• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LI Hai-tao, YANG Xin, LEI Hua-ji, YANG Yan, JIN Lan-lan, HU Sheng-hong. Research Progress of Cadmium Stable Isotopes[J]. Rock and Mineral Analysis, 2021, 40(1): 1-15. DOI: 10.15898/j.cnki.11-2131/td.202012090160
Citation: LI Hai-tao, YANG Xin, LEI Hua-ji, YANG Yan, JIN Lan-lan, HU Sheng-hong. Research Progress of Cadmium Stable Isotopes[J]. Rock and Mineral Analysis, 2021, 40(1): 1-15. DOI: 10.15898/j.cnki.11-2131/td.202012090160

Research Progress of Cadmium Stable Isotopes

More Information
  • Received Date: December 08, 2020
  • Revised Date: December 29, 2020
  • Accepted Date: January 01, 2021
  • Published Date: January 27, 2021
  • HIGHLIGHTS
    (1) Recent advances in digestion, chemical separation of organic matter-rich samples and high-precision analytical technique with double spikes were reviewed.
    (2) The application of Cd isotopes in marine science, geoscience, environmental science and agricultural science were summarized.
    (3) Investigationof the Cd isotope fractionation mechanism and its controlling factors, which will be conducive to establishing the tracer system of Cd isotope biogeochemistry fractionation.
    BACKGROUNDCadmium is a volatile element with chalcophile affinity. In the marine environment, Cd is a micronutrient element, while in the ecological environment and agricultural soil environment, Cd is a toxic element. Therefore, Cd isotopes have been used in marine science, earth science, environmental science, and agricultural scientific research, and show great application potential.
    OBJECTIVESTo summarize the high-precision analytical technology and applications of Cd isotopes in different research fields.
    METHODSThe recent research progress in digestion methods, separation and purification of Cd, and double-spikes calibration methods for organic matter-rich environmental samples, plant samples and biological samples were summarized.
    RESULTSFor organic matter-rich samples including environmental, plant and biological samples, microwave digestion, high-pressure ashing and perchloric acid digestion can eliminate the influence of organic matter in Cd isotope analysis. Combined AG MP-1(M) resin with hydrochloric acid leaching system can effectively separate the matrix and interfering elements, which will not result in Cd isotope fractionation. The precision of Cd isotope with 111Cd-113Cd isotope double-spike correction was around 0.1εCd/amu. The application of Cd isotopes in marine science, geoscience, environmental science, and agricultural science were also summarized in this paper. Cadmium isotopes were used successfully for building marine biological geochemistry cycles, inversion of ancient marine environments and primary productivity change. In sulfide deposits, Cd isotopes were used to trace the evolution of ore fluids and the source of ore metals, and to discriminate different deposit types. In environmental systems, Cd isotopes were applied to distinguish Cd pollution sources, and to investigate Cd sources, migration, circulation and storage mechanisms in agricultural sciences.
    CONCLUSIONSThe research of the high-precision Cd isotope analytical method and Cd isotope fractionation mechanism and model, will promote to establishment the tracer system of Cd isotope biogeochemistry fractionation and innovative development of non-traditional stable isotope geochemistry.

  • 唐波, 王景腾, 付勇. 不同地质储库中的镁同位素组成及碳酸盐矿物形成过程中的镁同位素分馏控制因素[J]. 岩矿测试, 2020, 39(2): 162-173. doi: 10.15898/j.cnki.11-2131/td.201809090102

    Tang B, Wang J T, Fu Y. Magnesium isotope composition of different geological reservoirs and controlling factors of magnesium isotope fractionation in the formation of carbonate minerals[J]. Rock and Mineral Analysis, 2020, 39(2): 162-173. doi: 10.15898/j.cnki.11-2131/td.201809090102
    王跃, 朱祥坤. 铁同位素体系及其在矿床学中的应用[J]. 岩石学报, 2012, 28(11): 3638-3654. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211017.htm

    Wang Y, Zhu X Q. Fe isotope systematics and its implications in ore deposit geology[J]. Acta Petrologica Sinica, 2012, 28(11): 3638-3654. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211017.htm
    Wang D, Sun X, Zheng Y, et al. Two pulses of mineralization and genesis of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet: Constraints from Fe-Zn isotopes[J]. Ore Geology Reviews, 2017, 84: 347-363. doi: 10.1016/j.oregeorev.2016.12.030
    Ding X, Ripley E M, Wang W, et al. Iron isotope fractionation during sulfide liquid segregation and crystallization at the Lengshuiqing Ni-Cu magmatic sulfide deposit, SW China[J]. Geochimica et Cosmochimica Acta, 2019, 261: 327-341. doi: 10.1016/j.gca.2019.07.015
    秦燕, 徐衍明, 侯可军, 等. 铁同位素分析测试技术研究进展[J]. 岩矿测试, 2020, 39(2): 151-161. doi: 10.15898/j.cnki.11-2131/td.201809090102

    Qin Y, Xu Y M, Hou K J, et al. Progress of analytical techniques for stable iron isotopes[J]. Rock and Mineral Analysis, 2020, 39(2): 151-161. doi: 10.15898/j.cnki.11-2131/td.201809090102
    Wu S, Zheng Y, Wang D, et al. Variation of copper isotopes in chalcopyrite from Dabu porphyry Cu-Mo deposit in Tibet and implications for mineral exploration[J]. Ore Geology Reviews, 2017, 90: 14-24. doi: 10.1016/j.oregeorev.2017.10.001
    张兴超, 刘超, 黄艺, 等. 干法灰化处理对含有机质土壤样品铜同位素测量的影响[J]. 岩矿测试, 2018, 37(4): 347-355. doi: 10.15898/j.cnki.11-2131/td.201809090102

    Zhang X C, Liu C, Huang Y, et al. The effect of dry-ashing method on copper isotopic analysis of soil samples with organic matter[J]. Rock and Mineral Analysis, 2018, 37(4): 347-355. doi: 10.15898/j.cnki.11-2131/td.201809090102
    何承真, 肖朝益, 温汉捷, 等. 四川天宝山铅锌矿床的锌-硫同位素组成及成矿物质来源[J]. 岩石学报, 2016, 32(11): 3394-3406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611012.htm

    He C Z, Xiao C Y, Wen H J, et al. Zb-S isotopic compositions of the Tianbaoshan carbonatehosted Pb-Zn deposit in Sichuan, China: Implications for source of ore components[J]. Acta Petrologica Sinica, 2016, 32(11): 3394-3406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611012.htm
    王中伟, 袁玮, 陈玖斌. 锌稳定同位素地球化学综述[J]. 地学前缘, 2015, 22(5): 84-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505009.htm

    Wang Z W, Yuan W, Chen J B. Zn stable isotope geochemistry: A review[J]. Earth Science Frontiers, 2015, 22(5): 84-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505009.htm
    王悦, 朱祥坤. 锌同位素在矿床学中的应用: 认识与进展[J]. 矿床地质, 2010, 29(5): 843-852. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201005008.htm

    Wang Y, Zhu X K. Application of Zn isotopes to study of mineral deposits: A review[J]. Mineral Deposits, 2010, 29(5): 843-852. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201005008.htm
    王丹妮, 靳兰兰, 陈斌, 等. 镉同位素体系及其在地球科学和环境科学中的应用[J]. 岩矿测试, 2013, 32(2): 181-191. doi: 10.15898/j.cnki.11-2131/td.201809090102

    Wang D N, Jin L L, Chen B, et al. A review of the isotope system of cadmium and its applications in geosciences and environmental sciences[J]. Rock and Mineral Analysis, 2013, 32(2): 181-191. doi: 10.15898/j.cnki.11-2131/td.201809090102
    Zhong Q H, Zhou Y C, Tsang D C W, et al. Cadmium isotopes as tracers in environmental studies: A review[J]. Science of the Total Environment, 2020, 736: 1-9. http://www.sciencedirect.com/science/article/pii/S0048969720331028
    朱传威, 温汉捷, 张羽旭, 等. Cd稳定同位素测试技术进展及其应用[J]. 地学前缘, 2015, 22(5): 115-123. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505012.htm

    Zhu C W, Wen H J, Zhang Y X, et al. Analytical technique for cadmium stable isotopes and its applications[J]. Earth Science Frontiers, 2015, 22(5): 115-123. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505012.htm
    刘意章, 肖唐付, 朱建明. 镉同位素及其环境示踪[J]. 地球与环境, 2015, 43(6): 687-696. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201506013.htm

    Liu Y Z, Xiao T F, Zhu J M. Cadmium isotopes and environmental tracing[J]. Earth and Environment, 2015, 43(6): 687-696. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201506013.htm
    魏荣菲, 郭庆军, 杨俊兴, 等. 镉同位素技术在环境科学研究中的应用进展[J]. 生态学杂志, 2014, 33(2): 525-536. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201402038.htm

    Wei R F, Guo Q J, Yang J X, et al. Application and progress of Cd isotope technology in environmental science[J]. Chinese Journal of Ecology, 2014, 33(2): 525-536. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201402038.htm
    Fouskas F, Ma L, Engle M A, et al. Cadmium isotope fractionation during coal combustion: Insights from two U. S. coal-fired power plants[J]. Applied Geochemistry, 2018, 96: 100-112. doi: 10.1016/j.apgeochem.2018.06.007
    Wombacher F, Rehkämper M, Mezger K. Determination of the mass-dependence of cadmium isotope fractionation during evaporation[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2349-2357. doi: 10.1016/j.gca.2003.12.013
    魏荣菲. 植物镉同位素分析测试方法的优化及其分馏特征研究[D]. 北京: 中国科学院大学, 2015.

    Wei R F.Study on the method of Cd isotope analysis and the characteristics of Cd isotope fractionation in plants[D].Beijing: University of Chinese Academy of Sciences, 2015.
    Abouchami W, Galer S J G, de Baar H J W, et al. Bio-geochemical cycling of cadmium isotopes in the southern ocean along the Zero Meridian[J]. Geochimica et Cosmochimica Acta, 2014, 127: 348-367. doi: 10.1016/j.gca.2013.10.022
    Ripperger S, Rehkäemper M, Porcelli D, et al. Cadmium isotope fractionation in seawater-A signature of biological activity[J]. Earth and Planetary Science Letters, 2007, 261(3): 670-684. http://www.sciencedirect.com/science/article/pii/S0012821X07004906
    Wen H, Zhu C, Zhang Y, et al. Zn/Cd ratios and cad-mium isotope evidence for the classification of lead-zinc deposits[J]. Scientific Reports, 2016, 6(1): 25273. doi: 10.1038/srep25273
    Yang J, Li Y, Liu S, et al. Theoretical calculations of Cd isotope fractionation in hydrothermal fluids[J]. Chemical Geology, 2015, 391: 74-82. doi: 10.1016/j.chemgeo.2014.10.029
    Horner T J, Rickaby R E M, Henderson G M. Isotopic fractionation of cadmium into calcite[J]. Earth and Planetary Science Letters, 2011, 312(1-2): 243-253. doi: 10.1016/j.epsl.2011.10.004
    Horner T J, Schönbächler M, Rehkämper M, et al. Ferro-manganese crusts as archives of deep water Cd isotope compositions[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(4), doi: 10.3390/geosciences10010036.
    Schmitt A D, Galer S J G, Abouchami W. Mass-depen-dent cadmium isotopic variations in nature with emphasis on the marine environment[J]. Earth and Planetary Science Letters, 2009, 277(1-2): 262-272. doi: 10.1016/j.epsl.2008.10.025
    Tan D, Zhu J M, Wang X L, et al. High-sensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020: 1-33. http://pubs.rsc.org/en/content/articlelanding/2020/ja/c9ja00397e/unauth
    Li D, Li M L, Liu W R, et al. Cadmium isotope ratios of standard solutions and geological reference materials measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 593-605. doi: 10.1111/ggr.12236
    Wei R, Guo Q, Wen H, et al. Fractionation of stable cad-mium isotopes in the cadmium Tolerant Ricinus communis and hyperaccumulator Solanum nigrum[J]. Scientific Reports, 2016, 6(1): 24309. doi: 10.1038/srep24309
    Li M L, Liu S A, Xue C J, et al. Zinc, cadmium and sulfur isotope fractionation in a supergiant MVT deposit with bacteria[J]. Geochimica et Cosmochimica Acta, 2019, 265: 1-18. doi: 10.1016/j.gca.2019.08.018
    Wiggenhauser M, Bigalke M, Imseng M, et al. Using isotopes to trace freshly applied cadmium through mineral phosphorus fertilization in soil-fertilizer-plant systems[J]. The Science of the Total Environment, 2019, 648: 779-786. doi: 10.1016/j.scitotenv.2018.08.127
    Barraza F, Moore R E T, Rehkäemper M, et al. Cadmium isotope fractionation in the soil-cacao systems of Ecuador a pilot field study[J]. The Royal Society of Chemistry, 2019, 9: 34011-34022. http://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra05516a
    Moore R E T, Ullah I, de Oliveira V H, et al. Cadmium isotope fractionation reveals genetic variation in Cd uptake and translocation by Theobroma cacao and role of natural resistance-associated macrophage protein 5 and heavy metal ATPase-family transporters[J]. Horticulture Research, 2020, 7(71): 1-11. http://www.zhangqiaokeyan.com/academic-journal-foreign-pmc_horticulture-research_thesis/040006211928.html
    Zhu C, Wen H, Zhang Y, et al. Cadmium isotope fractionation in the fule Mississippi Valley-type deposit, Southwest China[J]. Mineralium Deposita, 2016, 52(5): 675-686. doi: 10.1007/s00126-016-0691-7
    Wang D, Zheng Y Y, Mathur R, et al. Fractionation of cadmium isotope caused by vapour-liquid partitioning in hydrothermal ore-forming system: A case study of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet[J]. Ore Geology Reviews, 2020, 119: 1-14.
    Xu C, Zhong H, Hu R Z, et al. Sources and ore-forming fluid pathways of carbonate-hosted Pb-Zn deposits in southwest China: Implications of Pb-Zn-S-Cd isotopic compositions[J]. Mineralium Deposita, 2020, 55(3): 491-513. doi: 10.1007/s00126-019-00893-5
    Zhang Y, Wen H, Zhu C, et al. Cadmium isotopic evidence for the evolution of marine primary productivity and the biological extinction event during the Permian-Triassic crisis from the Meishan Section, South China[J]. Chemical Geology, 2018, 481: 110-118. doi: 10.1016/j.chemgeo.2018.02.005
    Sweere T C, Dickson A J, Jenkyns H C, et al. Zinc- and cadmium-isotope evidence for redox-driven perturbations to global micronutrient cycles during oceanic Anoxic Event 2(Late Cretaceous)[J]. Earth and Planetary Science Letters, 2020, 546: 1-11.
    Sweere T C, Dickson A J, Jenkyns H C, et al. Controls on the Cd-isotope composition of Upper Cretaceous (Cenomanian-Turonian) organic-rich mudrocks from South Texas (Eagle Ford Group)[J]. Geochemical at Cosmochimica Acta, 2020, 287: 251-262. doi: 10.1016/j.gca.2020.02.019
    Pallavicini N, Engstrom E, Baxter D C, et al. Cadmium isotope ratio measurements in environmental matrices by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1570-1584. doi: 10.1039/C4JA00125G
    Wei R, Guo Q, Wen H, et al. An analytical method for precise determination of the cadmium isotopic composition in plant samples using multiple collector inductively coupled plasma mass spectrometry[J]. Analytical Methods, 2015, 7(6): 2479-2487. doi: 10.1039/C4AY02435D
    Lv W X, Yin H M, Liu M S, et al. Effect of the dry ashing method on cadmium isotope measurements in soil and plant samples[J]. Geostandards and Geoanalytical Research, 2020, doi: 10.1111/ggr.12357.
    Park J, Kim J, Lee K, et al. Comparison of acid extraction and total digestion methods for measuring Cd isotope Ratios of environmental samples[J]. Environmental Monitoring and Assessment, 2020, 192, doi: 10.1007/s10661-019-8017-8.
    Rosman K J R, de Laeter J R. The isotopic composition of cadmium in terrestrial minerals[J]. International Journal of Mass Spectrometry and Ion Physics, 1975, 16: 385-394. doi: 10.1016/0020-7381(75)85027-3
    Wombacher F, Rehkämper M, Mezger K, et al. Stable iso-tope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS[J]. Geochimica et Cosmochimica Acta, 2003, 67(23): 4639-4654. doi: 10.1016/S0016-7037(03)00389-2
    Cloquet C, Rouxel O, Carignan J, et al. Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, Nod-P-1, Nod-A-1) and anthropogenic samples, measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2005, 29(1): 95-106. doi: 10.1111/j.1751-908X.2005.tb00658.x
    Gao B, Liu Y, Sun K, et al. Precise determination of cadmium and lead isotopic compositions in river sediments[J]. Analytica Chimica Acta, 2008, 612(1): 114-120. doi: 10.1016/j.aca.2008.02.020
    Zhu C, Wen H, Zhang Y, et al. Characteristics of Cd isotopic compositions and their genetic significance in the lead-zinc deposits of SW China[J]. Science China Earth Sciences, 2013, 56(12): 2056-2065. doi: 10.1007/s11430-013-4668-4
    Zhang L, Li J, Xu Y G, et al. The influence of the double spike proportion effect on stable isotope (Zn, Mo, Cd, and Sn) measurements by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS)[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(4): 555-562. doi: 10.1039/C8JA00016F
    Ripperger S, Rehkämper M. Precise determination of cad-mium isotope fractionation in seawater by double spike MC-ICPMS[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 631-642. doi: 10.1016/j.gca.2006.10.005
    Xue Z, Rehkämper M, Schoenbaechler M, et al. A new methodology for precise cadmium isotope analyses of seawater[J]. Analytical and Bioanalytical Chemistry, 2012, 402(2): 883-893. doi: 10.1007/s00216-011-5487-0
    Martinkova E, Chrastný V, Francova M, et al. Cadmium isotope fractionation of materials derived from various industrial processes[J]. Journal of Hazardous Materials, 2016, 302: 114-119. doi: 10.1016/j.jhazmat.2015.09.039
    Chrastný V, Čadková E, Vaněk A, et al. Cadmium isotope fractionation within the soil profile complicates source identification in relation to Pb-Zn mining and smelting processes[J]. Chemical Geology, 2015, 405: 1-9. doi: 10.1016/j.chemgeo.2015.04.002
    Schediwy S, Rosman K J R, de Laeter J R. Isotope fractionation of cadmium in lunar material[J]. Earth and Planetary Science Letters, 2006, 243(3): 326-335. http://www.sciencedirect.com/science/article/pii/S0012821X06000343
    Lacan F, Francois R, Ji Y, et al. Cadmium isotopic composition in the ocean[J]. Geochimica et Cosmochimica Acta, 2006, 70(20): 5104-5118. doi: 10.1016/j.gca.2006.07.036
    Schmitt A D, Galer S J G, Abouchami W. High-pre-cision cadmium stable isotope measurements by double spike thermal ionisation mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(8): 1079-1088. doi: 10.1039/b821576f
    Shiel A E, Barling J, Orians K J, et al. Matrix effects on the multi-collector inductively coupled plasma mass spectrometric analysis of high-precision cadmium and zinc isotope ratios[J]. Analytica Chimica Acta, 2009, 633(1): 29-37. doi: 10.1016/j.aca.2008.11.026
    Wen H, Zhang Y, Cloquet C, et al. Tracing sources of pollution in soils from the Jinding Pb-Zn mining district in China using cadmium and lead isotopes[J]. Applied Geochemistry, 2015, 52: 147-154. doi: 10.1016/j.apgeochem.2014.11.025
    Xie R C, Rehkämper M, Grasse P, et al. Isotopic evidence for complex biogeochemical cycling of Cd in the eastern tropical South Pacific[J]. Earth and Planetary Science Letters, 2019, 512: 134-146. doi: 10.1016/j.epsl.2019.02.001
    Sieber M, Conway T M, de Souza G F, et al. High-resolution Cd isotope systematics in multiple zones of the southern ocean from the Antarctic circumnavigation expedition[J]. Earth and Planetary Science Letters, 2019, 527, doi: 10.1016/j.epsl.2019.115799.
    Janssen D J, Abouchami W, Galer S J G, et al. Fine-scale spatial and interannual cadmium isotope variability in the subarctic northeast Pacific[J]. Earth and Planetary Science Letters, 2017, 472: 241-252. doi: 10.1016/j.epsl.2017.04.048
    Yang S C, Lee D C, Ho T Y, et al. The isotopic composition of dissolved cadmium in the water column of the West Philippine Sea[J]. Frontiers in Marine Science, 2014, 1(61), doi: 10.3389/fmars.2014.00061.
    Yang S C, Zhang J, Sohrin Y, et al. Cadmium cycling in the water column of the Kuroshio-Oyashio Extension Region: Insights from dissolved and particulate isotopic composition[J]. Geochimica et Cosmochimica Acta, 2018, 233: 66-80. doi: 10.1016/j.gca.2018.05.001
    Xie R C, Galer S J G, Abouchami W, et al. Non-rayleigh control of upper-ocean Cd isotope fractionation in the western South Atlantic[J]. Earth and Planetary Science Letters, 2017, 471: 94-103. doi: 10.1016/j.epsl.2017.04.024
    Lambelet M, Rehkämper M, de Flierdt T V, et al. Iso-topic analysis of Cd in the mixing zone of Siberian rivers with the arctic ocean-new constraints on marine Cd cycling and the isotope composition of riverine Cd[J]. Earth and Planetary Science Letters, 2013, 361: 64-73. doi: 10.1016/j.epsl.2012.11.034
    Bridgestock L, Rehkämper M, van de Flierdt T, et al. The Cd isotope composition of atmospheric aerosols from the Tropical Atlantic Ocean[J]. Geophysical Research Letters, 2017, 44(6): 2932-2940. doi: 10.1002/2017GL072748
    Yang S C, Lee D C, Ho T Y. The isotopic composition of cadmium in the water column of the South China Sea[J]. Geochimica et Cosmochimica Acta, 2012, 98: 66-77. doi: 10.1016/j.gca.2012.09.022
    Janssen D J, Conway T M, John S G, et al. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(19): 6888-6893. doi: 10.1073/pnas.1402388111
    Guinoiseau D, Galer S J G, Abouchami W. Effect of cadmium sulphide precipitation on the partitioning of Cd isotopes: Implications for the oceanic Cd cycle[J]. Earth and Planetary Science Letters, 2018, 498: 300-308. doi: 10.1016/j.epsl.2018.06.039
    Janssen D J, Abouchami W, Galer S J G, et al. Particulate cadmium stable isotopes in the subarctic northeast Pacific reveal dynamic Cd cycling and a new isotopically light Cd sink[J]. Earth and Planetary Science Letters, 2019, 515: 67-78. doi: 10.1016/j.epsl.2019.03.006
    George E, Stirling C H, Gault-Ringold M, et al. Determi-nation of trace cadmium in geological samples by membrane desolvation inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2019, 514: 84-95. doi: 10.1016/j.epsl.2019.02.031
    John S G, Kunzmann M, Townsend E J, et al. Zinc and cadmium stable isotopes in the geological record: A case study from the post-snowball Earth Nuccaleena cap dolostone[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2017, 466: 202-208. doi: 10.1016/j.palaeo.2016.11.003
    Hohl S V, Galer S J G, Gamper A, et al. Cadmium isotope variations in Neoproterozoic carbonates-A tracer of biologic production?[J]. Geochemical Perspectives Letters, 2017, 3: 32-44. http://www.researchgate.net/publication/307994560_Cadmium_isotope_variations_in_Neoproterozoic_carbonates_-_A_tracer_of_biologic_production
    Viehmann S, Hohl S V, Kraemer D, et al. Metal cycling in Mesoproterozoic microbial habitats: Insights from trace elements and stable Cd isotopes in stromatolites[J]. Gondwana Research, 2019, 67: 101-114. doi: 10.1016/j.gr.2018.10.014
    Hohl S V, Jiang S Y, Viehmann S, et al. Trace metal and Cd isotope systematics of the Basal Datangpo Formation, Yangtze Platform (South China) indicate restrained (Bio)geochemical metal cycling in cryogenian seawater[J]. Geoscience, 2020, doi:10.3390/geosciences 10010036.
    Dickson A J, Idiz E, Porcelli D, et al. The influence of thermal maturity on the stable isotope compositions and concentrations of molybdenum, zinc and cadmium in organic-rich marine mudrocks[J]. Geochimica et Cosmochimica Acta, 2020, 287: 205-220. doi: 10.1016/j.gca.2019.11.001
    Georgiev S V, Horner T J, Stein H J, et al. Cadmium-isotopic evidence for increasing primary productivity during the Late Permian anoxic event[J]. Earth and Planetary Science Letters, 2015, 410: 84-96. doi: 10.1016/j.epsl.2014.11.010
    Hohl S V, Jiang S Y, Wei H Z, et al. Cd isotopes trace periodic (bio)geochemical metal cycling at the verge of the Cambrian animal evolution[J]. Geochimica et Cosmochimica Acta, 2019, 263: 195-214. doi: 10.1016/j.gca.2019.07.036
    王伟中, 张朝晖, 温汉捷, 等. 镉同位素在古环境重建中的应用: 以晚泥盆世弗拉期-法门期生物灭绝事件为例[J]. 矿物岩石地球化学通报, 2020, 39(1): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202001015.htm

    Wang W Z, Zhang C H, Wen H J, et al. The application of Cd isotopes in the paleo-environment reconstruction: A case study of the Frasnian-Famennian mass extinction event in the Late Devonian[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(1): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202001015.htm
    Zhu C, Wen H, Zhang Y, et al. Cadmium and sulfur iso-topic compositions of the Tianbaoshan Zn-Pb-Cd deposit, Sichuan Province, China[J]. Ore Geology Reviews, 2016, 76: 152-162. doi: 10.1016/j.oregeorev.2016.01.010
    Deng L, Bi C J, Jia J P, et al. Effects of heating activities in winter on characteristics of PM2.5-bound Pb, Cd and lead isotopes in cities of China[J]. Journal of Cleaner Production, 2020, 265: 1-10. http://www.sciencedirect.com/science/article/pii/S0959652620318734
    Yang W J, Ding K B, Zhang P, et al. Cadmium stable iso-tope variation in a mountain area impacted by acid mine drainage[J]. The Science of the Total Environment, 2019, 646: 696-703. doi: 10.1016/j.scitotenv.2018.07.210
    Zhang Y, Wen H, Zhu C, et al. Cd isotope fractionation during simulated and natural weathering[J]. Environmental Pollution, 2016, 216: 9-17. doi: 10.1016/j.envpol.2016.04.060
    Salmanzadeh M, Hartland A, Stirling C H, et al. Isotope tracing of long-term cadmium fluxes in an agricultural soil[J]. Environmental Science and Technology, 2017, 51(13): 7369-7377. doi: 10.1021/acs.est.7b00858
    Imseng M, Wiggenhauser M, Keller A, et al. Fate of Cd in agricultural soils: A stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling[J]. Environmental Science and Technology, 2018, 52(4): 1919-1928. doi: 10.1021/acs.est.7b05439
    Wiggenhauser M B, Moritz I M, Müller M, et al. Cad-mium isotope fractionation in soil-wheat systems[J]. Environmental Science and Technology, 2016, 50(17): 1-32. doi: 10.1021/acs.est.6b01568
  • Cited by

    Periodical cited type(6)

    1. 张田迪,邢乐才,赵浩男,李英,谷一帆,杨阳,何洪涛. 土壤中有机质镉的同位素组成特征:来自第一性原理计算的约束. 河北工程大学学报(自然科学版). 2024(01): 106-112 .
    2. 王程程,黄代宽,龚效宇,谢蔚嵩. 黔西北典型旱作土壤重金属镉污染及同位素特征分析. 化工环保. 2024(02): 271-278 .
    3. 曹瑞芹,杨忠芳,余涛. 镉锌稳定同位素地球化学及其在土壤等地质体中的危害与治理研究进展. 中国地质. 2024(03): 833-864 .
    4. 夏亚飞,刘宇晖,高庭,刘承帅. 基于金属稳定同位素的矿冶影响区土壤重金属污染源解析研究进展. 地球科学进展. 2023(04): 331-348 .
    5. 赵东亚,燕冰,蒋志武,袁振东. 镉元素的发现及其概念的发展. 化学教育(中英文). 2023(22): 124-129 .
    6. 万丹,陈玖斌,张婷,安宇宸,帅旺财. 镉同位素分馏及其在示踪土壤镉来源和迁移转化过程中的应用进展. 岩矿测试. 2022(03): 341-352 . 本站查看

    Other cited types(1)

Catalog

    Article views (4653) PDF downloads (121) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return