• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
ZHOU Xue-zhong, XIE Hua-lin. Determination of Major and Trace Elements in Sepiolite of Remote Mining Area by Microwave Plasma-Atomic Emission Spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(5): 680-687. DOI: 10.15898/j.cnki.11-2131/td.202011160144
Citation: ZHOU Xue-zhong, XIE Hua-lin. Determination of Major and Trace Elements in Sepiolite of Remote Mining Area by Microwave Plasma-Atomic Emission Spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(5): 680-687. DOI: 10.15898/j.cnki.11-2131/td.202011160144

Determination of Major and Trace Elements in Sepiolite of Remote Mining Area by Microwave Plasma-Atomic Emission Spectroscopy

More Information
  • Received Date: November 15, 2020
  • Revised Date: January 30, 2021
  • Accepted Date: July 01, 2021
  • Published Date: September 27, 2021
  • HIGHLIGHTS
    (1) The MP-AES uses nitrogen as the working gas, which is not necessary to introduce complex gases and thus improves the analysis efficiency.
    (2) Rapid linear interference correction (FLIC) technique was used to correct spectral interference.
    (3) Lu was used as the internal standard element to compensate for the change of spectral intensity caused by the matrix effect.
    BACKGROUNDSepiolite is a layered hydrous magnesium-rich silicate clay mineral. The content of inorganic elements in sepiolite is an important basis for revealing the source of ore-forming materials, the nature of ore-forming fluids and the genesis of the deposit. It is usually determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS), high temperature excitation of inductively coupled plasma (ICP) will produce a large number of spectral interferences. High purity argon is needed to maintain the stability of ICP. Continuous gas supply for sepiolite detection in remote mining areas will also cause the problem of inconvenient gas procurement and transportation.
    OBJECTIVESIn order to reduce the spectral interference and realize the accurate analysis of major and trace elements in sepiolite samples from remote mining areas.
    METHODSAn analytical method was developed for accurate determination of major elements Mg, Al, Ca, Fe, K, Na and trace elements Cu, Zn, Mn and Pb in sepiolite by microwave plasma-atomic emission spectroscopy (MP-AES). Microwave digestion of sepiolite by using HNO3-HCl-HF as a mixed acid not only avoids the loss of analytes during sample processing, but also speeds up the sample processing and improves the stability of the sample solution. By selecting the analysis wavelength of the spectral line for analyte, using the fast linear interference correction (FLIC) technology to correct the spectral interference, and selecting Lu as the internal standard element corrected the matrix effect, which improved sensitivity and accuracy.
    RESULTSThe limit of detection (LOD) was 0.19-14.6μg/L. The accuracy of the method was verified by the national standard reference material sepiolite (GBW07138). The relative error between the measured value and the certified value of analytes was between -5.0% and 6.7%, which verified the accuracy and reliability of the method.
    CONCLUSIONSThe method has the advantages of low LOD, wide linear range, and accurate results. MP-AES uses its own nitrogen generator to provide nitrogen as the working gas for plasma, without introducing a complex gas, which improves the analysis efficiency, and is especially suitable for remote mining areas where gas procurement and transportation are inconvenient.

  • Ozcan A, Oncua E M, Ozcan A S. Adsorption of acid blue 193 from aqueous solutions onto DEDMA-sepiolite[J]. Journal of Hazardous Materials, 2006, 129(1-3): 244-252. doi: 10.1016/j.jhazmat.2005.08.037
    Rytwo G, Tropp D, Serban C. Adsorption of diquat, paraquat and methyl green on sepiolite: Experimental results and model calculations[J]. Applied Clay Science, 2002, 20(6): 273-282. doi: 10.1016/S0169-1317(01)00068-0
    Lazarevic S L, Jankovic-Castvan, Potkonjak B, et al. Removal of Co2+ ions from aqueous solutions using iron-functionalized sepiolite[J]. Chemical Engineering and Processing: Process Intensification, 2012, 55: 40-47. doi: 10.1016/j.cep.2012.01.004
    黄东强, 李津苏, 王玉峰, 等. 海泡石负载稀土/天然胶乳胶膜复合材料制备与表征[J]. 中国稀土学报, 2019, 37(1): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201901005.htm

    Huang D Q, Li J S, Wang Y F, et al. Preparation and characterization of sepiolite supported rare earth/natural latex composite film[J]. Journal of the Chinese Society of Rare Earths, 2019, 37(1): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201901005.htm
    Li Z, Gomez-Aviles A, Sellaoui L, et al. Adsorption of ibuprofen on organo-sepiolite and on zeolite/sepiolite heterostructure: Synthesis, characterization and statistical physics modeling[J]. Chemical Engineering Journal, 2019, 371: 868-875. doi: 10.1016/j.cej.2019.04.138
    Chen B, Jia Y, Zhang M, et al. Facile modification of sepiolite and its application in superhydrophobic coatings[J]. Applied Clay Science, 2019, 174: 1-9. doi: 10.1016/j.clay.2019.03.016
    Liu L, Chen H, Shiko E, et al. Low-cost DETA impre-gnation of acid-activated sepiolite for CO2 capture[J]. Chemical Engineering Journal, 2018, 353: 940-948. doi: 10.1016/j.cej.2018.07.086
    贺洋. 低品质海泡石提纯及吸附性能研究[J]. 非金属矿, 2019, 42(4): 56-57. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201904017.htm

    He Y. Purification of low quality sepiolite and adsorption capacity research[J]. Non-Metallic Mines, 2019, 42(4): 56-57. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201904017.htm
    Galan E. Properties and applications of palygorskite-sepiolite clays[J]. Clay Minerals, 1996, 31: 443-453. doi: 10.1180/claymin.1996.031.4.01
    迟广成, 张泉, 赵爱林, 等. X射线粉晶衍射仪定量测量海泡石矿样的实验条件[J]. 岩矿测试, 2012, 31(2): 282-286. http://www.ykcs.ac.cn/article/id/60cfa9e7-b598-46dd-a602-4e3d30509cdb

    Chi G C, Zhang Q, Zhao A L, et al. Experimental conditions of X-ray powder diffraction for sepiolite measurement[J]. Rock and Mineral Analysis, 2012, 31(2): 282-286. http://www.ykcs.ac.cn/article/id/60cfa9e7-b598-46dd-a602-4e3d30509cdb
    Chen S, Yan X, Liu W, et al. Polymer-based dielectric nanocomposites with high energy density via using natural sepiolite nanofibers[J]. Chemical Engineering Journal, 2020, 401: 126095. doi: 10.1016/j.cej.2020.126095
    Liu L, Chen H, Shiko E, et al. Low-cost DETA impreg-nation of acid-activated sepiolite for CO2 capture[J]. Chemical Engineering Journal, 2018, 353: 940-948. doi: 10.1016/j.cej.2018.07.086
    Deng C, Jiang Y, Fan Z, et al. Sepiolite-based separator for advanced Li-ion batteries[J]. Applied Surface Science, 2019, 484: 446-452. doi: 10.1016/j.apsusc.2019.04.141
    宋帅娣, 任健, 卢思桥. 氢化物发生-原子荧光光谱法测定海泡石中砷[J]. 化学与粘合, 2013, 35(3): 78-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYZ201303022.htm

    Song S D, Ren J, Lu S Q. Determination of arsenic in sepiolite by hydride generation-atomic fluorescence spectrometry[J]. Chemistry and Adhesion, 2013, 35(3): 78-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYZ201303022.htm
    王力强, 王家松, 徐铁民, 等. 敞口酸溶-电感耦合等离子体发射光谱法测定海泡石中的氧化铝等主量成分[J]. 岩矿测试, 2020, 39(3): 391-397. http://www.ykcs.ac.cn/article/id/88f08198-6b3e-488e-9d6f-0bfbcde632d7

    Wang L Q, Wang J S, Xu T M, et al. Determination of major elements in sepoilite by inductively coupled plasma-optical emission spectrometry with opening acid dissolution[J]. Rock and Mineral Analysis, 2020, 39(3): 391-397. http://www.ykcs.ac.cn/article/id/88f08198-6b3e-488e-9d6f-0bfbcde632d7
    张楠, 徐铁民, 吴良英, 等. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素[J]. 岩矿测试, 2018, 37(6): 644-649. doi: 10.15898/j.cnki.11-2131/td.201803160023

    Zhang N, Xu T M, Wu L Y, et al. Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(6): 644-649. doi: 10.15898/j.cnki.11-2131/td.201803160023
    Jung M Y, Kang J H, Choi Y S, et al. Analytical features of microwave plasma-atomic emission spectrometry (MP-AES) for the quantitation of manganese (Mn) in wild grape (Vitis coignetiae) red wines: Comparison with inductively coupled plasma-optical emission spectro-metry (ICP-OES)[J]. Food Chemistry, 2019, 274: 20-25. http://www.ncbi.nlm.nih.gov/pubmed/30372927
    郭鹏然, 潘佳钏, 雷永乾, 等. 微波等离子体原子发射光谱新技术同时测定环境水样中多种元素[J]. 分析化学, 2015, 43(5): 748-753. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201505021.htm

    Guo P R, Pan J C, Lei Y Q, et al. Simultaneous determination of multiple elements in environmental water samples by microwave plasma atomic emission spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(5): 748-753. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201505021.htm
    Ozbek N, Akman S. Method development for the deter-mination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry[J]. Food Chemistry, 2016, 200: 245-248. http://europepmc.org/abstract/MED/26830585
    Zhao Y, Li Z, Ross A, et al. Determination of heavy metals in leather and fur by microwave plasma-atomic emission spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 112: 6-9.
    Ozbek N, Akman S. Determination of boron in Turkish wines by microwave plasma atomic emission spectrometry[J]. LWT-Food Science and Technology, 2015, 61: 532-535. http://www.onacademic.com/detail/journal_1000037359726510_e96a.html
    Li W, Simmons P, Shrader D, et al. Microwave plasma-atomic emission spectroscopy as a tool for the determination of copper, iron, manganese and zinc in animal feed and fertilizer[J]. Talanta, 2013, 112: 43-48. http://www.onacademic.com/detail/journal_1000035851809610_d5a4.html
    Ozbek N, Ozcan M. Elemental analysis of tarhana by mi-crowave induced plasma atomic emission spectrometry[J]. Analytical Letters, 2017, 50(13): 2139-2146. http://www.onacademic.com/detail/journal_1000040026839010_d797.html
    符靓, 施树云, 陈晓青. 电感耦合等离子体串联质谱法测定活性白土中痕量毒理性元素[J]. 分析化学, 2018, 46(8): 1253-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201808017.htm

    Fu L, Shi S Y, Chen X Q. Accurate determination of trace toxic elements in activated clay using inductively coupled plasma tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(8): 1253-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201808017.htm
    杨开放. ICP-OES常见干扰类型及校正方法探讨[J]. 分析化学计量, 2016, 25(3): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201603042.htm

    Yang K F. Common interference types and calibration methods discussion of ICP-OES[J]. Chemical Analysis and Meterage, 2016, 25(3): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201603042.htm
    Karlsson S, Sjoberg V, Ogar A. Comparison of MP-AES and ICP-MS for analysis of principal and selected trace elements in nitric acid digests of sunflower (Helianthus annuus)[J]. Talanta, 2015, 135: 124-132. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0039914014009989&originContentFamily=serial&_origin=article&_ts=1483759927&md5=9fd3c7975bb7116cc0b6e007aca292d0
    张萍, 刘宏伟, 黄建华, 等. 微波等离子体原子发射光谱测定啤酒中的常量和微量金属元素[J]. 食品科学, 2021, 42(8): 243-247. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX202108034.htm

    Zhang P, Liu H W, Huang J H, et al. Determination of major and trace metal elements in beer by microwave plasma-atomic emission spectroscopy[J]. Food Science, 2021, 42(8): 243-247. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX202108034.htm
    Drava G, Minganti V. Influence of an internal standard in axial ICP-OES analysis of trace elements in plant materials[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(2): 301-305. http://pubs.rsc.org/en/content/articlelanding/2019/ja/c9ja00372j
    Barros A I, Pinheiro F C, Nobrega J A. Calibration strate-gies to correct for matrix effects in direct analysis of urine by ICP-OES: Internal standardization and multi-energy calibration[J]. Analytical Methods, 2020, 11(27): 3401-3409. http://pubs.rsc.org/en/content/articlelanding/2019/ay/c9ay00907h
    Sajtos Z, Herman P, Harangi S, et al. Elemental analysis of Hungarian honey samples and bee products by MP-AES method[J]. Microchemical Journal, 2019, 149: 103968. http://www.sciencedirect.com/science/article/pii/S0026265X19303807
  • Cited by

    Periodical cited type(1)

    1. 刘文刚,魏双,张晓伟,张健,周红英. 氨水共沉淀法在锶同位素分析中的应用. 分析化学. 2025(01): 115-123 .

    Other cited types(0)

Catalog

    Article views (4160) PDF downloads (35) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return