• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
XIE Xiao-min, LI Li, YUAN Qiu-yun, WU Fen-ting, LIN Jing-wen, DOU Hao-ran. Grain Size Distribution of Organic Matter and Pyrite in Alum Shales Characterized by TIMA and Its Paleo-environmental Significance[J]. Rock and Mineral Analysis, 2021, 40(1): 50-60. DOI: 10.15898/j.cnki.11-2131/td.202007120103
Citation: XIE Xiao-min, LI Li, YUAN Qiu-yun, WU Fen-ting, LIN Jing-wen, DOU Hao-ran. Grain Size Distribution of Organic Matter and Pyrite in Alum Shales Characterized by TIMA and Its Paleo-environmental Significance[J]. Rock and Mineral Analysis, 2021, 40(1): 50-60. DOI: 10.15898/j.cnki.11-2131/td.202007120103

Grain Size Distribution of Organic Matter and Pyrite in Alum Shales Characterized by TIMA and Its Paleo-environmental Significance

More Information
  • Received Date: July 11, 2020
  • Revised Date: August 02, 2020
  • Accepted Date: September 18, 2020
  • Published Date: January 27, 2021
  • HIGHLIGHTS
    (1) TIMA has been used to analyze the mineral phases and quantitative mineral composition.
    (2) Grain size distribution of organic matter and pyrite has been characterized and its significance of the reductive sedimentary environment has been discussed.
    (3) The sedimentary environment of Alum shales was a closed or sulfurized sedimentary water system.
    BACKGROUNDAlum shale (Middle Cambrian to Lower Ordovician) is a set of significant marine source rock in Northern Europe, and the maturity is from immature to over mature. Because of high maturities of the Lower-Paleozoic marine source rocks in China, the immature-early mature Alum shales are important samples for the comparative studies of hydrocarbon generation potential. Thus, the analyses of organic matter, mineral composition and sedimentary characteristics of the Alum shale with low maturity, are the fundamental for the comparative studies on the Lower Paleozoic marine source rocks at home and abroad.
    OBJECTIVESTo uncover the mineral and organic matter compositions, and the sedimentary characteristics of Alum shales.
    METHODSBased on the organic carbon content (TOC) and organic petrological observations, the integrated mineral analysis (TIMA) technology was used to scan the sample. Scan parameters were refined to obtain the mineral composition, content and particle size distribution of shale.
    RESULTSThe TOC and TRS contents of studied Alum shale (%Rb=0.3) were 11.16%-12.24% and 4.30%-5.31%, respectively. The maceral compositions included the lamalginite from planktonic algae degradation and vitrinite-like macerals from benthic algae. Solid bitumen filled in the fractures and pores. The organic matter (OM) and pyrite (Py) contents acquired from TIMA scanning analyses were 9.79%-10.64% and 4.17%-4.49%, respectively. The OM/Py ratios ranged from 2.18 to 2.55, similar to the C/S ratios from Rock-eval pyrolysis. Grain sizes of OM were 0.9-27.0μm, and 80% grains had sizes of 1.2-5.5μm. Grain size of Py distributed from 0.9 to 17.0μm, and the proportion of grains with the size of lower than 0.5μm was higher than 78%, indicating an oxygen-lacking or sulfurized environment.
    CONCLUSIONSA combination of C/S ratio, and characteristics of organic petrology and Py grain size distribution indicates the Alum shale was deposited in a closed or sulfurized water system. A new technical support for the research of source rocks (including shale) in the field of petroleum geology is provided through the methods used and discussed in this study.

  • Tissot B P, Welte D H.Petroleum formation and occurrence[M]. Berlin, Heidelberg, Newyork: Springer Verlag, 1978.
    朱光有, 陈斐然, 陈志勇, 等. 塔里木盆地寒武系玉儿吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htm

    Zhu G Y, Chen F R, Chen Z Y, et al. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tasim Basin[J]. Natural Gas Geoscience, 2016, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htm
    赵坤, 李婷婷, 朱光有, 等. 下寒武统优质烃源岩的地球化学特征与形成机制——以鄂西地区天柱山剖面为例[J]. 石油学报, 2020, 41(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001002.htm

    Zhao K, Li T T, Zhu G Y, et al. Geochemical characteristics and formation mechanism of high-quality Lower Cambrain source rocks: A case study of the Tianzhushan profile in western Hubei[J]. Acta Petrolei Sinica, 2020, 41(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001002.htm
    Xie X M, Li M W, Littke R, et al. Petrographic and geochemical characterization of microfacies in a lacustrine shale oil system in the Dongying Sag, Jiyang Depression, Bohai Bay Basin, eastern China[J]. International Journal of Coal Geology, 2016, 165: 49-63. doi: 10.1016/j.coal.2016.07.004
    朱光有, 杜德道, 陈玮岩, 等. 塔里木盆地西南缘古老层系巨厚黑色泥岩的发现及勘探意义[J]. 石油学报, 2017, 38(12): 1335-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201712001.htm

    Zhu G Y, Du D D, Chen W Y, et al. The discovery and exploration significance of the old thick black mudstones in the southwest margin of Tarim Basin[J]. Acta Petrolei Sinica, 2017, 38(12): 1335-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201712001.htm
    付小东, 邱楠生, 秦建中, 等. 四川盆地龙潭组烃源岩全硫含量特征及其对沉积环境的响应[J]. 石油与天然气地质, 2014, 35(3): 342-349. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201403008.htm

    Fu X D, Qiu N S, Qin J Z, et al. Total sulfur distribution of source rock of the Upper Permian Longtan Formation and its response to sedimentary environment in Sichuan Basin[J]. Oil & Gas Geology, 2014, 35(3): 342-349. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201403008.htm
    刘子驿, 张金川, 刘飏, 等. 湘鄂西地区五峰-龙马溪组泥页岩黄铁矿粒径特征[J]. 科学技术与工程, 2016, 16(26): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201626005.htm

    Liu Z Y, Zhang J C, Liu Y, et al. The particle size characteristics of pyrite in western Hunan and Hubei areas' Wufeng-Longmaxi Formation shale[J]. Science Technology and Engineering, 2016, 16(26): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201626005.htm
    孙玮, 刘树根, 冉波, 等. 四川盆地及周缘地区牛蹄塘组页岩气概况及前景评价[J]. 成都理工大学学报(自然科学版), 2012, 39(2): 170-175. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201202010.htm

    Sun W, Liu S G, Ran B, et al. General situation and prospect evaluation of the shale gas in Niutitang Formation of Sichuan Basin and its surrounding areas[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(2): 170-175. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201202010.htm
    谢小敏, 腾格尔, 秦建中, 等. 贵州凯里寒武系底部硅质岩系生物组成、沉积环境与烃源岩发育关系研究[J]. 地质学报, 2015, 89(2): 425-439. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502017.htm

    Xie X M, Tenger, Qin J Z, et al. Depositional environment, organisms components and source rock formation of siliceous rocks in the base of the Cambrian Niutitang Formation, Kaili, Guizhou[J]. Acta Geologica Sinica, 2015, 89(2): 425-439. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502017.htm
    周泽, 亢韦, 熊孟辉, 等. 贵州凤冈地区牛蹄塘组页岩气储层特征及勘探前景[J]. 中国煤炭地质, 2016, 28(6): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201606006.htm

    Zhou Z, Kang W, Xiong M H, et al. Niutitang Formation shale gas reservoir features and exploration prospect in Fenggang Area, Guizhou[J]. Coal Geology of China, 2016, 28(6): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201606006.htm
    Zhang K, Song Y, Jiang S, et al. Mechanism analysis of organic matter enrichment in different sedimentary backgrounds: A case study of the Lower Cambrian and the Upper Ordovician-Lower Silurian, in Yangtze Region[J]. Marine and Petroleum Geology, 2019, 99: 488-497. doi: 10.1016/j.marpetgeo.2018.10.044
    Zhang Y, He Z, Jiang S, et al. Fracture types in the Lower Cambrian shale and their effect on shale gas accumulation, Upper Yangtze[J]. Marine and Petroleum Geology, 2019, 99: 282-291. doi: 10.1016/j.marpetgeo.2018.10.030
    Li M W, Chen Z H, Cao T T, et al. Expelled oil and their impacts on Rock-Eval data interpretation, Eocene Qianjiang Formation in Jianghan Basin, China[J]. International Journal of Coal Geology, 2018, 191: 37-48. doi: 10.1016/j.coal.2018.03.001
    邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm

    Zou C N, Yang Z, Cui J W, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm
    郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成于富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm

    Guo T L, Zhang H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm
    吴蓝宇, 胡东风, 陆永潮, 等. 四川盆地涪陵气田五峰组-龙马溪组页岩优势岩相[J]. 石油勘探与开发, 2016, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm

    Wu L Y, Hu D F, Lu Y C, et al. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm
    金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm

    Jin Z J, Hu Z Q, Gao B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontier, 2016, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm
    Yang F, Ning Z F, Wang Q, et al. Pore structure characteristics of Lower Silurian shales in the southern Sichuan Basin, China: Insights to pore development and gas storage mechanism[J]. International Journal of Coal Geology, 2016, 156: 12-24. doi: 10.1016/j.coal.2015.12.015
    Xu Z, Shi W, Zhai G, et al. A rock physics model for characterizing the total porosity and velocity of shale: A case study in Fuling Area, China[J]. Marine and Petroleum Geology, 2019, 99: 208-226. doi: 10.1016/j.marpetgeo.2018.10.010
    Xie X M, Volkman J, Qin J Z, et al. Petrology and hydrocarbon potential of micro-algal and macroalgal dominated oil shales from the Eocene Huadian Formation, NE China[J]. International Journal of Coal Geology, 2014, 124(4): 36-47. http://smartsearch.nstl.gov.cn/paper_detail.html?id=f2b8bf871306cdde79afc7ea1dc8c370
    Xie X M, Borjigin T, Zhang Q Z, et al. Intact microbial fossils in the Permian Lucaogou Formation oil shale, Junggar Basin, NW China[J]. International Journal of Coal Geology, 2015, 146: 166-178. doi: 10.1016/j.coal.2015.05.011
    Xie X M, Amann-Hildenbrand A, Littke R, et al. The influence of partial hydrocarbon saturation on porosity and permeability in a Palaeogene lacustrine shale-hosted oil system of the Bohai Bay Basin, eastern China[J]. International Journal of Coal Geology, 2019, 207: 26-38. doi: 10.1016/j.coal.2019.03.010
    邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm

    Zou C N, Zhu R K, Bai B, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm
    王羽, 金婵, 汪丽华, 等. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J]. 岩矿测试, 2015, 34(4): 278-285. doi: 10.15898/j.cnki.11-2131/td.2015.03.003

    Wang Y, Jin C, Wang L H, et al. Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling[J]. Rock and Mineral Analysis, 2015, 34(4): 278-285. doi: 10.15898/j.cnki.11-2131/td.2015.03.003
    于亮, 朱亚林, 闫昭圣, 等. 环境扫描电镜在石油地质研究中的应用[J]. 电子显微学报, 2016, 35(6): 561-566. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201606016.htm

    Yu L, Zhu Y L, Yan Z S, et al. Application of field emission-environment scanning electron microscope in petroleum geology[J]. Journal of Chinese Electron Microscopy Society, 2016, 35(6): 561-566. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201606016.htm
    程涌, 刘聪, 吴伟, 等. 氩离子抛光-环境扫描电镜在页岩纳米孔隙研究中的应用——以辽中凹陷JX地区沙一段为例[J]. 电子显微学报, 2018, 37(1): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201801009.htm

    Cheng Y, Liu C, Wu W, et al. The application of argon ion polishing-environmental scanning electron microscopy to the research on shale nanometer-sized pores[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(1): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201801009.htm
    秦艳, 张文正, 彭平安, 等. 鄂尔多斯盆地延长组长7段富铀烃源岩的铀赋存状态与富集机理[J]. 岩石学报, 2009, 25(10): 2469-2476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910015.htm

    Qin Y, Zhang W Z, Peng P A, et al. Occurrence and concentration of uranium in the hydrocarbon source rocks of Chang 7 Member of Yanchang Formation, Ordos Basin[J]. Acta Petrologica Sinica, 2009, 25(10): 2469-2476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910015.htm
    遇昊, 陈代钊, 韦恒叶, 等. 二叠纪末期海洋缺氧: 来自黄铁矿形态的证据[J]. 地球科学, 2011, 46(1): 83-91. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201201003039.htm

    Yu H, Chen D Z, Wei H Y, et al. Oceanic anoxia during the Late Permian: Evidence from pyrite morphology[J]. Chinese Journal of Geology, 2011, 46(1): 83-91. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201201003039.htm
    遇昊, 陈代钊, 韦恒叶, 等. 鄂西地区上二叠乐平统大隆组硅质岩成因及有机质富集机理[J]. 岩石学报, 2012, 28(3): 1017-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203030.htm

    Yu H, Chen D Z, Wei H Y, et al. Origin of bedded chert and organic matter accumulation in the Dalong Formation of Upper Permian in western Hubei Province[J]. Acta Petrologica Sinica, 2012, 28(3): 1017-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203030.htm
    Breiter K, Ďurišová J, Hrstka T, et al. Assessment of magmatic vs. metasomatic processes in rare-metal granites: A case study of the Cinovec/Zinnwald Sn-W-Li deposit, Central Europe[J]. Lithos, 2017, 292-293: 198-217. doi: 10.1016/j.lithos.2017.08.015
    Breiter K, Badanina E, Ďurišová J, et al. Chemistry of quartz-A new insight into the origin of the Orlovka Ta-Li deposit, eastern Transbaikalia, Russia[J]. Lithos, 2019, 348-359: 1-13. http://www.sciencedirect.com/science/article/pii/S0024493719303652
    Terfelt F. Upper Cambrian trilobite biostratigraphy and taphonomy at Kakeled on Kinnekulle, Västergötland, Sweden[J]. Acta Palaeontologica Polonica, 2003, 48(3): 409-416.
    Nielsen A T, Schovsbo N H. Cambrian to basal Ordovician lithostratigraphy in southern Scandinavia[J]. Bulletin of the Geological Society of Denmark, 2006, 53: 47-92. doi: 10.37570/bgsd-2006-53-04
    Pool W, Geluk M, Abels J, et al.Assessment of an unusual European shale gas play: The Cambro-Ordovician Alum shale, southern Sweden[C]//Proceedings of SPE/EAGE European Unconventional Resources Conference and Exhibition.Vienna: Society of Petroleum Engineers, 2012.
    Schovsbo N H. The geochemistry of Lower Palaeozoic sediments deposited on the margins of Baltica[J]. Bulletin of the Geological Society of Denmark, 2003, 50: 11-27. http://www.researchgate.net/publication/279691947_The_geochemistry_of_Lower_Palaeozoic_sediments_deposited_on_the_margins_of_Baltica
    Kosakowski P, Kotarba M J, Piestrzynski A, et al. Petroleum source rock evaluation of the Alum and Dictyonema shales (Upper Cambrian-Lower Ordovician) in the Baltic Basin and Podlasie Depression (eastern Poland)[J]. International Journal of Earth Science (Geologische Rundschau), 2016, 106: 743-761. doi: 10.1007/s00531-016-1328-x
    Yang S Y, Schulz H M, Horsfield B, et al. On the changing petroleum generation properties of Alum shale over geological time caused by uranium irradiation[J]. Geochimica et Cosmochimica Acta, 2018, 229: 20-35. doi: 10.1016/j.gca.2018.02.049
    Peters K E, Moldowan J M著. 姜乃煌译. 生物标记化合物指南[M]. 北京: 石油工业出版社, 1995.

    Peters K E, Moldowan J M(Editor).Jiang N H(Translator).The giomarker guide[M].Beijing: Petroleum Industry Press, 1995.
    肖贤明, 刘德汉, 傅家谟, 等. 海相镜质体——海相烃源岩中一种重要生烃母质[J]. 石油学报, 1997, 18(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB701.007.htm

    Xiao X M, Liu D H, Fu J M, et al. Marine vitrinite-An important hydrocarbon source matter in marine source rocks[J]. Acta Petrolei Sinica, 1997, 18(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB701.007.htm
    王飞宇, 何萍, 高岗, 等. 下古生界高过成熟烃源岩中的镜状体[J]. 中国石油大学学报(自然科学版), 1995, 19(增刊1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX5S1.004.htm

    Wang F Y, He P, Gao G, et al. Vitrinite-like macerals in Chinese Early Palaeozoic source rocks[J]. Journal of China University of Petroleum (Edition of Natural Science), 1995, 19(Supplement 1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX5S1.004.htm
    王飞宇, 陈敬轶, 高岗, 等. 源于宏观藻类的镜状体反射率——前泥盆纪海相地层成熟度标尺[J]. 石油勘探与开发, 2010, 37(2): 250-257. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002019.htm

    Wang F Y, Chen J Y, Gao G, et al. Reflectance of macroalgae-derived vitrinite-like macerals: An organic maturity indicator for Pre-Devonian marine strata[J]. Petroleum Exploration and Development, 2010, 37(2): 250-257. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002019.htm
    Schovsbo N H. Uranium enrichment shorewards in black shales: A case study from the Scandinavian Alum shale[J]. Geologiska Föreningeni Stockholm Förhandlingar, 2002, 124(2): 107-115. doi: 10.1080/11035890201242107
    Gautier D, Schovsbo N.Resource potential of the Alum shale in Denmark[C]//Proceedings of Unconventional Resources Technology Conference.2014: 2731-2740.
    Schovsbo N H, Nielsen A T, Gautier D L. The Lower Palaeozoic shale gas play in Denmark[J]. Geological Survey of Denmark and Greenland Bulletin, 2014, 31: 19-22.
    Peters K E, Walters C C, Moldowan J M. The biomarker guide, biomarkers and isotopes in petroleum systems and earth history[M]. Cambridge: Cambridge University Press, 2005: 700.
    Morse J W, Berner R A. What determines sedimentary C/S ratios?[J]. Geochimica et Cosmochimica Acta, 1995, 59: 1073-1077. doi: 10.1016/0016-7037(95)00024-T
    Huang Y J, Yang G S, Gu J, et al. Marine incursion events in the Late Cretaceous Songliao Basin: Constraints from sulfur geochemistry records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 152-161. doi: 10.1016/j.palaeo.2013.03.017
    Rickard D T. The origin of framboids[J]. Lithos, 1970, 3: 269-293. doi: 10.1016/0024-4937(70)90079-4
    Wilkin R T, Barnes H L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60: 3897-3912. doi: 10.1016/0016-7037(96)00209-8
    Wilkin R T, Arthur M A, Dean W E. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions[J]. Earth and Planetary Science Letters, 1997, 148: 517-525. doi: 10.1016/S0012-821X(97)00053-8
    Wilkin R T, Barnes H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61: 323-339. doi: 10.1016/S0016-7037(96)00320-1
    韦恒叶. 鄂西-湘西北二叠系栖霞组黑色岩系有机质富集机理[D]. 北京: 中国科学院地质与地球物理研究所, 2011.

    Wei Y H.Accumulation mechanism of organic matter in black rock series of the Qixia Formation of Permian in western Hubei and northwestern Hunan[D].Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2011.
    Schovsbo N H. Uranium enrichment shorewards in black shales: A case study from the Scandinavian Alum shale[J]. Geologiska Föreningeni Stockholm Förhandlingar, 2002, 124(2): 107-115. doi: 10.1080/11035890201242107
  • Cited by

    Periodical cited type(18)

    1. 周伟,张嘉升,祁晓鹏,徐磊,杨杰. X射线衍射和TIMA研究陕南镇巴地区富锂黏土岩的矿物组成及锂的赋存状态. 岩矿测试. 2024(01): 76-86 . 本站查看
    2. 王奇奇,孙贺,顾海欧,侯振辉,葛粲,汪方跃,周涛发. 磺酸型阳离子树脂的元素分配行为及高精度同位素分析应用. 岩矿测试. 2024(01): 63-75 . 本站查看
    3. 鲁银鹏,孟郁苗,黄小文,王丛林,杨秉阳,谭侯铭睿,谢欢. 宁芜盆地玢岩型铁矿尾矿元素与矿物组成特征. 岩矿测试. 2024(02): 259-269 . 本站查看
    4. 张利军,鲁文豪,张建东,彭光雄,卜建财,唐凯,谢渐成,徐质彬,杨海燕. 基于深度学习的镜下岩石、矿物薄片识别. 地学前缘. 2024(03): 498-510 .
    5. 温利刚,贾木欣,赵建军,王清,付强. 工艺矿物学参数自动分析系统在铜矿浮选尾矿银赋存特征研究中的应用. 岩矿测试. 2024(03): 417-431 . 本站查看
    6. 李子龙,范昌育,惠潇,邓秀芹,孙勃,韩晓洁,王爱国,王刚. 非常规沉积储层层理缝研究进展及趋势. 沉积学报. 2024(04): 1150-1163 .
    7. 肖迪,戴朝成,白斌,卞从胜,董若婧,刘羽汐,许亚鑫. 陆相富有机质页岩黄铁矿特征及意义——以鄂尔多斯盆地延长组和松辽盆地青山口组为例. 科学技术与工程. 2023(23): 9888-9902 .
    8. 张涛,宋文磊,陈倩,杨金昆,胡轶,黄军,许丹妮,徐亦桐. 矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用. 岩矿测试. 2023(04): 748-759 . 本站查看
    9. 杨晋东,于振锋,郭旭,赵瑞熙. 鄂尔多斯盆地东缘晚古生代泥岩地球化学特征及有机质富集机理. 岩矿测试. 2023(06): 1104-1119 . 本站查看
    10. 徐园园,谢远云,康春国,迟云平,吴鹏,孙磊,魏振宇. 松花江早更新世水系演化:来自TIMA矿物和地球化学的证据. 地质科学. 2022(01): 190-206 .
    11. 许可,许德如. 江南造山带黄金洞金矿蚀变岩型金矿化形成机制研究. 黄金科学技术. 2022(02): 151-164 .
    12. 李秋杭,谢远云,康春国,迟云平,吴鹏,孙磊,李思琪. 基于人工和TIMA自动化方法的松花江水系重矿物组成:对源-汇物源示踪的指示. 海洋地质与第四纪地质. 2022(03): 170-183 .
    13. 汪进秋,谢远云,康春国,迟云平,孙磊,吴鹏,魏振宇. 中更新世以来的哈尔滨黄土物源变化——来自TIMA自动定量矿物的证据. 中国沙漠. 2022(05): 25-35 .
    14. 程涌,胡煜昭,崔苗,聂琪,许赛华,范惠珺. 黔东柏松铅锌矿床矿物特征及地质意义. 有色金属(矿山部分). 2022(05): 160-172 .
    15. 许振浩,马文,李术才,林鹏,梁锋,许广璐,李珊,韩涛,石恒. 岩性识别:方法、现状及智能化发展趋势. 地质论评. 2022(06): 2290-2304 .
    16. 曾烃详,刘岩,文志刚,樊云鹏,冯兴强,季长军,史旭凯,高变变,武远哲. 基于迁移学习的全岩光片有机显微组分识别与定量——以皖泾地1井下三叠统殷坑组烃源岩为例. 科学技术与工程. 2022(35): 15485-15493 .
    17. 张一帆,范裕,陈静,刘兰海,李梦梦. 矿精粉中关键金属元素赋存状态研究方法流程的建立:以长江中下游成矿带富钴硫矿精粉为例. 岩石学报. 2021(09): 2791-2807 .
    18. 杨波,杨莉,沈茂森,刘涛,孟文祥,于宏东. TIMA测试技术在白云鄂博矿床铌工艺矿物学中的应用. 矿冶工程. 2021(06): 65-68 .

    Other cited types(5)

Catalog

    Article views (4362) PDF downloads (66) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return