MA Wan-ping, WEN Han-jie, YE Qin, ZHAO Yue, YANG Ji-hua. Determination of Trace Selenium in High-Carbon and High-Sulfur Geological Samples by Thiol Cotton Fiber Separation-Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 550-560. DOI: 10.15898/j.cnki.11-2131/td.202101220013
Citation: MA Wan-ping, WEN Han-jie, YE Qin, ZHAO Yue, YANG Ji-hua. Determination of Trace Selenium in High-Carbon and High-Sulfur Geological Samples by Thiol Cotton Fiber Separation-Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 550-560. DOI: 10.15898/j.cnki.11-2131/td.202101220013

Determination of Trace Selenium in High-Carbon and High-Sulfur Geological Samples by Thiol Cotton Fiber Separation-Atomic Fluorescence Spectrometry

More Information
  • Received Date: January 21, 2021
  • Revised Date: April 20, 2021
  • Accepted Date: May 16, 2021
  • Published Date: July 27, 2021
  • HIGHLIGHTS
    (1) Microwave digestion was used to reduce the loss of selenium (a volatile element) and the experimental time.
    (2) Thiol cotton fiber (TCF) was used to separate and purify selenium, reducing the interference of the complex matrix.
    (3) The improved method is suitable for geological samples containing organic matter or sulfides.
    BACKGROUNDHydride generation-atomic fluorescence spectroscopy (HG-AFS) is highly sensitive for the determination of trace selenium in geological samples. However, the complex matrix increases the analysis difficulty, especially owing to interference caused by organic carbon, complicated complexes, and coexisting ions in samples rich in organic matter and sulfides. Therefore, sample pretreatment is important. The use of conventional thiol cotton fiber (TCF) to enrich and separate selenium often leads to unstable recovery and premature saturation of the TCF when dealing with samples rich in organic matter and sulfides.
    OBJECTIVESTo establish a method suitable for the determination of trace selenium in geological samples rich in organic matter and sulfides.
    METHODSFor samples rich in organic matter, a double TCF column (mTCF=0.15g) was used to carry out adsorption twice. The recovery for high-sulfur geological samples could be increased either by increasing the amount of TCF (mTCF ≤ 0.2g) or reducing the sample amount.
    RESULTSThe measurement results for the reference materials and actual samples showed that the optimized method satisfied the analysis requirements as selenium recoveries of >95.1% and >95.5% were achieved for the organic-rich and sulfide samples, respectively. Microwave digestion can effectively avoid the loss of selenium during digestion; the measured selenium content was consistent with that reported in the literature.
    CONCLUSIONSThe improved method is suitable for geological samples rich in organic matter and sulfides, which can be used to determine trace selenium (ng/g to μg/g levels) in geological samples.

  • U.S. Geological Survey. Mineral commodity summaries 2020[R]. U.S. Geological Survey, 2020, https://doi.org/10.3133/mcs2020.
    陈炳翰, 丁建华, 叶会寿, 等. 中国硒矿成矿规律概要[J]. 矿床地质, 2020, 39(6): 1063-1077. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202006007.htm

    Chen B H, Ding J H, Ye H S, et al. Metallogenic regularity of selenium ore in China[J]. Mineral Deposits, 2020, 39(6): 1063-1077. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202006007.htm
    李静贤, 刘家军. 硒矿资源研究现状[J]. 资源与产业, 2014, 16(2): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZIYU201402020.htm

    Li J X, Liu J J. Advances in selenium resource study[J]. Resources and Industries, 2014, 16(2): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZIYU201402020.htm
    Wen H J, Carignan J. Selenium isotopes trace the source and redox processes in the black shale-hosted Se-rich deposits in China[J]. Geochimica Et Cosmochimica Acta, 2011, 75(6): 1411-1427. doi: 10.1016/j.gca.2010.12.021
    涂光炽, 高振敏, 胡瑞忠, 等. 分散元素地球化学及成矿机制[M]. 北京: 地质出版社, 2004: 1-153.

    Tu G C, Gao Z M, Hu R Z, et al. The geochemistry and ore-forming mechanism of the dispersed elements[M]. Beijing: Geological Publishing Housee, 2004: 1-153.
    König S, Luguet A, Lorand J P, et al. Selenium and tellurium systematics of the Earth's mantle from high precision analyses of ultra-depleted orogenic peridotites[J]. Geochimica Et Cosmochimica Acta, 2012, 86: 354-366. doi: 10.1016/j.gca.2012.03.014
    Yierpan A, Knig S, Labidi J, et al. Recycled selenium in hot spot-influenced lavas records ocean-atmosphere oxygenation[J]. Science Advances, 2020, 6(39): EABB6179. doi: 10.1126/sciadv.abb6179
    Tian H, Ma Z Z, Chen X L, et al. Geochemical chara-cteristics of selenium and its correlation to other elements and minerals in selenium-enriched rocks in Ziyang County, Shaanxi Province, China[J]. Journal of Earth Science, 2016, 27(5): 763-776. doi: 10.1007/s12583-016-0700-x
    Quang T D, Cui Z W, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health: A review[J]. Environment International, 2018, 112(3): 294-309. http://europepmc.org/abstract/MED/29438838
    李刚, 胡斯宪, 陈琳玲. 原子荧光光谱分析技术的创新与发展[J]. 岩矿测试, 2013, 32(3): 358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003

    Li G, Hu S X, Chen L L. Innovation and development for atomic fluorescence spectrometry analysis[J]. Rock and Mineral Analysis, 2013, 32(3): 358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003
    陈海杰, 马娜, 白金峰, 等. 基于外供氢气-氢化物-原子荧光光谱法测定地球化学样品中硒的研究[J]. 光谱学与光谱分析, 2020, 40(9): 2896-2900. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202009046.htm

    Chen H J, Ma N, Bai J F, et al. Study on determination of Se in geochemical samples by external supply H2-hydride generation atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2896-2900. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202009046.htm
    张欣, 许俊玉, 范凡, 等. 断续流动氢化物发生-原子吸收光谱法测定地质样品中的硒[J]. 桂林理工大学学报, 2016, 36(1): 191-194. doi: 10.3969/j.issn.1674-9057.2016.01.026

    Zhang X, Xu J Y, Fan F, et al. Determination of selenium in geological samples by intermittent-flow hydride generation atomic absorption spectrometry[J]. Journal of Guilin University of Technology, 2016, 36(1): 191-194. doi: 10.3969/j.issn.1674-9057.2016.01.026
    Marin L, Lhomme J, Carignan J. GFAAS determination of selenium after separation with thiol cotton in lichens and plants: The importance of adding a mineral matrix before decomposition[J]. Talanta, 2003, 61(2): 119-125. doi: 10.1016/S0039-9140(03)00272-8
    Marin L, Lhomme J, Carignan J. Determination of selen-ium concentration in sixty five reference materials for geochemical analysis by GFAAS after separation with thiol cotton[J]. Geostandards Newsletter, 2001, 25: 317-324. doi: 10.1111/j.1751-908X.2001.tb00608.x
    Rouxel O, Ludden J, Carignan J, et al. Natural variations of Se isotopic composition determined by hydride generation multiple collector coupled mass spectrometer[J]. Geochimica Et Cosmochimica Acta, 2002, 66(18): 3191-3199. doi: 10.1016/S0016-7037(02)00918-3
    Fan H F, Wen H J, Hu R Z, et al. Determination of total selenium in geological samples by HG-AFS after concentration with thiol cotton fiber[J]. Chinese Journal of Geochemistry, 2008(1): 90-96. http://www.ingentaconnect.com/content/ssam/10009426/2008/00000027/00000001/art00012
    Yu M Q, Liu G Q, Jin Q. Determination of trace arsenic, antimony, selenium and tellurium in various oxidation states in water by hydride generation and atomic-absorption spectrophotometry after enrichment and separation with thiol cotton[J]. Talanta, 1983, 30(4): 265-270. doi: 10.1016/0039-9140(83)80060-5
    Yu M, Sun D, Tian W, et al. Systematic studies on adsorption of trace elements Pt, Pd, Au, Se, Te, As, Hg, Sb on thiol cotton fiber[J]. Analytica Chimica Acta, 2002, 456(1): 147-155. doi: 10.1016/S0003-2670(02)00004-1
    Yu M, Tian W, Sun D, et al. Systematic studies on adsorption of 11 trace heavy metals on thiol cotton fiber[J]. Analytica Chimica Acta, 2001, 428(2): 209-218. doi: 10.1016/S0003-2670(00)01238-1
    Shan X Q, Hu K J. Matrix modification for determination of selenium in geological samples by graphite-furnace atomic-absorption spectrometry after preseparation with thiol cotton fibre[J]. Talanta, 1985, 32(1): 23-26. doi: 10.1016/0039-9140(85)80008-4
    樊海峰, 温汉捷, 凌宏文, 等. 氢化物-原子荧光光谱法测定地质样中的痕量硒——不同溶样方式的比较[J]. 矿物岩石地球化学通报, 2005, 24(3): 200-203. doi: 10.3969/j.issn.1007-2802.2005.03.004

    Fan H F, Wen H J, Ling H W, et al. Determination of total selenium in geological samples by hydride generation atomic fluorescence spectrometry-A comparative experiment of two different dissolution methods[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(3): 200-203. doi: 10.3969/j.issn.1007-2802.2005.03.004
    刘芸, 曹国松, 程佩, 等. 微波消解-ICP-MS法测定土壤中的硒含量[J]. 化学与生物工程, 2017, 34(11): 67-70. doi: 10.3969/j.issn.1672-5425.2017.11.017

    Liu Y, Cao G S, Chen P, et al. Determination of selenium content in soil by microwave digestion-ICP-MS[J]. Chemistry and Bioengineering, 2017, 34(11): 67-70. doi: 10.3969/j.issn.1672-5425.2017.11.017
    杨萍, 李惠. 微波消解-氢化物发生-原子荧光法测定土壤中的砷[J]. 环境研究与监测, 2019, 32(3): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201806002.htm

    Yang P, Li H. Determination of arsenic in soil by microwave digestion-hydride generation-atomic fluorescence spectrometry[J]. Environmental Research and Monitoring, 2019, 32(3): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201806002.htm
    李媛媛, 纪轶. 微波消解技术在环境化学分析中的应用研究[J]. 中国资源综合利用, 2020, 38(10): 74-76. doi: 10.3969/j.issn.1008-9500.2020.10.020

    Li Y Y, Ji Y. Research on application of microwave digestion technology in environmental chemistry analysis[J]. China Resources Comprehensive Utilization, 2020, 38(10): 74-76. doi: 10.3969/j.issn.1008-9500.2020.10.020
    赵学沛. 微波消解-石墨炉原子吸收光谱法测定痕量银的研究[J]. 岩石矿物学杂志, 2019, 38(2): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201902009.htm

    Zhao X P. Determination of trace amounts of silver by microwave digestion graphite furnace atomic absorption spectrometry[J]. Acta Petrologica Et Mineralogica, 2019, 38(2): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201902009.htm
    Kurzawa T, König S, Labidi J, et al. A method for Se isotope analysis of low ng-level geological samples via double spike and hydride generation MC-ICP-MS[J]. Chemical Geology, 2017, 466: 219-228. doi: 10.1016/j.chemgeo.2017.06.012
    Elwaer N, Hintelmann H. Selective separation of selen-ium(Ⅳ) by thiol cellulose powder and subsequent selenium isotope ratio determination using multicollector inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(5): 733-743. doi: 10.1039/b801673a
    贺欣宇, 王军, 张丽娟. 巯基棉分离富集-多接收电感耦合等离子体质谱测量矿石中硒的同位素丰度[J]. 环境化学, 2010, 29(5): 982-983. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201005040.htm

    He X Y, Wang J, Zhang L J. Determination of selenium isotope abundance in ores by inductively coupled plasma mass spectrometry after sulfhydryl cotton separation and enrichment[J]. Environmental Chemistry, 2010, 29(5): 982-983. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201005040.htm
    Stueeken E E, Foriel J, Nelson B K, et al. Selenium isotope analysis of organic-rich shales: Advances in sample preparation and isobaric interference correction[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(11): 1734-1749. doi: 10.1039/c3ja50186h
    García J B, Krachler M, Chen B, et al. Improved deter-mination of selenium in plant and peat samples using hydride generation-atomic fluorescence spectrometry (HG-AFS)[J]. Analytica Chimica Acta, 2005, 534(2): 255-261. doi: 10.1016/j.aca.2004.11.043
    von Strandmann P, Coath C D, Catling D C, et al. Analysis of mass dependent and mass independent selenium isotope variability in black shales[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1648-1659. doi: 10.1039/C4JA00124A
    张文河, 穆桂金. 烧失法测定有机质和碳酸盐的精度控制[J]. 干旱区地理, 2007(3): 455-459. doi: 10.3321/j.issn:1000-6060.2007.03.021

    Zhang W H, Mu G J. Precision control on measuring organic and carbonate content with loss on ignition method[J]. Arid Land Geography, 2007(3): 455-459. doi: 10.3321/j.issn:1000-6060.2007.03.021
    成勇. 电感耦合等离子体质谱法(ICP-MS)测定油品中铁, 铜, 铅, 锡, 砷, 银, 铬, 镍, 钒[J]. 中国无机分析化学, 2011, 1(4): 64-67. doi: 10.3969/j.issn.2095-1035.2011.04.0016

    Cheng Y. Determination of iron, copper, lead, tin, arsenic, silver, chromium, nickel and vanadium in oil by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2011, 1(4): 64-67. doi: 10.3969/j.issn.2095-1035.2011.04.0016
    张羽旭, 温汉捷, 樊海峰. 地质样品中Mo同位素测定的前处理方法研究[J]. 分析化学, 2009, 37(2): 216-220. doi: 10.3321/j.issn:0253-3820.2009.02.010

    Zhang Y X, Wen H J, Fan H F. Chemical pretreatment methods for measurement of Mo isotope ratio on geological samples[J]. Chinese Journal of Analytical Chemistry, 2009, 37(2): 216-220. doi: 10.3321/j.issn:0253-3820.2009.02.010
    刘向磊, 孙文军, 文田耀, 等. 三酸分步消解-电感耦合等离子体质谱法测定土壤详查样品中23种金属元素[J]. 岩矿测试, 2020, 39(5): 164-171. doi: 10.15898/j.cnki.11-2131/td.201902270026

    Liu X L, Sun W J, Wen T Y, et al. Determination of 23 metal elements in detailed soil survey samples by inductively coupled plasma-mass spectrometry with three acid stepwise digestion[J]. Rock and Mineral Analysis, 2020, 39(5): 164-171. doi: 10.15898/j.cnki.11-2131/td.201902270026
    邬景荣, 许廷波, 符峙宗, 等. 微波消解-电感耦合等离子体原子发射光谱法测定膨润土中6种元素[J]. 理化检验(化学分册), 2020, 56(2): 185-190. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202002013.htm

    Wu J R, Xu T B, Fu S Z, et al. ICP-AES determination of 6 elements in bentonite with microwave digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(2): 185-190. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202002013.htm
    Savard D, Bédard L P, Barnes S J. TCF selenium precon-centration in geological materials for determination at sub-μg·g-1 with INAA (Se/TCF-INAA)[J]. Talanta, 2006, 70(3): 566-571. doi: 10.1016/j.talanta.2006.01.010
    董亚妮, 田萍, 熊英, 等. 焙烧分离-氢化物发生-原子荧光光谱法测定铜铅锌矿石中的硒[J]. 岩矿测试, 2011, 30(2): 164-168. doi: 10.3969/j.issn.0254-5357.2011.02.008

    Dong Y N, Tian P, Xiong Y, et al. Determination of trace selenium in copper ore, lead ore and zinc ore by hydride generation-atomic fluorescence spectrometry with baking separation[J]. Rock and Mineral Analysis, 2011, 30(2): 164-168. doi: 10.3969/j.issn.0254-5357.2011.02.008
    管希云, 李玉珍. 表面活性剂的应用研究——动力学光度法测定痕量硒碲[J]. 岩矿测试, 2000, 29(1): 14-19. doi: 10.3969/j.issn.0254-5357.2000.01.004

    Guan X Y, Li Y Z. Application research on surfactant-kinetic spectrophotometric determination of trace selenium and tellurium[J]. Rock and Mineral Analysis, 2000, 29(1): 14-19. doi: 10.3969/j.issn.0254-5357.2000.01.004
  • Cited by

    Periodical cited type(2)

    1. 刘欣月,李海波,刘胜山,何文杰,董浩,程艳,乔俊豪,徐银. 大冶湖沉积物氮磷形态分布特征及生态风险评价. 环境科学学报. 2024(06): 161-173 .
    2. 王若凡,刘雨欣,李佩钢,唐悦,谢微. 黄河兰州段河岸带沉积物磷的形态分布及释放风险. 干旱区研究. 2024(12): 2035-2044 .

    Other cited types(0)

Catalog

    Article views (2100) PDF downloads (40) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return