Citation: | XIE Xiao-min, LI Li, YUAN Qiu-yun, WU Fen-ting, LIN Jing-wen, DOU Hao-ran. Grain Size Distribution of Organic Matter and Pyrite in Alum Shales Characterized by TIMA and Its Paleo-environmental Significance[J]. Rock and Mineral Analysis, 2021, 40(1): 50-60. DOI: 10.15898/j.cnki.11-2131/td.202007120103 |
Tissot B P, Welte D H.Petroleum formation and occurrence[M]. Berlin, Heidelberg, Newyork: Springer Verlag, 1978.
|
朱光有, 陈斐然, 陈志勇, 等. 塔里木盆地寒武系玉儿吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htm
Zhu G Y, Chen F R, Chen Z Y, et al. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tasim Basin[J]. Natural Gas Geoscience, 2016, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htm
|
赵坤, 李婷婷, 朱光有, 等. 下寒武统优质烃源岩的地球化学特征与形成机制——以鄂西地区天柱山剖面为例[J]. 石油学报, 2020, 41(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001002.htm
Zhao K, Li T T, Zhu G Y, et al. Geochemical characteristics and formation mechanism of high-quality Lower Cambrain source rocks: A case study of the Tianzhushan profile in western Hubei[J]. Acta Petrolei Sinica, 2020, 41(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001002.htm
|
Xie X M, Li M W, Littke R, et al. Petrographic and geochemical characterization of microfacies in a lacustrine shale oil system in the Dongying Sag, Jiyang Depression, Bohai Bay Basin, eastern China[J]. International Journal of Coal Geology, 2016, 165: 49-63. doi: 10.1016/j.coal.2016.07.004
|
朱光有, 杜德道, 陈玮岩, 等. 塔里木盆地西南缘古老层系巨厚黑色泥岩的发现及勘探意义[J]. 石油学报, 2017, 38(12): 1335-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201712001.htm
Zhu G Y, Du D D, Chen W Y, et al. The discovery and exploration significance of the old thick black mudstones in the southwest margin of Tarim Basin[J]. Acta Petrolei Sinica, 2017, 38(12): 1335-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201712001.htm
|
付小东, 邱楠生, 秦建中, 等. 四川盆地龙潭组烃源岩全硫含量特征及其对沉积环境的响应[J]. 石油与天然气地质, 2014, 35(3): 342-349. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201403008.htm
Fu X D, Qiu N S, Qin J Z, et al. Total sulfur distribution of source rock of the Upper Permian Longtan Formation and its response to sedimentary environment in Sichuan Basin[J]. Oil & Gas Geology, 2014, 35(3): 342-349. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201403008.htm
|
刘子驿, 张金川, 刘飏, 等. 湘鄂西地区五峰-龙马溪组泥页岩黄铁矿粒径特征[J]. 科学技术与工程, 2016, 16(26): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201626005.htm
Liu Z Y, Zhang J C, Liu Y, et al. The particle size characteristics of pyrite in western Hunan and Hubei areas' Wufeng-Longmaxi Formation shale[J]. Science Technology and Engineering, 2016, 16(26): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201626005.htm
|
孙玮, 刘树根, 冉波, 等. 四川盆地及周缘地区牛蹄塘组页岩气概况及前景评价[J]. 成都理工大学学报(自然科学版), 2012, 39(2): 170-175. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201202010.htm
Sun W, Liu S G, Ran B, et al. General situation and prospect evaluation of the shale gas in Niutitang Formation of Sichuan Basin and its surrounding areas[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(2): 170-175. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201202010.htm
|
谢小敏, 腾格尔, 秦建中, 等. 贵州凯里寒武系底部硅质岩系生物组成、沉积环境与烃源岩发育关系研究[J]. 地质学报, 2015, 89(2): 425-439. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502017.htm
Xie X M, Tenger, Qin J Z, et al. Depositional environment, organisms components and source rock formation of siliceous rocks in the base of the Cambrian Niutitang Formation, Kaili, Guizhou[J]. Acta Geologica Sinica, 2015, 89(2): 425-439. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502017.htm
|
周泽, 亢韦, 熊孟辉, 等. 贵州凤冈地区牛蹄塘组页岩气储层特征及勘探前景[J]. 中国煤炭地质, 2016, 28(6): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201606006.htm
Zhou Z, Kang W, Xiong M H, et al. Niutitang Formation shale gas reservoir features and exploration prospect in Fenggang Area, Guizhou[J]. Coal Geology of China, 2016, 28(6): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201606006.htm
|
Zhang K, Song Y, Jiang S, et al. Mechanism analysis of organic matter enrichment in different sedimentary backgrounds: A case study of the Lower Cambrian and the Upper Ordovician-Lower Silurian, in Yangtze Region[J]. Marine and Petroleum Geology, 2019, 99: 488-497. doi: 10.1016/j.marpetgeo.2018.10.044
|
Zhang Y, He Z, Jiang S, et al. Fracture types in the Lower Cambrian shale and their effect on shale gas accumulation, Upper Yangtze[J]. Marine and Petroleum Geology, 2019, 99: 282-291. doi: 10.1016/j.marpetgeo.2018.10.030
|
Li M W, Chen Z H, Cao T T, et al. Expelled oil and their impacts on Rock-Eval data interpretation, Eocene Qianjiang Formation in Jianghan Basin, China[J]. International Journal of Coal Geology, 2018, 191: 37-48. doi: 10.1016/j.coal.2018.03.001
|
邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm
Zou C N, Yang Z, Cui J W, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm
|
郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成于富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm
Guo T L, Zhang H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm
|
吴蓝宇, 胡东风, 陆永潮, 等. 四川盆地涪陵气田五峰组-龙马溪组页岩优势岩相[J]. 石油勘探与开发, 2016, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm
Wu L Y, Hu D F, Lu Y C, et al. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm
|
金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm
Jin Z J, Hu Z Q, Gao B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontier, 2016, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm
|
Yang F, Ning Z F, Wang Q, et al. Pore structure characteristics of Lower Silurian shales in the southern Sichuan Basin, China: Insights to pore development and gas storage mechanism[J]. International Journal of Coal Geology, 2016, 156: 12-24. doi: 10.1016/j.coal.2015.12.015
|
Xu Z, Shi W, Zhai G, et al. A rock physics model for characterizing the total porosity and velocity of shale: A case study in Fuling Area, China[J]. Marine and Petroleum Geology, 2019, 99: 208-226. doi: 10.1016/j.marpetgeo.2018.10.010
|
Xie X M, Volkman J, Qin J Z, et al. Petrology and hydrocarbon potential of micro-algal and macroalgal dominated oil shales from the Eocene Huadian Formation, NE China[J]. International Journal of Coal Geology, 2014, 124(4): 36-47. http://smartsearch.nstl.gov.cn/paper_detail.html?id=f2b8bf871306cdde79afc7ea1dc8c370
|
Xie X M, Borjigin T, Zhang Q Z, et al. Intact microbial fossils in the Permian Lucaogou Formation oil shale, Junggar Basin, NW China[J]. International Journal of Coal Geology, 2015, 146: 166-178. doi: 10.1016/j.coal.2015.05.011
|
Xie X M, Amann-Hildenbrand A, Littke R, et al. The influence of partial hydrocarbon saturation on porosity and permeability in a Palaeogene lacustrine shale-hosted oil system of the Bohai Bay Basin, eastern China[J]. International Journal of Coal Geology, 2019, 207: 26-38. doi: 10.1016/j.coal.2019.03.010
|
邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm
Zou C N, Zhu R K, Bai B, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm
|
王羽, 金婵, 汪丽华, 等. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J]. 岩矿测试, 2015, 34(4): 278-285. doi: 10.15898/j.cnki.11-2131/td.2015.03.003
Wang Y, Jin C, Wang L H, et al. Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling[J]. Rock and Mineral Analysis, 2015, 34(4): 278-285. doi: 10.15898/j.cnki.11-2131/td.2015.03.003
|
于亮, 朱亚林, 闫昭圣, 等. 环境扫描电镜在石油地质研究中的应用[J]. 电子显微学报, 2016, 35(6): 561-566. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201606016.htm
Yu L, Zhu Y L, Yan Z S, et al. Application of field emission-environment scanning electron microscope in petroleum geology[J]. Journal of Chinese Electron Microscopy Society, 2016, 35(6): 561-566. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201606016.htm
|
程涌, 刘聪, 吴伟, 等. 氩离子抛光-环境扫描电镜在页岩纳米孔隙研究中的应用——以辽中凹陷JX地区沙一段为例[J]. 电子显微学报, 2018, 37(1): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201801009.htm
Cheng Y, Liu C, Wu W, et al. The application of argon ion polishing-environmental scanning electron microscopy to the research on shale nanometer-sized pores[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(1): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201801009.htm
|
秦艳, 张文正, 彭平安, 等. 鄂尔多斯盆地延长组长7段富铀烃源岩的铀赋存状态与富集机理[J]. 岩石学报, 2009, 25(10): 2469-2476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910015.htm
Qin Y, Zhang W Z, Peng P A, et al. Occurrence and concentration of uranium in the hydrocarbon source rocks of Chang 7 Member of Yanchang Formation, Ordos Basin[J]. Acta Petrologica Sinica, 2009, 25(10): 2469-2476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910015.htm
|
遇昊, 陈代钊, 韦恒叶, 等. 二叠纪末期海洋缺氧: 来自黄铁矿形态的证据[J]. 地球科学, 2011, 46(1): 83-91. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201201003039.htm
Yu H, Chen D Z, Wei H Y, et al. Oceanic anoxia during the Late Permian: Evidence from pyrite morphology[J]. Chinese Journal of Geology, 2011, 46(1): 83-91. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201201003039.htm
|
遇昊, 陈代钊, 韦恒叶, 等. 鄂西地区上二叠乐平统大隆组硅质岩成因及有机质富集机理[J]. 岩石学报, 2012, 28(3): 1017-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203030.htm
Yu H, Chen D Z, Wei H Y, et al. Origin of bedded chert and organic matter accumulation in the Dalong Formation of Upper Permian in western Hubei Province[J]. Acta Petrologica Sinica, 2012, 28(3): 1017-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203030.htm
|
Breiter K, Ďurišová J, Hrstka T, et al. Assessment of magmatic vs. metasomatic processes in rare-metal granites: A case study of the Cinovec/Zinnwald Sn-W-Li deposit, Central Europe[J]. Lithos, 2017, 292-293: 198-217. doi: 10.1016/j.lithos.2017.08.015
|
Breiter K, Badanina E, Ďurišová J, et al. Chemistry of quartz-A new insight into the origin of the Orlovka Ta-Li deposit, eastern Transbaikalia, Russia[J]. Lithos, 2019, 348-359: 1-13. http://www.sciencedirect.com/science/article/pii/S0024493719303652
|
Terfelt F. Upper Cambrian trilobite biostratigraphy and taphonomy at Kakeled on Kinnekulle, Västergötland, Sweden[J]. Acta Palaeontologica Polonica, 2003, 48(3): 409-416.
|
Nielsen A T, Schovsbo N H. Cambrian to basal Ordovician lithostratigraphy in southern Scandinavia[J]. Bulletin of the Geological Society of Denmark, 2006, 53: 47-92. doi: 10.37570/bgsd-2006-53-04
|
Pool W, Geluk M, Abels J, et al.Assessment of an unusual European shale gas play: The Cambro-Ordovician Alum shale, southern Sweden[C]//Proceedings of SPE/EAGE European Unconventional Resources Conference and Exhibition.Vienna: Society of Petroleum Engineers, 2012.
|
Schovsbo N H. The geochemistry of Lower Palaeozoic sediments deposited on the margins of Baltica[J]. Bulletin of the Geological Society of Denmark, 2003, 50: 11-27. http://www.researchgate.net/publication/279691947_The_geochemistry_of_Lower_Palaeozoic_sediments_deposited_on_the_margins_of_Baltica
|
Kosakowski P, Kotarba M J, Piestrzynski A, et al. Petroleum source rock evaluation of the Alum and Dictyonema shales (Upper Cambrian-Lower Ordovician) in the Baltic Basin and Podlasie Depression (eastern Poland)[J]. International Journal of Earth Science (Geologische Rundschau), 2016, 106: 743-761. doi: 10.1007/s00531-016-1328-x
|
Yang S Y, Schulz H M, Horsfield B, et al. On the changing petroleum generation properties of Alum shale over geological time caused by uranium irradiation[J]. Geochimica et Cosmochimica Acta, 2018, 229: 20-35. doi: 10.1016/j.gca.2018.02.049
|
Peters K E, Moldowan J M著. 姜乃煌译. 生物标记化合物指南[M]. 北京: 石油工业出版社, 1995.
Peters K E, Moldowan J M(Editor).Jiang N H(Translator).The giomarker guide[M].Beijing: Petroleum Industry Press, 1995.
|
肖贤明, 刘德汉, 傅家谟, 等. 海相镜质体——海相烃源岩中一种重要生烃母质[J]. 石油学报, 1997, 18(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB701.007.htm
Xiao X M, Liu D H, Fu J M, et al. Marine vitrinite-An important hydrocarbon source matter in marine source rocks[J]. Acta Petrolei Sinica, 1997, 18(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB701.007.htm
|
王飞宇, 何萍, 高岗, 等. 下古生界高过成熟烃源岩中的镜状体[J]. 中国石油大学学报(自然科学版), 1995, 19(增刊1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX5S1.004.htm
Wang F Y, He P, Gao G, et al. Vitrinite-like macerals in Chinese Early Palaeozoic source rocks[J]. Journal of China University of Petroleum (Edition of Natural Science), 1995, 19(Supplement 1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX5S1.004.htm
|
王飞宇, 陈敬轶, 高岗, 等. 源于宏观藻类的镜状体反射率——前泥盆纪海相地层成熟度标尺[J]. 石油勘探与开发, 2010, 37(2): 250-257. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002019.htm
Wang F Y, Chen J Y, Gao G, et al. Reflectance of macroalgae-derived vitrinite-like macerals: An organic maturity indicator for Pre-Devonian marine strata[J]. Petroleum Exploration and Development, 2010, 37(2): 250-257. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002019.htm
|
Schovsbo N H. Uranium enrichment shorewards in black shales: A case study from the Scandinavian Alum shale[J]. Geologiska Föreningeni Stockholm Förhandlingar, 2002, 124(2): 107-115. doi: 10.1080/11035890201242107
|
Gautier D, Schovsbo N.Resource potential of the Alum shale in Denmark[C]//Proceedings of Unconventional Resources Technology Conference.2014: 2731-2740.
|
Schovsbo N H, Nielsen A T, Gautier D L. The Lower Palaeozoic shale gas play in Denmark[J]. Geological Survey of Denmark and Greenland Bulletin, 2014, 31: 19-22.
|
Peters K E, Walters C C, Moldowan J M. The biomarker guide, biomarkers and isotopes in petroleum systems and earth history[M]. Cambridge: Cambridge University Press, 2005: 700.
|
Morse J W, Berner R A. What determines sedimentary C/S ratios?[J]. Geochimica et Cosmochimica Acta, 1995, 59: 1073-1077. doi: 10.1016/0016-7037(95)00024-T
|
Huang Y J, Yang G S, Gu J, et al. Marine incursion events in the Late Cretaceous Songliao Basin: Constraints from sulfur geochemistry records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 152-161. doi: 10.1016/j.palaeo.2013.03.017
|
Rickard D T. The origin of framboids[J]. Lithos, 1970, 3: 269-293. doi: 10.1016/0024-4937(70)90079-4
|
Wilkin R T, Barnes H L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60: 3897-3912. doi: 10.1016/0016-7037(96)00209-8
|
Wilkin R T, Arthur M A, Dean W E. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions[J]. Earth and Planetary Science Letters, 1997, 148: 517-525. doi: 10.1016/S0012-821X(97)00053-8
|
Wilkin R T, Barnes H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61: 323-339. doi: 10.1016/S0016-7037(96)00320-1
|
韦恒叶. 鄂西-湘西北二叠系栖霞组黑色岩系有机质富集机理[D]. 北京: 中国科学院地质与地球物理研究所, 2011.
Wei Y H.Accumulation mechanism of organic matter in black rock series of the Qixia Formation of Permian in western Hubei and northwestern Hunan[D].Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2011.
|
Schovsbo N H. Uranium enrichment shorewards in black shales: A case study from the Scandinavian Alum shale[J]. Geologiska Föreningeni Stockholm Förhandlingar, 2002, 124(2): 107-115. doi: 10.1080/11035890201242107
|
1. |
蒋航,郭娜,张柯凡,罗海洋. 花岗伟晶岩型稀有金属矿床蚀变系统与矿物光谱-地球化学特征耦合性研究——以川西打枪沟矿区为例. 岩石学报. 2024(01): 197-214 .
![]() | |
2. |
褚志远,温殿刚,吕青,耿新霞,姚佛军,杨建民. 山东蒙阴地区金刚石遥感找矿模型的构建与应用. 地球科学与环境学报. 2024(02): 240-251 .
![]() | |
3. |
吕毓东,王世明,王代强,李磊,裴秋明. 基于全波段反射光谱的花岗岩及其主要矿物自动识别研究——以康定某隧道为例. 矿产勘查. 2024(04): 634-643 .
![]() | |
4. |
高齐云,周丽,易泽邦,陈正山. 颗粒度对喀斯特型铝土矿可见光-近红外光谱特征的影响. 岩矿测试. 2024(02): 234-246 .
![]() | |
5. |
田祥雨,王瑞,刘思宇,孙海微,陈寿波,席斌斌. 云母对伟晶岩型关键金属矿床的成因和勘查指示:以东天山镜儿泉伟晶岩型Li-Be-Nb-Ta矿床为例. 岩石学报. 2024(09): 2944-2962 .
![]() | |
6. |
王猛,刘新星,李建康,周芳春,李鹏,张娟,成嘉伟,邱佳炜. 湘北仁里花岗伟晶岩型稀有金属矿床红外光谱特征研究及勘查应用. 岩石学报. 2023(07): 2101-2116 .
![]() | |
7. |
王珊珊,周可法,白泳,鲁雪晨,蒋果. 新疆镜儿泉伟晶岩型锂矿岩矿光谱特征分析. 地学前缘. 2023(05): 205-215 .
![]() | |
8. |
蒋果,周可法,王金林,白泳,孙国庆,汪玮. 基于深度学习的花岗伟晶岩型锂铍矿物识别研究. 地学前缘. 2023(05): 185-196 .
![]() | |
9. |
杜晓川,娄德波,徐林刚,范莹琳,张琳,李婉悦. 基于GF-2影像和随机森林算法的花岗伟晶岩提取. 自然资源遥感. 2023(04): 53-60 .
![]() | |
10. |
任广利,孔会磊,赵凯东,杨敏,李侃,赵晓健,金谋顺,李文渊. 新疆喀喇昆仑大红柳滩一带锂矿光谱特征及其找矿指示意义. 西北地质. 2022(04): 103-114 .
![]() | |
11. |
回广骥,高卿楠,宋利强,孙东询. 新疆可可托海稀有金属矿床矿物和岩石热红外光谱特征. 岩矿测试. 2021(01): 134-144 .
![]() | |
12. |
张弘,高卿楠,郭东旭. 花岗伟晶岩型锂矿热红外反射光谱特征及锂元素定量反演研究. 矿物岩石. 2021(01): 25-31 .
![]() | |
13. |
张忠利,郭旭吉,屈有恒,张彦亮. 地物化综合找矿方法在新疆阿尔泰卡鲁安锂辉石矿床中的应用. 地质与勘探. 2021(02): 325-338 .
![]() | |
14. |
郭东旭,刘晓,张海兰,张志国. 基于红外光谱技术研究云南普朗斑岩铜矿的蚀变和矿化特征. 岩矿测试. 2021(05): 698-709 .
![]() | |
15. |
姚佛军,徐兴旺,杨建民,吴林楠,耿新霞. 戈壁浅覆盖区花岗岩中锂铍伟晶岩的ASTER遥感识别技术——以新疆镜儿泉地区为例. 矿床地质. 2020(04): 686-696 .
![]() | |
16. |
代晶晶,王登红,王海宇. 我国三稀矿产资源遥感调查综述. 地质学报. 2019(06): 1270-1278 .
![]() | |
17. |
金谋顺,高永宝,李侃,宋忠宝,燕洲泉. 伟晶岩型稀有金属矿的遥感找矿方法——以西昆仑大红柳滩地区为例. 西北地质. 2019(04): 222-231 .
![]() |