, the samples are mainly terrigenous clastic rocks. In addition, three quartz spectral characteristic parameters D8625, D12640, and D14450 all have a high correlation with the quartz content, and the least square method can be used to construct a quartz content evaluation model. Two indicators of goodness of fit (R2) and root mean square error (RMSE) were used to evaluate the accuracy of the three models. Among them, the quartz content estimation model based on D8625 parameters had the highest goodness of fit (R2=0.9237), with the smallest root square error (RMSE=8.51). Based on this, it is believed that the D8625 quartz spectral parameters can be used as the optimal spectral index for evaluating the quartz content.
    CONCLUSIONSBased on thermal infrared reflectance spectroscopy technology, a field method for quickly estimating the content of quartz in drilling core has been established, which provides reference for prospecting and exploration of hydrothermal deposits and shale gas exploration and development.

  • 郭帮杰, 张杰林, 武鼎. 热红外高光谱遥感回归分析定量反演石英含量[J]. 科学技术与工程, 2018, 18(17): 125-130. doi: 10.3969/j.issn.1671-1815.2018.17.021

    Guo B J, Zhang J L, Wu D. Thermal hyperspectral remote rensing for the quantitative inversion of quartz content by regression analysis[J]. Science Technology and Engineering, 2018, 18(17): 125-130. doi: 10.3969/j.issn.1671-1815.2018.17.021
    陈静, 周涛发, 张乐骏, 等. 蚀变岩帽的特征、成因以及在华南的分布探讨[J]. 岩石学报, 2020, 36(11): 3380-3396. doi: 10.18654/1000-0569/2020.11.08

    Chen J, Zhou T F, Zhang L J, et al. A discussion of characteristics, genesis of lithocaps and their distributions in South China[J]. Acta Petrologica Sinica, 2020, 36(11): 3380-3396. doi: 10.18654/1000-0569/2020.11.08
    崔霄峰, 张宇, 李肖龙. 内蒙古喀喇沁旗安家营子金矿蚀变及其分布研究[J]. 地质与勘探, 2021, 57(1): 1-13. doi: 10.3969/j.issn.1001-1986.2021.01.001

    Cui X F, Zhang Y, Li X L. Alteration and distribution of Anjiayingzi gold deposit in Harqin Banner, Inner Mongolia[J]. Geology and Exploration, 2021, 57(1): 1-13. doi: 10.3969/j.issn.1001-1986.2021.01.001
    金露英, 秦克章, 李光明, 等. 斑岩钼-热液脉状铅锌银矿成矿系统特征、控制因素及勘查指示[J]. 岩石学报, 2020, 36(12): 3813-3839. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202012015.htm

    Jin L Y, Qin K Z, Li G M, et al. Characteristics, controlling factors and exploration implications of porphyry molybdenum-hydrothermal vein-style lead-zinc-silver metallogenic systems[J]. Acta Petrologica Sinica, 2020, 36(11): 3813-3839. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202012015.htm
    孙雨沁, 于学峰, 单伟, 等. 胶东焦家断裂带3000m深部矿化特征及金矿物赋存状态[J]. 地球学报, 2020, 41(6): 919-937. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202006018.htm

    Sun Y Q, Yu X F, Dan W, et al. Mineralization characteristics and modes of occurrence of gold minerals at the depth of 3000 meters in Jiaojia fault zone, Jiaodong Peninsula[J]. Acta Geoscientia Sinica, 2020, 41(6): 919-937. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202006018.htm
    于立栋, 张海微, 张静, 等. 东天山玉峰金矿热液蚀变作用与元素迁移规律[J]. 岩石学报, 2020, 36(5): 1597-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202005017.htm

    Yu L D, Zhang H W, Zhang J, et al. Hydrothermal alteration and element migration in the Yufeng gold deposit, Eastern Tianshan Orogen[J]. Acta Petrologica Sinica, 2020, 36(5): 1597-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202005017.htm
    张海坤, 胡鹏, 姜军胜, 等. 印度尼西亚苏门答腊岛马塔比(Martabe)浅成低温热液型金-银矿床的地质特征与找矿标志[J]. 高校地质学报, 2021, 27(2): 163-171. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202102004.htm

    Zhang H K, Hu P, Jiang J S, et al. Geological features and prospecting indicators of martabe epithermal Au-Ag deposit, Sumatra, Indonesia[J]. Geological Journal of China Universities, 2021, 27(2): 163-171. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202102004.htm
    田兴旺, 胡国艺, 苏桂萍, 等. 川南威远川南威远地区W201井古生界海相页岩矿物特征[J]. 新疆石油地质, 2018, 39(4): 409-415. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201804005.htm

    Tian X W, Hu G Y, Su G P, et al. Mineralogical characteristics of Paleozoic marine shales in Well W201 of Weiyuan area, Southern Sichuan Basin[J]. Xinjiang Petroleum Geology, 2018, 39(4): 409-415. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201804005.htm
    卢龙飞, 秦建中, 申宝剑, 等. 川东南涪陵地区五峰-龙马溪组硅质页岩的生物成因及其油气地质意义[J]. 石油实验地质, 2016, 38(4): 460-465. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201604007.htm

    Lu L F, Qin J Z, Shen B J, et al. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng-Longmaxi formations in Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 460-465. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201604007.htm
    孙川翔, 聂海宽, 刘光祥, 等. 石英矿物类型及其对页岩气富集开采的控制: 以四川盆地及其周缘五峰组-龙马溪组为例[J]. 地球科学, 2019, 44(11): 3692-3704. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911009.htm

    Sun C X, Nie H K, Liu G X, et al. Quartz type and its control on shale gas enrichment and production: A case study of the Wufeng-Longmaxi Formations in the Sichuan Basin and its surrounding areas, China[J]. Earth Science, 2019, 44(11): 3692-3704. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911009.htm
    郭雯, 董大忠, 李明, 等. 富有机质页岩中石英的成因及对储层品质的指示意义——以四川盆地东南部及周缘龙马溪组龙-1亚段为例[J]. 天然气工业, 2021, 41(2): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102012.htm

    Guo W, Dong D Z, Li M, et al. Quartz genesis in organic-rich shale and its indicative significance to reservoir quality: A case study on the first submember of the first member of Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin and its periphery[J]. Natural Gas Industry, 2021, 41(2): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102012.htm
    陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2): 345-368. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202102010.htm

    Chen Q, Song W L, Yang J K, et al. Principle of automated mineral quantitative analysis system and its applicati-ion in petrology and mineralogy: An example from TESCAN TIMA[J]. Mineral Deposits, 2021, 40(2): 345-368. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202102010.htm
    温利刚, 曾普胜, 詹秀春, 等. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J]. 岩矿测试, 2018, 37(2): 121-129. doi: 10.15898/j.cnki.11-2131/td.201708110129

    Wen L G, Zeng P S, Zhan X C, et al. Application of the automated mineral identification and characterization system (AMICS) in the identification of rare earth and rare minerals[J]. Rock and Mineral Analysis, 2018, 37(2): 121-129. doi: 10.15898/j.cnki.11-2131/td.201708110129
    伍月, 迟广成, 刘欣. X射线粉晶衍射法在变粒岩鉴定与分类中的应用[J]. 岩矿测试, 2020, 39(4): 546-554. doi: 10.15898/j.cnki.11-2131/td.201908050117

    Wu Y, Chi G C, Liu X. Application of X-ray powder diffraction method in identification and classification of leptite[J]. Rock and Mineral Analysis, 2020, 39(4): 546-554. doi: 10.15898/j.cnki.11-2131/td.201908050117
    闫柏琨, 王润生, 甘甫平, 等. 热红外遥感信息岩矿信息提取研究进展[J]. 地球科学进展, 2005, 20(10): 1116-1126. doi: 10.3321/j.issn:1001-8166.2005.10.011

    Yan B K, Wang R S, Gan F P. Progresses in minerals information extraction using thermal remote sensing[J]. Advances in Earth Science, 2005, 20(10): 1116-1126. doi: 10.3321/j.issn:1001-8166.2005.10.011
    代晶晶, 赵龙贤, 姜琪, 等. 热红外高光谱技术在地质找矿中的应用综述[J]. 地质学报, 2020, 94(8): 2520-2533. doi: 10.3969/j.issn.0001-5717.2020.08.026

    Dai J J, Zhao L X, Jiang Q, et al. Review of thermal-infrared spectroscopy applied in geological ore exploration[J]. Acta Geologica Sinica, 2020, 94(8): 2520-2533. doi: 10.3969/j.issn.0001-5717.2020.08.026
    Van der Meer F D, Van der Werff H M F, Van der Ruitenbeek F J K, et al. Multi-and hyperspectral geologic remote sensing: A review[J]. International Journal of Applied Earth Observation and Geoinfor-mation, 2012, 14(1): 112-128. doi: 10.1016/j.jag.2011.08.002
    Arne D, House E, Pontual S, et al. Hyperspectral interpretation of selected drill cores from orogenic gold deposits in central Victoria, Australia[J]. Australian Journal of Earth Sciences, 2016, 63(8): 1003-1025. http://www.onacademic.com/detail/journal_1000039630505810_873d.html
    Cudahy T. Mineral mapping for exploration: An Australian journey of evolving spectral sensing technologies and industry collaboration[J]. Geosciences, 2016, 6(4): 2076-3263. http://www.onacademic.com/detail/journal_1000040535690110_5288.html
    Laukamp C, Rodger A, LeGras M, et al. Mineral physicochemistry underlying feature-based extraction of mineral abundance and composition from shortwave, mid and thermal infrared reflectance spectra[J]. Minerals, 2021, 11(4): 1-37. http://www.researchgate.net/publication/350421386_Mineral_Physicochemistry_Underlying_Feature-Based_Extraction_of_Mineral_Abundance_and_Composition_from_Shortwave_Mid_and_Thermal_Infrared_Reflectance_Spectra
    Lampinen H M, Laukamp C, Occhipinti S A, et al. Mineral footprints of the Paleoproterozoic sediment-hosted Abra Pb-Zn-Cu-Au deposit Capricorn Orogen, western Australia[J]. Ore Geology Reviews, 2019, 104: 436-461. doi: 10.1016/j.oregeorev.2018.11.004
    Tappert M C, Rivard B, Giles D, et al. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia[J]. Ore Geology Reviews, 2013, 53: 26-38. doi: 10.1016/j.oregeorev.2012.12.006
    史维鑫, 易锦俊, 王浩, 等. 马坑铁矿钻孔岩心红外光谱特征及蚀变分带特征研究[J]. 岩矿测试, 2020, 39(6): 934-943. doi: 10.15898/j.cnki.11-2131/td.202005060004

    Shi W X, Yi J J, Wang H, et al. Study on the characteristics of the infrared spectrum and the alteration zoning of drill core in the Makeng iron deposit[J]. Rock and Mineral Analysis, 2020, 39(6): 934-943. doi: 10.15898/j.cnki.11-2131/td.202005060004
    Bastero C F, Lagmay A M F A. Estimating SiO2 content of lava depositsin the humid tropics using remotely sensed imagery[J]. Journal of Volcanology and Geothermal Research, 2006, 151(4): 357-364. doi: 10.1016/j.jvolgeores.2005.09.012
    Guo B J, hang J L. Airborne hyperspectral remote sensing technology for polymetallic ore and uranium deposits exploration in East Junggar[J]. Acta Geolagica Sinica (Engish Edition), 2014, 88(Supplement 2): 1347-1348. doi: 10.1111/1755-6724.12381_6/pdf
    杜锦锦, 王俊虎, 郎朋林. 基于102F实测热红外光谱的富硅类岩石SiO2含量定量反演[J]. 世界核地质科学, 2016, 33(4): 216-222. doi: 10.3969/j.issn.1672-0636.2016.04.005

    Du J J, Wang J H, Lang P L. Quantitative inversion of SiO2 contents in silicon rich rocks based on measured 102F thermal infrared spectra[J]. World Nuclear Geoscience, 2016, 33(4): 216-222. doi: 10.3969/j.issn.1672-0636.2016.04.005
    郭帮杰, 张杰林, 武鼎, 等. 高光谱遥感在硅化带识别中的应用[J]. 科学技术与工程, 2017, 17(3): 154-158. doi: 10.3969/j.issn.1671-1815.2007.04.044

    Guo B J, Zhang J L, Wu D, et al. Application of hyperspectral remote sensing in silicified zone identification[J]. Science Technology and Engineering, 2007, 11(4): 601-608. doi: 10.3969/j.issn.1671-1815.2007.04.044
    刘道飞, 陈圣波, 陈磊, 等. 以SiO2含量为辅助因子的ASTER热红外遥感硅化信息提取[J]. 地球科学——中国地质大学学报, 2015, 40(8): 1396-1402. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201508019.htm

    Liu D F, Chen S B, Chen L, et al. Silicification information extraction based on the content of SiO2 from ASTER TIR data[J]. Earth Science (Journal of China University of Geosciences), 2015, 40(8): 1396-1402. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201508019.htm
    王剑, 付修根, 沈利军, 等. 论羌塘盆地油气勘探前景[J]. 地质论评, 2020, 66(5): 1091-1113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202005005.htm

    Wang J, Fu X G, Shen L J, et al. Prospect of the potential of oil and gas resources in Qiangtang Basin, Xizang (Tibet)[J]. Geological Review, 2020, 66(5): 1091-1113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202005005.htm
    回广骥, 高卿楠, 宋利强, 等. 新疆可可托海稀有金属矿床矿物和岩石热红外光谱特征[J]. 岩矿测试, 2021, 40(1): 134-144. doi: 10.15898/j.cnki.11-2131/td.202005060001

    Hui G J, Gao Q N, Song L Q, et al. Thermal infrared spectra characteristics of rare metal minerals and rock in the Keketuohai deposit, Xinjiang[J]. Rock and Mineral Analysis, 2021, 40(1): 134-144. doi: 10.15898/j.cnki.11-2131/td.202005060001
    张弘, 高卿楠, 郭东旭, 等. 花岗伟晶岩型锂矿热红外反射光谱特征及锂元素定量反演研究[J]. 矿物岩石, 2021, 41(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS202101004.htm

    Zhang H, Gao Q N, Guo D X, et al. Characteristics of thermal infrared reflectance spectra and quantitative inversion of lithium element in granite pegmatite type lithium deposit[J]. Mineralogy and Petrology, 2011, 41(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS202101004.htm
    李俊键, 成宝洋, 刘仁静, 等. 基于数字岩心的孔隙尺度砂砾岩水敏微观机理[J]. 石油学报, 2019, 40(5): 594-603. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201905009.htm

    Li J J, Cheng B Y, Liu R J, et al. Microscopic mechanism of water sensitivity of pore-scale sandy conglomerate based on digital core[J]. Acta Petrolei Sinica, 2019, 40(5): 594-603. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201905009.htm
    吕文超, 杨志军, 周永章, 等. 钦杭结合带南段和寮铅锌多金属矿床石英的谱学特征及其指示意义[J]. 光谱学与光谱分析, 2013, 33(5): 1374-1378. doi: 10.3964/j.issn.1000-0593(2013)05-1374-05

    Lv W C, Yang Z J, Zhou Y Z, et al. Spectral characteristics and implications of quartz from Heliao lead-zinc polymetallic ore district in the south of Qinzhou-Hangzhou joint belt[J]. Spectroscopy and Spectral Analysis, 2013, 33(5): 1374-1378. doi: 10.3964/j.issn.1000-0593(2013)05-1374-05
    尤金凤, 邢立新, 潘军, 等. 油砂光谱特性及其含油率遥感估算研究[J]. 光谱学与光谱分析, 2015, 35(4): 1025-1029. doi: 10.3964/j.issn.1000-0593(2015)04-1025-05

    You J F, Xing L X, Pan J, et al. Research on oil sands spectral characteristics and oil content by remote sensing estimation[J]. Spectroscopy and Spectral Analysis, 2015, 35(4): 1025-1029. doi: 10.3964/j.issn.1000-0593(2015)04-1025-05
    樊瑞雪, 邢立新, 潘军, 等. 油砂的光谱特性及其遥感应用[J]. 吉林大学学报(地球科学版), 2019, 49(2): 603-610.

    Fan R X, Xing L X, Pan J, et al. Oil sands spectral reflection characteristics and remote sensing application[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(2): 603-610.
    成功, 李嘉璇, 王朝鹏, 等. 离子型稀土矿含量高光谱定量反演研究[J]. 光谱学与光谱分析, 2019, 39(5): 1571-1578.

    Cheng G, Li J X, Wang C P, et al. Study on hyperspectral quantitative inversion of ionic rare earth ore[J]. Spectroscopy and Spectral Analysis, 2019, 39(5): 1571-1578.
  • Cited by

    Periodical cited type(6)

    1. 陈星韵,张良,王豪帅,张瑞锐,孙思辰. 福建云霄石榴子石宝石矿物学特征. 岩石矿物学杂志. 2024(03): 673-684 .
    2. 韩萧萧,梁涛,王思雨,熊竹楠,王凌青. 电感耦合等离子体质谱联用技术在稀土元素物源指示研究中的应用进展. 岩矿测试. 2023(01): 1-15 . 本站查看
    3. 毛金伟,冷成彪,赵严,李凯旋,陈涛亮,梁丰,高粉粉,张兴春. 云南中甸红牛-红山大型夕卡岩铜矿床石榴子石U-Pb年代学、元素地球化学及地质意义. 矿物岩石地球化学通报. 2023(06): 1329-1343+1-11 .
    4. 胡靓,张德贤,娄威,胡子奇,刘金波. 含膏盐建造铁矿床中磁铁矿LA-ICP-MS微量元素测定与地球化学特征研究. 岩矿测试. 2022(04): 564-574 . 本站查看
    5. 王浩,杨岳衡,杨进辉. 矿物微区Lu-Hf同位素分析技术研究进展. 岩矿测试. 2022(06): 881-905 . 本站查看
    6. 朱丽,杨永琼,顾汉念,温汉捷,杜胜江,罗重光. 电感耦合等离子体质谱-X射线衍射法研究云南玉溪和美国内华达地区黏土型锂资源矿物学特征. 岩矿测试. 2021(04): 532-541 . 本站查看

    Other cited types(5)

Catalog

    Article views (4074) PDF downloads (38) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return