• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
GUO Jie, ZHANG Yan, HU Zhen-guo, LIU Fei. A Review of Pesticide Pollution Analysis Techniques for Environmental Water Samples[J]. Rock and Mineral Analysis, 2021, 40(1): 16-32. DOI: 10.15898/j.cnki.11-2131/td.202008110111
Citation: GUO Jie, ZHANG Yan, HU Zhen-guo, LIU Fei. A Review of Pesticide Pollution Analysis Techniques for Environmental Water Samples[J]. Rock and Mineral Analysis, 2021, 40(1): 16-32. DOI: 10.15898/j.cnki.11-2131/td.202008110111

A Review of Pesticide Pollution Analysis Techniques for Environmental Water Samples

More Information
  • Received Date: August 10, 2020
  • Revised Date: October 07, 2020
  • Accepted Date: November 10, 2020
  • Published Date: January 27, 2021
  • HIGHLIGHTS
    (1) The targeted screening method based on solid phase extraction-high performance liquid chromatography tandem mass spectrometry is widely used in the field of environmental pesticide detection.
    (2) Non-targeted screening of pesticides is still in the development stage in the environmental field, and high-resolution mass spectrometry and mass spectrometry databases provide support for non-targeted screening technologies.
    (3) The combination of multiple preparation technologies and efficient and automated data processing technologies is the development trend of non-targeted screening methods for pesticides in environmental water samples in the future.
    BACKGROUNDWith the advancement of agricultural intensification and urbanization, pesticide residues in a large numbers of water environments in the world have exceeded the prescribed limit. The issue of pesticide pollution in the water environment has received extensive attention from all sectors of society. As the largest pesticide producer and user country in the world, the amount of pesticide residues in the water environment in China is much higher than other developed countries. Available studies have detected 19 pesticides in seven typical river basins in China (the Yangtze River, Taihu Lake, Yellow River, Songhua River, Heilongjiang, Grand Canal and Dongjiang), with an average concentration ranging from 0.02 to 332.75ng/L. Pesticides and their transformation products pose potential threats to the ecological environment and human health. Research on pesticide residues in the water environment is an indispensable part of water quality assessment. However, targeted screening is difficult to detect unknown pesticides and their transformation products. Therefore, the non-targeted screening of pesticide residues and their transformation products in the environment needs to be improved.
    OBJECTIVESTo understand the pesticide pollution analysis techniques for environmental water samples.
    METHODSAccording to the analysis process of non-targeted screening of pesticide components, the targeted and non-targeted screening methods for pesticide residues in water quality samples in the past 5 years were reviewed, and the regulations and standards for pesticide residue limits and non-targeted screening of pesticides in water quality were summarized. The research progress of pesticide residue analysis methods in water environment in recent years was summarized.
    RESULTSThe characteristics of liquid-liquid extraction (LLE), solid-phase extraction (SPE), solid-phase microextraction (SPME) and other pre-treatment methods were reviewed. Among them, solid-phase extraction was the main pre-treatment method for non-targeted pesticide screening and had good applications prospects. The development trend of analytical instruments from chromatography to chromatography mass spectrometry was discussed, and the production of a variety of high-resolution mass spectrometry provided multi-level analysis requirements for non-targeted pesticide screening. Finally, the guidelines, mass spectrometry database and various identification methods related to pesticide screening confirmation in recent years were summarized, and the development trend of pesticide pollution analysis technology in the water environment was prospected.
    CONCLUSIONSHigh resolution mass spectrometry technology poses a challenge to the sample pretreatment and purification process. The combination of multiple technologies in the water sample pretreatment process is the future development trend. Research on non-targeted pesticide screening based on high-resolution mass spectrometry is widely studied in the field of food testing although it has low priority in the environmental field. Relevant organizations at home and abroad have not yet issued relevant standards for screening and confirmation of unknown substances. Currently, the confirmation of unknown screening requires manual data analysis, which cannot be fully automated.

  • Tian Z, Peter K T, Gipe A D, et al. Suspect and nontarget screening for contaminants of emerging concern in an Urban Estuary[J]. Environmental Science & Technology, 2020, 54(2): 889-901. doi: 10.1021/acs.est.9b06126
    Meng D, Fan D L, Gu W, et al. Development of an integral strategy for non-target and target analysis of site-specific potential contaminants in surface water: A case study of Dianshan Lake, China[J]. Chemosphere, 2020, 243: 125367. doi: 10.1016/j.chemosphere.2019.125367
    Valera-Tarifa N M, Santiago-Valverde R, Hernandez-Torres E, et al. Development and full validation of a multiresidue method for the analysis of a wide range of pesticides in processed fruit by UHPLC-MS/MS[J]. Food Chemistry, 2020, 315: 126304. doi: 10.1016/j.foodchem.2020.126304
    Salvador A, Romain Carrière, Ayciriex S, et al. Scout-multiple reaction monitoring: A liquid chromatography tandem mass spectrometry approach for multi-residue pesticide analysis without time scheduling[J]. Journal of Chromatography A, 2020, 1621: 461046. doi: 10.1016/j.chroma.2020.461046
    Zhang H, Watts S, Philix M C, et al. Occurrence and distribution of pesticides in precipitation as revealed by targeted screening through GC-MS/MS[J]. Chemosphere, 2018, 211: 210-217. doi: 10.1016/j.chemosphere.2018.07.151
    Gago-Ferrero P, Bletsou A A, Damalas D E, et al. Wide-scope target screening of >2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRIVIS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes[J]. Journal of Hazardous Materials, 2020, 387: 121712. doi: 10.1016/j.jhazmat.2019.121712
    Stephan S, Hippler J, Koehler T, et al. Contaminant screening of wastewater with HPLC-IM-qTOF-MS and LC plus LC-IM-qTOF-MS using a CCS database[J]. Analytical and Bioanalytical Chemistry, 2016, 408(24): 6545-6555. doi: 10.1007/s00216-016-9820-5
    Kiefer K, Mueller A, Singer H, et al. New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS[J]. Water Research, 2019, 165(15): 114972. http://www.sciencedirect.com/science/article/pii/S0043135419307468
    Shao B, Li H, Shen J, et al. Nontargeted detection methods for food safety and integrity[J]. Annual Review of Food Science and Technology, 2019, 10(1): 429-455. doi: 10.1146/annurev-food-032818-121233
    Canccapa C A, Pico Y, Ortiz X, et al. Suspect, non-target and target screening of emerging pollutants using data independent acquisition: Assessment of a Mediterranean River Basin[J]. Science of the Total Environment, 2019, 687: 355-368. doi: 10.1016/j.scitotenv.2019.06.057
    Vanryckeghem F, Huysman S, van Langenhove H, et al. Multi-residue quantification and screening of emerging organic micropollutants in the Belgian Part of the North Sea by use of speedisk extraction and Q-orbitrap HRMS[J]. Marine Pollution Bulletin, 2019, 142: 350-360. doi: 10.1016/j.marpolbul.2019.03.049
    DiarnantiI K S, Alygizakis N A, Nika M C, et al. Assessment of the chemical pollution status of the Dniester River Basin by wide-scope target and suspect screening using mass spectrometric techniques[J]. Analytical and Bioanalytical Chemistry, 2020, 412(20): 4893-4907. doi: 10.1007/s00216-020-02648-y
    Pinasseau L, Wiest L, Fildier A, et al. Use of passive sampling and high resolution mass spectrometry using a suspect screening approach to characterise emerging pollutants in contaminated groundwater and runoff[J]. Science of the Total Environment, 2019, 672: 253-263. doi: 10.1016/j.scitotenv.2019.03.489
    许惠, 汪贞, 古文, 等. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱技术非靶向筛查涪陵地区有机污染物[J]. 生态与农村环境学报, 2020, 36(3): 406-412. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST202003019.htm

    Xu H, Wang Z, Gu W. Non-target analysis of organic pollutants based on ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry (UPLC-Q Orbitrap HRMS) at Fuling City[J]. Journal of Ecology and Rural Environment, 2020, 36(3): 406-412. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST202003019.htm
    简秋, 朱光艳. 欧盟农药残留立法管理的制度简介和启示[J]. 农药科学与管理, 2011, 32(1): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-NYKG201101015.htm

    Jian Q, Zhu G Y. Introduction and enlightenment of the EU pesticide residue legislation management system[J]. Pesticide Science and Administration, 2011, 32(1): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-NYKG201101015.htm
    张志恒, 陈丽萍. 欧盟农药MRL标准及中国的主要差距[J]. 世界农业, 2004(10): 47-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SJNY200410014.htm

    Zhang Z H, Chen L P. EU pesticide MRL standards and the main gaps in China[J]. World Agriculture, 2004(10): 47-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SJNY200410014.htm
    Pang G F, Fan C L, Chang Q Y, et al. Screening of 485 pesticide residues in fruits and vegetables by liquid chromatography-quadrupole-time-of-flight mass spectrometry based on TOF accurate mass database and QTOF spectrum library[J]. Journal of AOAC International, 2018, 101(4): 1156-1182. doi: 10.5740/jaoacint.17-0125
    Campo J, Masi A, Blasco C, et al. Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River basins[J]. Journal of Hazardous Materials, 2013, 263: 146-157. doi: 10.1016/j.jhazmat.2013.09.061
    Koeck S M, Villagrasa M, Alda M L D, et al. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact[J]. Science of the Total Environment, 2013, 458-460: 466-476. doi: 10.1016/j.scitotenv.2013.04.010
    Shamsipur M, Yazdanfar N, Ghambarian M. Combination of solid-phase extraction with dispersive liquid-liquid microextraction followed by GC-MS for determination of pesticide residues from water, milk, honey and fruit juice[J]. Food Chemistry, 2016, 204: 289-297. doi: 10.1016/j.foodchem.2016.02.090
    Caldas S S, Rombaldi C, de Oliveira A J L, et al. Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry[J]. Talanta, 2016, 146: 676-688. doi: 10.1016/j.talanta.2015.06.047
    吴春英, 谷风, 白鹭, 等. 固相萃取-超高效液相色谱-三重四极杆质谱联用同时测定水中菊酯类农药多残留[J]. 分析科学学报, 2017, 33(1): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201701012.htm

    Wu C Y, Gu F, Bai L, et al. Simultaneous determination of pyrethroid pesticides rresidues in water using solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Analytical Science, 2017, 33(1): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201701012.htm
    Wu J, Mei M, Huang X. Fabrication of boron-rich multiple monolithic fibers for the solid-phase microextraction of carbamate pesticide residues in complex samples[J]. Journal of Separation Science, 2019, 42(4): 878-887. doi: 10.1002/jssc.201800996
    Wang F, Li S, Feng H, et al. An enhanced sensitivity and cleanup strategy for the nontargeted screening and targeted determination of pesticides in tea using modified dispersive solid-phase extraction and cold-induced acetonitrile aqueous two-phase systems coupled with liquid chromatography-high resolution mass spectrometry[J]. Food Chemistry, 2019, 275: 530-538. doi: 10.1016/j.foodchem.2018.09.142
    Li J X, Li X Y, Chang Q Y, et al. Screening of 439 pesti-cide residues in fruits and vegetables by gas chromatography-quadrupole-time-of-flight mass spectrometry based on TOF accurate mass database and Q-TOF spectrum library[J]. Journal of AOAC International, 2018, 101(5): 1631-1638. doi: 10.5740/jaoacint.17-0105
    曹新悦, 庞国芳, 金铃和, 等. 气相色谱-四极杆-飞行时间质谱和气相色谱-串联质谱对水果、蔬菜中208种农药残留筛查确证能力的对比[J]. 色谱, 2015, 33(4): 389-396. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201504010.htm

    Cao X Y, Pang G F, Jin L H, et al. Comparison of the performances of gas chromatography quadrupole time of flight mass spectrometry and gas chromatography-tandem mass spectrometry in rapid screening and confirmation of 208 pesticide residues in fruits and vegetables[J]. Chinese Journal of Chromatography, 2015, 33(4): 389-396. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201504010.htm
    Gago-Ferrero P, Krettek A, Fischer S, et al. Suspect screening and regulatory databases: A powerful combination to identify emerging micropollutants[J]. Environmental Science & Technology, 2018, 52(12): 6881-6894. doi: 10.1021/acs.est.7b06598
    Gago-Ferrero P, Schymanski E L, Bletsou A A, et al. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS[J]. Environmental Science & Technology, 2015, 49(20): 12333-12341. http://europepmc.org/abstract/MED/26418421
    朱峰, 于洁, 霍宗利, 等. QuEChERS-超高效液相色谱-四极杆飞行时间质谱法检测青菜中214种农药残留[J]. 中国食品卫生杂志, 2020, 32(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSPZ202001007.htm

    Zhu F, Yu J, Huo Z L, et al. Determination of 214 pesticide residues in green vegetables using QuEChERS-ultrahigh performance liquid chromatography coupled with quadrupole time of fligh tmasss pectrometry[J]. Chinese Journals of Food Hygiene, 2020, 32(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSPZ202001007.htm
    Zhang L Q, Zhang X M, Zhang H W, et al. Multiclass and multiresidue screening of veterinary drugs and pesticides in infant formula using quadrupole-orbitrap MS with PRM scan mode[J]. Journal of Mass Spectrometry, 2020, 55(3): e4497. doi: 10.1002/jms.4497
    Wang T, Liigand J, Frandsen H L, et al. Standard substances free quantification makes LC/ESI/MS non-targeted screening of pesticides in cereals comparable between labs[J]. Food Chemistry, 2020, 318: 126460. doi: 10.1016/j.foodchem.2020.126460
    Feng C, Xu Q, Qiu X, et al. Comprehensive strategy for analysis of pesticide multi-residues in food by GC-MS/MS and UPLC-Q-orbitrap[J]. Food Chemistry, 2020, 320: 126576. doi: 10.1016/j.foodchem.2020.126576
    Wang Y, Gao W, Wang Y, et al. Suspect screening analysis of the occurrence and removal of micropollutants by GC-QTOF×MS during wastewater treatment processes[J]. Journal of Hazardous Materials, 2019, 376: 153-159. doi: 10.1016/j.jhazmat.2019.05.031
    Fonseca E, Renau P A, Ibanez M, et al. Investigation of pesticides and their transformation products in the Jucar River hydrographical basin (Spain) by wide-scope high-resolution mass spectrometry screening[J]. Environmental Research, 2019, 177: 108570. doi: 10.1016/j.envres.2019.108570
    Della F A, Wielens B R, Frederigi B S, et al. Comprehensive investigation of pesticides in Brazilian surface water by high resolution mass spectrometry screening and gas chromatography-mass spectrometry quantitative analysis[J]. Science of the Total Environment, 2019, 669: 248-257. doi: 10.1016/j.scitotenv.2019.02.354
    Campos-Mañas M C, Plaza B P, Belen M A, et al. Determination of pesticide levels in wastewater from an agro-food industry: Target, suspect and transformation product analysis[J]. Chemosphere, 2019, 232: 152-163. doi: 10.1016/j.chemosphere.2019.05.147
    伍颖仪, 陈中, 张思群, 等. 非靶向快速筛查茶饮料中未知农药残留[J]. 食品工业科技, 2019, 40(15): 188-195. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201915031.htm

    Wu Y Y, Chen Z, Zhang S Q, et al. Non-target rapid screening of unknown pesticide residues in tea beverage[J]. Science and Technology of Food Industry, 2019, 40(15): 188-195. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201915031.htm
    Moschet C, Lew B M, Hasenbein S, et al. LC- and GC-QTOF-MS as complementary tools for a comprehensive micropollutant analysis in aquatic systems[J]. Environmental Science & Technology, 2017, 51(3): 1553-1561. doi: 10.1021/acs.est.6b05352
    Kaserzon S L, Heffernan A L, Thompson K, et al. Rapid screening and identification of chemical hazards in surface and drinking water using high resolution mass spectrometry and a case-control filter[J]. Chemosphere, 2017, 182: 656-664. doi: 10.1016/j.chemosphere.2017.05.071
    Chau H T C, Kadokami K, Ifuku T, et al. Development of a comprehensive screening method for more than 300 organic chemicals in water samples using a combination of solid-phase extraction and liquid chromatography-time-of-flight-mass spectrometry[J]. Environmental Science and Pollution Research, 2017, 24(34): 26396-26409. doi: 10.1007/s11356-017-9929-x
    周秀锦, 陈宇, 杨赛军, 等. 超高效液相色谱-四极杆飞行时间质谱法非靶向快速筛查进口粮谷中未知的农药残留[J]. 色谱, 2017, 35(8): 787-793. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201708001.htm

    Zhou X J, Chen Y, Yang S J, et al. Rapid screening of pesticide residues in imported grains by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry[J]. Chinese Journal of Chromatography, 2017, 35(8): 787-793. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201708001.htm
    Kong L, Kadokami K, Hanh T D, et al. Screening of 1300 organic micro-pollutants in groundwater from Beijing and Tianjin, North China[J]. Chemosphere, 2016, 165: 221-230. doi: 10.1016/j.chemosphere.2016.08.084
    Andr C M J, Carmona E, Pico Y. Universal method to determine acidic licit and illicit drugs and personal care products in water by liquid chromatography quadrupole time-of-flight[J]. Methods, 2016, 3: 307-314. http://pubmedcentralcanada.ca/pmcc/articles/PMC4840423/
    Omar T F T, Ahmad A, Aris A Z, et al. Endocrine disrupting compounds (EDCs) in environmental matrices: Review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds[J]. Trends in Analytical Chemistry, 2016, 85: 241-259. doi: 10.1016/j.trac.2016.08.004
    刘慧杰, 张平允, 姜蕾, 等. 液液萃取气相色谱-ECD法同时测定饮用水中的13种农药[J]. 净水技术, 2018, 37(6): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS201806010.htm

    Liu H, Zhang P Y, Jiang L, et al. Simultaneous determination of 13 pesticides in drinking water by liquid liquid extraction gas chromatography-ECD method[J]. Water Purification Technology, 2018, 37(6): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS201806010.htm
    罗晓飞, 吴凌, 孙成均, 等. 固相膜萃取-气相色谱-串联质谱法测定饮用水中67种农药残留[J]. 卫生研究, 2019, 48(1): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-WSYJ201901021.htm

    Luo X F, Wu L, Sun C J, et al. Determination of 67 pesticides in drinking water by solid phase extration disk extraction-gas chromatography-tandem mass spectrometry[J]. Journal of Hygiene Research, 2019, 48(1): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-WSYJ201901021.htm
    许小茜. 固相膜萃取-高效液相色谱法对饮用水中农药残留的检测分析[J]. 山东工业技术, 2015(11): 240-241. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201511207.htm

    Xu X Q. Detection and analysis of pesticide residues in drinking water by solid phase extration disk extraction-high performance liquid chromatography[J]. Shandong Industrial Technology, 2015(11): 240-241. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201511207.htm
    王雷, 张艳霞. 分散液液微萃取-气相色谱法快速测定水中十五种有机磷类农残[J]. 能源环境保护, 2016, 30(2): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-NYBH201602016.htm

    Wang L, Zhang Y X. Ananlysis of fifteen organophosphorus pesticide residues in water samples by dispersive liquid-liquid microextraction coupled with gas chromatography[J]. Energy Environmental Protection, 2016, 30(2): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-NYBH201602016.htm
    Albishri H M, Aldawsari N A M, Abd E D. Ultrasound-assisted temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with reversed-phase liquid chromatography for determination of organophosphorus pesticides in water samples[J]. Electrophoresis, 2016, 37(19): 2462-2469. doi: 10.1002/elps.201600107
    于佩, 甘志永, 徐蕾. 固相微萃取-气相色谱-三重四极杆质谱法同时测定饮用水中8种有机氯[J]. 环境科技, 2020, 33(1): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JSHJ202001015.htm

    Yu P, Gan Z Y, Xu L. Simultaneous determination of 8 kinds of OCPs in water by automated solid-phase microextraction coupled with gas chromatography-triple quadrupole mass spectrometry[J]. Environmental Science and Technology, 2020, 33(1): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JSHJ202001015.htm
    王国强, 张婷, 孙桂进, 等. 分散固相萃取净化-GPC-GC/MS快速分析鱼塘水中21种农药[J]. 中国刑警学院学报, 2016(3): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-XING201603020.htm

    Wang G Q, Zhang T, Sun G J, et al. Dispersive solid phase extraction purification-GPC-GC/MS rapid analysis of 21 pesticides in fish pond water[J]. Journal of Criminal Investigation Police University of China, 2016(3): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-XING201603020.htm
    Aladaghlo Z, Fakhari A R, Alvaioon S I, et al. A mesoporous nanosorbent composed of silica, graphene, and palladium (Ⅱ) for ultrasound-assisted dispersive solid-phase extraction of organophosphorus pesticides prior to their quantitation by ion mobility spectrometry[J]. Microchimica Acta, 2020, 187(4): 209. doi: 10.1007/s00604-020-4174-2
    Akbarzade S, Chamsaz M, Rounaghi G H, et al. Zero valent Fe-reduced graphene oxide quantum dots as a novel magnetic dispersive solid phase microextraction sorbent for extraction of organophosphorus pesticides in real water and fruit juice samples prior to analysis by gas chromatography-mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2018, 410(2): 429-439. doi: 10.1007/s00216-017-0732-9
    邵阳, 杨国胜, 韩深, 等. 加速溶剂萃取-硅胶萃取净化-气相色谱/质谱法检测地表水中有机氯农药和多氯联苯[J]. 分析化学, 2016, 44(5): 698-706. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201605006.htm

    Shao Y, Yang G S, Han S, et al. Determination of organochlorine pesticides and polychlorinated biphenyls in surface water using accelerate solvent extraction coupling with gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(5): 698-706. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201605006.htm
    Aparicio I, Martin J, Luis S J, et al. Stir bar sorptive extraction and liquid chromatography-tandem mass spectrometry determination of polar and non-polar emerging and priority pollutants in environmental waters[J]. Journal of Chromatography A, 2017, 1500: 43-52. doi: 10.1016/j.chroma.2017.04.007
    陈峰, 张宝锋, 何平, 等. 液液萃取-程序升温大体积进样-气相色谱串联质谱法测定地表水中25种痕量有机氯农药[J]. 分析试验室, 2020, 39(8): 969-973. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202008020.htm

    Chen F, Zhang B F, He P, et al. Trace analysis of 25 organochlorine pesticides in surface water by liquid liquid extraction-programmed temperature vaponization and large volume injection gas chromatography tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2020, 39(8): 969-973. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202008020.htm
    Murrell K, Dorman F. A suspect screening analysis for contaminants of emerging concern in municipal wastewater and surface water using liquid-liquid extraction and stir bar sorptive extraction[J]. Analytical Methods, 2020, 12(36): 4487-4495. doi: 10.1039/D0AY01179G
    白雪媛. 地下水中82种农药测试方法开发与应用[D]. 北京: 中国地质大学(北京), 2017.

    Bai X Y.Development and application for test method of 82 kinds of pesticides in groundwater[D].Beijing: China University of Geosciences (Beijing), 2017.
    Amini N, Shariatgorji M, Crescenzi C, et al. Screening and quantification of pesticides in water using a dual-function graphitized carbon black disk[J]. Analytical Chemistry, 2010, 82(1): 290-296. doi: 10.1021/ac901946b
    张洋阳, 邵娟, 杨存满, 等. 顶空-固相微萃取-气相色谱三重四极杆质谱联用测定水中有机氯农药和氯苯类化合物[J]. 四川环境, 2020, 39(2): 111-119. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHJ202002018.htm

    Zhang Y Y, Shao J, Yang C M, et al. GC/MS/MS determination of organochlorine pesticides and chlorobenzene in water by headspace solid phase micro-extraction and gas chromatography-triple quadrupole mass spectrometry[J]. Sichuan Environment, 2020, 39(2): 111-119. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHJ202002018.htm
    Bade R, Rousis N I, Bijlsma L, et al. Screening of pharmaceuticals and illicit drugs in wastewater and surface waters of Spain and Italy by high resolution mass spectrometry using UHPLC-QTOF MS and LC-LTQ-Orbitrap MS[J]. Analytical and Bioanalytical Chemistry, 2015, 407(30): 8979-8988. doi: 10.1007/s00216-015-9063-x
    Casado J, Brigden K, Santillo D, et al. Screening of pesti-cides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry[J]. Science of the Total Environment, 2019, 670: 1204-1225. doi: 10.1016/j.scitotenv.2019.03.207
    Gao L, Qin D, Huang X, et al. Determination of pesticides and pharmaceuticals from fish cultivation water by parallel solid-phase extraction (SPE) and liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS)[J]. Analytical Letters, 2019, 52(6): 1-15. doi: 10.1080/00032719.2018.1509076
    Vikrant K, Tsang D C W, Raza N, et al. Potential utility of metal-organic framework-based platform for sensing pesticides[J]. ACS Applied Materials & Interfaces, 2018, 10(10): 8797-8817. http://smartsearch.nstl.gov.cn/paper_detail.html?id=51912f254ec409c6b71705b31c06bbfc
    Chun S L, Chun X S, Jia Y T, et al. Highly stable aluminum-based metal-organic frameworks as biosensing platforms for assessment of food safety[J]. Biosensors and Bioelectronics, 2017, 91: 804-810. doi: 10.1016/j.bios.2017.01.059
    Ma J, Yao Z, Hou L, et al. Metal organic frameworks (MOFs) for magnetic solid-phase extraction of pyrazole/pyrrole pesticides in environmental water samples followed by HPLC-DAD determination[J]. Talanta, 2016, 161: 686-692. doi: 10.1016/j.talanta.2016.09.035
    Ren J, Ledwaba M, Musyoka N, et al. Structural defects in metal-organic frameworks (MOFs): Formation, detection and control towards practices of interests[J]. Coordination Chemistry Reviews, 2017, 349: 169-197. doi: 10.1016/j.ccr.2017.08.017
    Bulgurcuoglu A E, Yilmaz B, Chormey D S, et al. Simul-taneous determination of estrone and selected pesticides in water medium by GC-MS after multivariate optimization of microextraction strategy[J]. Environmental Monitoring and Assessment, 2018, 190(4): 252. doi: 10.1007/s10661-018-6625-3
    Chullasat K, Huang Z, Bunkoed O, et al. Bubble-in-drop microextraction of carbamate pesticides followed by gas chromatography-mass spectrometric analysis[J]. Microchemical Journal, 2020, 155: 104666. doi: 10.1016/j.microc.2020.104666
    黄伟华, 胡美华. 全自动固相萃取-气质联用法测定水中14种农药残留[J]. 现代预防医学, 2015, 42(21): 3965-3968. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201521044.htm

    Hang W H, Hu M H. Simultaneous determination of 14 pesticides in water by automatic solid-phase extraction-gas chromatography-mass spectrometry[J]. Modern Preventive Medicine, 2015, 42(21): 3965-3968. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201521044.htm
    Cacho J I, Campillo N, Vinas P, et al. In situ ionic liquid dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry for the determination of organophosphorus pesticides[J]. Journal of Chromatography A, 2018, 1559: 95-101. doi: 10.1016/j.chroma.2017.12.059
    单晓梅. MS/MS原理及GC/MS/MS技术在农残检测中应用[J]. 安徽预防医学杂志, 2008, 14(6): 425-428. https://www.cnki.com.cn/Article/CJFDTOTAL-AHYF200806011.htm

    Shan X M. MS/MS principle and application of GC/MS/MS technology in pesticide residue detection[J]. Anhui Journal of Preventive Medicine, 2008, 14(6): 425-428. https://www.cnki.com.cn/Article/CJFDTOTAL-AHYF200806011.htm
    王乙震, 孟宪智, 罗阳, 等. SPE-GC/MS/MS测定地表水中有机磷农药[J]. 环境科学与技术, 2016, 39(8): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201608016.htm

    Wang Y Z, Meng X Z, Luo Y. Determination of organophosphorous pesticides in surface water by SPE-GC/MS/MS[J]. Environmental Science & Technology, 2016, 39(8): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201608016.htm
    Issa M M, Taha S, El M A M, et al. Acetonitrile-ethyl acetate based method for the residue analysis of 373 pesticides in beeswax using LC-MS/MS and GC-MS/MS[J]. Journal of Chromatography B, 2020, 1145: 122106. doi: 10.1016/j.jchromb.2020.122106
    Masi A, Blasco C, Pic Y. Last trends in pesticide residue determination by liquid chromatography-mass spectrometry[J]. Trends in Environmental Analytical Chemistry, 2014, 2: 11-24. doi: 10.1016/j.teac.2014.03.002
    杨敏娜, 高翔云, 汤志云. UPLC-串联质谱法快速测定地表水中多种农药残留[J]. 环境监测管理与技术, 2019, 31(1): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJS201901013.htm

    Yang M N, Gao X Y, Tang Z Y. Rapid determination of pesticide residues in surface water by ultra performance liquid chromatography-tandem mass spectrometry[J]. The Administration and Technique of Environmental Monitoring, 2019, 31(1): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJS201901013.htm
    Hernandez F, Sancho J V, Pozo O, et al. Rapid direct determination of pesticides and metabolites in environmental water samples at sub-μg/L level by on-line solid-phase extraction-liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2001, 939(1): 1-11. http://onlinelibrary.wiley.com/resolve/reference/PMED?id=11806539
    Hern N F, Pozo Ó J, Sancho J V, et al. Strategies for quantification and confirmation of multi-class polar pesticides and transformation products in water by LC-MS2 using triple quadrupole and hybrid quadrupole time-of-flight analyzers[J]. Trends in Analytical Chemistry, 2005, 24(7): 596-612. doi: 10.1016/j.trac.2005.04.007
    Richardson S D. Environmental mass spectrometry: Emerging contaminants and current issues[J]. Analytical Chemistry, 2004, 76(12): 3337-3364. doi: 10.1021/ac040060d
    Almeid M B, Madeira T B, Watanabe L S, et al. Pesticide determination in water samples from a rural area by multi-target method applying liquid chromatography-tandem mass spectrometry[J]. Journal of the Brazilian Chemical Society, 2019, 30(8): 1657-1666. http://www.researchgate.net/publication/332517324_Pesticide_Determination_in_Water_Samples_from_a_Rural_Area_by_Multi-Target_Method_Applying_Liquid_Chromatography-Tandem_Mass_Spectrometry
    Amelin V G, Bolshakov D S, Andoralov A M. Screening and determination of pesticides from various classes in natural water without sample preparation by ultra HPLC-high-resolution quadrupole time-of-flight mass spectrometry[J]. Journal of Analytical Chemistry, 2018, 73(3): 257-265. doi: 10.1134/S1061934818030024
    Arsand J B, Hoff R B, Jank L, et al. Wide-scope determination of pharmaceuticals and pesticides in water samples: Qualitative and confirmatory screening method using LC-qTOF-MS[J]. Water Air and Soil Pollution, 2018, 229(12): 1-20. doi: 10.1007/s11270-018-4036-2
    Mart P A B, Plaza B P, Garc G E, et al. Determination of organic microcontaminants in agricultural soils irrigated with reclaimed wastewater: Target and suspect approaches[J]. Analytica Chimica Acta, 2018, 1030: 115-124. doi: 10.1016/j.aca.2018.05.049
    王勇为. 确证定量分析新工具——ThermoScientific Q Exactive台式四极杆-轨道阱高分辨质谱仪[J]. 现代科学仪器, 2011(5): 138-140. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ201105040.htm

    Wang Y W. Confirmation of a new tool for quantitative analysis-ThermoScientific Q Exactive benchtop quadrupole-orbitrap high resolution mass spectrometer[J]. Modern Scientific Instruments, 2011(5): 138-140. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ201105040.htm
    Gosetti F, Mazzucco E, Ggennaro M C, et al. Contam-inants in water: Non-target UHPLC/MS analysis[J]. Environmental Chemistry Letters, 2016, 14(1): 51-65. doi: 10.1007/s10311-015-0527-1
    孟志娟, 孙文毅, 赵丽敏, 等. 气相色谱-静电场轨道阱高分辨质谱快速筛查农产品中70种农药残留[J]. 分析化学, 2019, 47(8): 1227-1243. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201908014.htm

    Meng Z J, Sun W Y, Zhao L M, et al. Gas chromatography-electrostatic field orbitrap high-resolution mass spectrometry for rapid screening of 70 pesticide residues in agricultural products[J]. Chinese Journal of Analytical Chemistry, 2019, 47(8): 1227-1243. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201908014.htm
    Cotton J, Leroux F, Broudin S, et al. Development and validation of a multiresidue method for the analysis of more than 500 pesticides and drugs in water based on on-line and liquid chromatography coupled to high resolution mass spectrometry[J]. Water Research, 2016, 104: 20-27. doi: 10.1016/j.watres.2016.07.075
    Ieda T, Hashimoto S, Isobe T, et al. Evaluation of a data-processing method for target and non-target screening using comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry for environmental samples[J]. Talanta, 2019, 194: 461-468. doi: 10.1016/j.talanta.2018.10.050
    郭冬冬, 杨方, 李捷, 等. 气相色谱-四极杆/飞行时间质谱法快速筛查茶叶中350种农药残留[J]. 分析试验室, 2019, 38(10): 1177-1188. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201910009.htm

    Guo D D, Yang F, Li J, et al. Rapid screening of 350 pesticide residues in tea by gas chromatagraphy coupled with quadrupole time-of-flight mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2019, 38(10): 1177-1188. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201910009.htm
    云莉芬. 液相色谱串联高分辨质谱筛查鉴定未知卤代有机物的策略及应用研究[D]. 北京: 中国地质大学(北京), 2018.

    Yun L F.Strategy for the screening and identification of unknown halogenated organic compounds based on liquid chromatography tandem high resolution mass spectrometry and the application[D].Beijing: China University of Geosciences (Beijing), 2018.
    Lu D, Zhang S, Wang D, et al. Identification of flurochloridone metabolites in rat urine using liquid chromatography/high resolution mass spectrometry[J]. Journal of Chromatography A, 2016, 1445: 80-92. doi: 10.1016/j.chroma.2016.03.080
  • Cited by

    Periodical cited type(7)

    1. 王玥,程然然,孟信刚. 气相色谱法测定新烟碱类农药研究进展. 现代农业科技. 2022(08): 89-94 .
    2. 李鸿,吕丽兰,杜国冬,甘志勇,李乾坤,陆覃昱,秦玉燕,吴静娜,时鹏涛,梁宏合. 水生蔬菜重金属污染及农药残留状况调查. 广西农学报. 2022(02): 18-24 .
    3. 秦佳琪,王焱,周同宁,张亚红,朱美霖. 不同地区枸杞中农药残留及膳食风险评估. 宁夏农林科技. 2022(03): 43-49+58 .
    4. 王彦祖,李白. 农药污染对我国生态环境的影响及对策分析. 皮革制作与环保科技. 2022(15): 77-79 .
    5. 陈永艳,吕佳,张岚,叶必雄,金宁. 在线固相萃取-超高效液相色谱-三重四极杆质谱法测定水源水和饮用水中107种典型农药及代谢产物. 色谱. 2022(12): 1064-1075 .
    6. 马健生,王卓,张泽宇,刘强,李丽君. 哈尔滨市地下水中29种抗生素分布特征研究. 岩矿测试. 2021(06): 944-953 . 本站查看
    7. 高冉,饶竹,郭晓辰. 地下水中91种农药多残留气相色谱-质谱分析方法研究及应用. 岩矿测试. 2021(06): 973-986 . 本站查看

    Other cited types(7)

Catalog

    Article views (3964) PDF downloads (87) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return