• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
WANG Li-qiang, WANG Jia-song, WEI Shuang, ZHENG Zhi-kang, WU Liang-ying, ZHANG Nan, ZENG Jiang-ping. Determination of W, Mo and 11 Other Elements in Tungsten-Molybdenum Ores by Inductively Coupled Plasma Optical Emission Spectrometry with Lithium Metaborate Fusion[J]. Rock and Mineral Analysis, 2021, 40(5): 688-697. DOI: 10.15898/j.cnki.11-2131/td.202103190040
Citation: WANG Li-qiang, WANG Jia-song, WEI Shuang, ZHENG Zhi-kang, WU Liang-ying, ZHANG Nan, ZENG Jiang-ping. Determination of W, Mo and 11 Other Elements in Tungsten-Molybdenum Ores by Inductively Coupled Plasma Optical Emission Spectrometry with Lithium Metaborate Fusion[J]. Rock and Mineral Analysis, 2021, 40(5): 688-697. DOI: 10.15898/j.cnki.11-2131/td.202103190040

Determination of W, Mo and 11 Other Elements in Tungsten-Molybdenum Ores by Inductively Coupled Plasma Optical Emission Spectrometry with Lithium Metaborate Fusion

More Information
  • Received Date: March 18, 2021
  • Revised Date: June 22, 2021
  • Accepted Date: July 27, 2021
  • Published Date: September 27, 2021
  • HIGHLIGHTS
    (1) A method for the determination of 13 useful, beneficial and harmful elements in tungsten and molybdenum ores was established.
    (2) Using lithium metaborate to decompose samples without introducing alkali metals, the simultaneous determination of K, Na and other rock-forming elements and ore-forming elements can be realized.
    (3) Hydrochloric acid extraction-tartaric acid complexation-ultrasonic oscillation was used to extract frit and to obtain a stable sample solution quickly.
    BACKGROUNDTungsten molybdenum ores are strategic mineral resources. China is a large producer and consumer of tungsten and molybdenum ore. Accurate and efficient analysis of tungsten and molybdenum and its associated beneficial and harmful elements is of great significance for the evaluation and comprehensive utilization of tungsten and molybdenum ore deposits. Acid dissolution and alkali fusion are the general digestion methods in tungsten molybdenum ore analysis. However, the acid solution method cannot be used to overcome the hydrolysis problem when treating samples with high content of tungsten and molybdenum, whereas the alkali fusion method such as sodium peroxide and sodium hydroxide usually introduces a large content of alkali metals, so the determination of potassium and sodium cannot be finished.
    OBJECTIVESTo find an efficient method for the determination of tungsten, molybdenum and 11 other elements in tungsten molybdenum ore.
    METHODSLithium metaborate melting-tartaric acid ultrasonic leaching and inductively coupled plasma-optical emission spectrometry (ICP-OES) was used for the simultaneous determination of tungsten, molybdenum, copper, lead, zinc, aluminum, iron, calcium, magnesium, titanium, manganese, potassium and sodium in tungsten-molybdenum ore. The sample was completely digested by lithium metaborate fusion. No other elements were introduced except for B and Li. Tartaric acid was used to inhibit the hydrolysis of tungsten and molybdenum. Ultrasonic leaching speeds up the dissolution of the frit.
    RESULTSThe experiment optimized the analysis spectrum and observation method of each element, compared the amount of flux and instrument conditions to obtain the best conditions, and used the matrix matching method to draw a standard curve to eliminate the influence of the matrix effect. The linear correlation coefficient of the standard curve of each element was greater than 0.9990, the detection limit of the method was 1.34-46.2μg/g, the relative error of measured results was 0.14%-8.7%, the relative standard deviation (RSD, n=10) of the measured results was 1.4%-7.6%.
    CONCLUSIONSThis method can accurately and efficiently complete the simultaneous determination of multiple elements in tungsten and molybdenum ore samples.
  • 孙伟, 卫召, 韩海生, 等. 钨矿浮选化学及其实践[J]. 金属矿山, 2021(1): 24-41. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202101004.htm

    Sun W, Wei Z, Han H S, et al. Flotation chemistry of tungsten ore and its practice[J]. Metal Mine, 2021(1): 24-41. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202101004.htm
    《岩石矿物分析》编委会. 岩石矿物分析(第四版第三分册)[M]. 北京: 地质出版社, 2011: 317-319, 338-340.

    The editorial committee of 《Rock and mineral analysis》. Rock and mineral analysis (The fourth edition: Vol. Ⅲ)[M]. Beijing: Geological Publishing House, 2011: 317-319, 338-340.
    Padmasubashini V, Ganguly M K, Satyanarayana K, et al. Determination of tungsten in niobium-tantalum, vanadium and molybdenum bearing geological samples using derivative spectrophotometry and ICP-AES[J]. Talanta, 1999, 50(3): 669-676. doi: 10.1016/S0039-9140(99)00165-4
    Sheng J F, Liu L J, Wang D H, et al. Key Laboratory of Metallogeny and Mineral Resource Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, China University of Geosciences, Changjiang University, College of Earth Science, Jilin University. A preliminary review of metallogenic regularity of tungsten deposits in China[J]. Acta Geologica Sinica(English Edition), 2015, 89(4): 1359-1374. doi: 10.1111/1755-6724.12533
    Chen X Y, Guo F L, Chen Q, et al. Leaching tungsten and rare earth elements from scheelite through H2SO4-H3PO4 mixed acid decomposition[J]. Minerals Engineering, 2020, 156: 106526. doi: 10.1016/j.mineng.2020.106526
    刘宇, 魏双. 高压消解-电感耦合等离子体质谱法测定铌钽矿石中铌钽含量[J]. 地质调查与研究, 2018, 41(3): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201803012.htm

    Liu Y, Wei S. Determination of niobium and tantalum content in Nb-Ta ore by high pressure digestion-inductively coupled plasma mass spectrometry[J]. Geological Survey and Research, 2018, 41(3): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201803012.htm
    Qin J X, Zheng S, Mao Y H, et al. Carboxyl-func-tionalized hollow polymer microspheres for detection of trace metal elements in complex food matrixes by ICP-MS assisted with solid-phase extraction[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111729. doi: 10.1016/j.ecoenv.2020.111729
    Cobelo-García A, Mulyani M E, Schfer J. Ultra-trace interference-free analysis of palladium in natural waters by ICP-MS after on-line matrix separation and pre-concentration[J]. Talanta, 2021, 232: 122289. doi: 10.1016/j.talanta.2021.122289
    方蓬达, 张莉娟, 王家松, 等. 熔融制样-波长色散X射线荧光光谱法同时测定砂岩型铀矿中主量及铀、钍成分[J]. 地质调查与研究, 2021, 44(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102005.htm

    Fang P D, Zhang L J, Wang J S, et al. Simultaneous determination of major elements, uranium and thorium in sandstone type uranium deposits by melting sample preparation wavelength dispersive X-ray fluorescence spectrometry[J]. Geological Survey and Research, 2021, 44(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102005.htm
    王川, 郭义蓉. 熔融制样-X射线荧光光谱法测定锡矿和钨钼矿中16种组分[J]. 理化检验(化学分册), 2020, 56(7): 765-770. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202007004.htm

    Wang C, Guo Y R. XRFs determination of 16 components in tin ore and tungsten molybdenum ore with fused sample preparation[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(7): 765-770. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202007004.htm
    Zhang J, Zeng Y J, Slatt R. XRF (X-ray fluorescence) applied to characterization of unconventional Woodford Shale (Devonian, U.S.A. ) lateral well heterogeneity[J]. Fuel, 2019, 254: 115565. doi: 10.1016/j.fuel.2019.05.148
    孙爽. 电感耦合等离子体原子发射光谱(ICP-AES)技术的应用进展[J]. 世界有色金属, 2017(23): 233-235. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201723139.htm

    Sun S. Progress in application of inductively coupled plasma atomic emission spectroscopy[J]. World Nonferrous Metals, 2017(23): 233-235. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201723139.htm
    Vyacheslavov A V, Tsepkova V V, Titova A D, et al. Development of a technique for analysis of tungsten-containing sludge using inductively coupled plasma atomic emission spectrometry (ICP-AES)[J]. Inorganic Materials, 2020, 56(14): 1369-1373. doi: 10.1134/S0020168520140150
    王力强, 魏双, 王家松, 等. 敞口酸溶-电感耦合等离子体发射光谱法测定多金属矿中的铝锰钾钠钙镁硫[J]. 地质调查与研究, 2019, 42(4): 259-262. doi: 10.3969/j.issn.1672-4135.2019.04.004

    Wang L Q, Wei S, Wang J S, et al. Determination of Al, Mn, K, Na, Ca, Mg, S in polymetallic ores by open acid solution-inductively coupled plasma emission spectrometry[J]. Geological Survey and Research, 2019, 42(4): 259-262. doi: 10.3969/j.issn.1672-4135.2019.04.004
    Mounteney I, Burton A K, Farrant A R, et al. Heavy mineral analysis by ICP-AES a tool to aid sediment provenancing[J]. Journal of Geochemical Exploration, 2018, 184: 1-10. doi: 10.1016/j.gexplo.2017.10.007
    高小飞, 倪文山, 毛香菊, 等. 电感耦合等离子体质谱法测定钨钼矿中锗[J]. 冶金分析, 2018, 38(8): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201808007.htm

    Gao X F, Ni W S, Mao X J, et al. Determination of germanium in tungsten molybdenum ore by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(8): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201808007.htm
    杨小莉, 杨小丽, 李小丹, 等. 敞开酸溶-电感耦合等离子体质谱法同时测定钨矿石和锡矿石中14种微量元素[J]. 岩矿测试, 2014, 33(3): 321-326. doi: 10.3969/j.issn.0254-5357.2014.03.006

    Yang X L, Yang X L, Li X D, et al. Simeutaneous determination of 14 trace elements in tungsten ore and tin ore with open acid digestion by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(3): 321-326. doi: 10.3969/j.issn.0254-5357.2014.03.006
    蒋常菊, 范志平, 雷占昌, 等. ICP-MS法同时测定青海省柴北缘某地区多金属矿石中的钨锡[J]. 黄金, 2017, 38(8): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201708019.htm

    Jiang C J, Fan Z P, Lei Z C, et al. Simultaneous determination of tungsten and tin in a polymetallic ore from a region in the northern margin of Qaidam Basin in Qinghai Province by ICP-MS[J]. Gold, 2017, 38(8): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201708019.htm
    吴葆存, 于亚辉, 闫红岭, 等. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J]. 冶金分析, 2016, 36(7): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201607006.htm

    Wu B C, Yu Y H, Yan H L, et al. Determination of rare earth elements in tungsten ore and molybdenum ore by inductively coupled plasma mass spectrometry with alkali fusion[J]. Metallurgical Analysis, 2016, 36(7): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201607006.htm
    杨新能, 陈德, 李小青. 碱熔-电感耦合等离子体原子发射光谱法测定铁矿石中铬铌钼钨锡[J]. 冶金分析, 2019, 39(12): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201912009.htm

    Yang X N, Chen D, Li X Q. Determination of chromium, niobium, molybdenum, tungsten, tin in iron ore by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2019, 39(12): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201912009.htm
    高小飞, 肖芳, 姚明星, 等. 电感耦合等离子体原子发射光谱法测定钡精矿中钡、钨的含量[J]. 理化检验(化学分册), 2017, 53(7): 771-774. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201707005.htm

    Gao X F, Xiao F, Yao M X, et al. ICP-AES determination of barium and tungsten in barium concentrate[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(7): 771-774. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201707005.htm
    刘正红, 高振广, 陈永红, 等. 电感耦合等离子体原子发射光谱法测定矿石中的钼钨[J]. 黄金, 2019, 40(6): 82-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201906021.htm

    Liu Z H, Gao Z G, Chen Y H, et al. Determination of tungsten and molybdenum in ores by inductively coupled plasma-atomic emission spectrometry[J]. Gold, 2019, 40(6): 82-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201906021.htm
    王蕾, 张保科, 马生凤, 等. 封闭压力酸溶-电感耦合等离子体光谱法测定钨矿石中的钨[J]. 岩矿测试, 2014, 33(5): 661-664. doi: 10.3969/j.issn.0254-5357.2014.05.008

    Wang L, Zhang B K, Ma S F, et al. Determination of wolfram in tungsten ore by pressurized acid digestion-inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2014, 33(5): 661-664. doi: 10.3969/j.issn.0254-5357.2014.05.008
    王风, 程相恩, 陈传伟. 电感耦合等离子体原子发射光谱法测定钼矿石中的钨钼[J]. 冶金分析, 2014, 34(6): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201406013.htm

    Wang F, Cheng X E, Chen C W. Determination of tungsten and molybdenum in molybdenum ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2014, 34(6): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201406013.htm
    林学辉, 辛文彩, 徐磊. 过氧化钠熔融-电感耦合等离子体发射光谱法快速测定稀散元素矿石中高含量钨[J]. 分析试验室, 2018, 37(11): 1324-1326. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201811018.htm

    Lin X H, Xin W C, Xu L. Rapid determination of tungsten scattered element mineral by ICP-AES with sodium peroxide alkali fusion[J]. Chinese Journal of Analysis Laboratory[J]. Chinese Journal of Analysis Laboratory, 2018, 37(11): 1324-1326. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201811018.htm
    门倩妮, 沈平, 甘黎明, 等. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪[J]. 岩矿测试, 2020, 39(1): 59-67. doi: 10.15898/j.cnki.11-2131/td.201905100060

    Men Q N, Shen P, Gan L M, et al. Determination of rare earth elements and Nb, Ta, Zr, Hf in polymetallic mineral survey samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J]. Rock and Mineral Analysis, 2020, 39(1): 59-67. doi: 10.15898/j.cnki.11-2131/td.201905100060
    冯晓军, 姜威, 薛菁, 等. 电感耦合等离子体原子发射光谱法同时测定磷矿中12种组分[J]. 冶金分析, 2017, 37(5): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201705010.htm

    Feng X J, Jiang W, Xue J, et al. Simultaneous determination of twelve elements in phosphate ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(5): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201705010.htm
    吕振生, 赵庆令, 李清彩, 等. 电感耦合等离子体原子发射光谱法测定钨矿石中8种成分[J]. 冶金分析, 2010, 30(9): 47-50. doi: 10.3969/j.issn.1000-7571.2010.09.009

    Lv Z S, Zhao Q L, Li Q C, et al. Determination of eight components in tungsten ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2010, 30(9): 47-50. doi: 10.3969/j.issn.1000-7571.2010.09.009
    龙光花, 梅毅, 杨加强, 等. 电感耦合等离子体原子发射光谱法测定湿法磷酸中8种元素[J]. 冶金分析, 2017, 37(6): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201706010.htm

    Long G H, Mei Y, Yang J Q, et al. Determination of eight elements in wet-process phosphoric acid by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(6): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201706010.htm
    龚琦. 对电感耦合等离子体发射光谱法中一些问题的认识[J]. 冶金分析, 2018, 38(9): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201809005.htm

    Gong Q. Understanding of some issues about inductively coupled plasma optical emission spectrometry[J]. Metallurgical Analysis, 2018, 38(9): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201809005.htm
    王树英, 左文家, 郭雅尘, 等. 电感耦合等离子体发射光谱(ICP-OES)法测定石灰石中5种氧化物含量[J]. 中国无机分析化学, 2019, 9(3): 17-22. doi: 10.3969/j.issn.2095-1035.2019.03.005

    Wang S Y, Zuo W J, Guo Y C, et al. Determination of five oxides in limestone by inductively coupled plasma optical emission spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(3): 17-22. doi: 10.3969/j.issn.2095-1035.2019.03.005
    曹磊, 陈微微, 高孝礼, 等. 基体干扰对ICP-AES分析土壤样品中主、次量元素的影响研究[J]. 光谱学与光谱分析, 2016, 36(7): 2260-2265. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201607056.htm

    Cao L, Chen W W, Gao X L, et al. Research on the matrix interference on major and minor elements in soil samples with ICP-AES[J]. Spectroscopy and Spectral Analysis, 2016, 36(7): 2260-2265. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201607056.htm
    陈忠颖, 刘巍, 郭颖. 电感耦合等离子体质谱法测定高纯铁中21种元素时的基体效应[J]. 理化检验(化学分册), 2017, 53(12): 1416-1418. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201712011.htm

    Chen Z Y, Liu W, Guo Y. Matrix effect in the ICP-MS determination of 21 elements in high purity iron[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(12): 1416-1418. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201712011.htm
    王雪平, 闫凯. 电感耦合等离子体原子发射光谱法测定污水中的总磷[J]. 理化检验(化学分册), 2017, 53(3): 295-298. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201703010.htm

    Wang X P, Yan K. Determination of total phosphorus in sewages by ICP-AES[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(3): 295-298. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201703010.htm
    李清彩, 赵庆令, 荀红梅. 电感耦合等离子体原子发射光谱法测定多金属矿石中砷镉铟硫锑[J]. 冶金分析, 2015, 35(2): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201502014.htm

    Li Q C, Zhao Q L, Xun H M, et al. Determination of arsenic, cadmium, indium, sulfur and antimony in polymetallic ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2015, 35(2): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201502014.htm
    严子心, 曲景奎, 余志辉, 等. 多谱线拟合-电感耦合等离子体原子发射光谱法测定高纯镍中痕量钴[J]. 分析化学, 2019, 47(3): 423-428. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201903014.htm

    Yan Z X, Qu J K, Yu Z H, et al. Multi-spectral fitting-determination of trace cobalt in high purity nickel by inductively coupled plasma atomic emission spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 423-428. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201903014.htm
    刘佳, 刘冰冰, 韩梅, 等. 电感耦合等离子体原子发射光谱法测定水中总磷的方法研究[J]. 光谱学与光谱分析, 2018, 38(6): 1880-1883. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201806046.htm

    Liu J, Liu B B, Han M, et al. Methodology research for determination of total phosphorus in water by inductively coupled plasma-atomic emission spectrometry[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 1880-1883. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201806046.htm
    姜云军, 李星, 姜海伦, 等. 碱熔-离子交换树脂分离-电感耦合等离子体原子发射光谱法测定钨钼矿石中的钨、钼、硼、硫和磷[J]. 理化检验(化学分册), 2018, 54(9): 1030-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201809008.htm

    Jiang Y J, Li X, Jiang H L, et al. Determination of tungsten, molybdenum, boron, sulfur and phosphorus in tungsten molybdenum ores by inductively coupled plasma-atomic emission spectrometry combined with alkali fusion and separation using on exchange resin[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(9): 1030-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201809008.htm
    王小强, 夏辉, 秦九红, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定多金属矿中的锡钨钛等主次量成分[J]. 岩矿测试, 2017, 36(1): 52-58. doi: 10.15898/j.cnki.11-2131/td.201704240065

    Wang X Q, Xia H, Qin J H, et al. Determination of Sn, W, Ti and other elements in polymetallic ore by inductively coupled plasma-optical emission spectrometry with sodium peroxide fusion[J]. Rock and Mineral Analysis, 2017, 36(1): 52-58. doi: 10.15898/j.cnki.11-2131/td.201704240065
    张世龙, 黄启华, 胡小明, 等. 电感耦合等离子体原子发射光谱法测定钨矿石中硅、铁、铝、钛、钨、锡和钼的含量[J]. 理化检验(化学分册), 2016, 52(10): 1237-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201610036.htm

    Zhang S L, Huang Q H, Hu X M, et al. ICP-AES determination of Si, Fe, Al, Ti, W, Sn and Mo in tungsten ores[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(10): 1237-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201610036.htm

Catalog

    Article views (4322) PDF downloads (69) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return