• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
WANG Jia-han, LI Zheng-he, YANG Feng, YANG Xiu-jiu, HUANG Jin-song. Simultaneous Determination of 48 Elements in Marine Sediments by ICP-MS with Lithium Metaborate Fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306-315. DOI: 10.15898/j.cnki.11-2131/td.202006050085
Citation: WANG Jia-han, LI Zheng-he, YANG Feng, YANG Xiu-jiu, HUANG Jin-song. Simultaneous Determination of 48 Elements in Marine Sediments by ICP-MS with Lithium Metaborate Fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306-315. DOI: 10.15898/j.cnki.11-2131/td.202006050085

Simultaneous Determination of 48 Elements in Marine Sediments by ICP-MS with Lithium Metaborate Fusion

More Information
  • Received Date: June 04, 2020
  • Revised Date: September 11, 2020
  • Accepted Date: December 06, 2020
  • Published Date: March 27, 2021
  • HIGHLIGHTS
    (1) It was difficult to obtain a low detection limit of each element in marine sediment by the common analysis methods of multi-element analysis when the efficiency of pretreatment was considered at the same time.
    (2) The pretreatment time could be shortened and the decomposition of marine sediment was complete by alkali fusion. The simultaneous determination of 48 elements in marine sediments has been realized by ICP-MS.
    (3) The optimization of experimental procedure and instrument conditions was carried out, which provided a rapid and accurate method for the determination of multiple elements in marine sediments.
    BACKGROUNDThe common analysis methods of marine sediments, such as open digestion or high-pressure closed digestion combined with inductively coupled plasma-mass spectrometry (ICP-MS) or inductively coupled plasma-optical emission spectroscopy (ICP-OES) determination, and pressed powder pellet or fusion tablets combined with XRF determination, have a low efficiency of sample pretreatment and less detectable elements. The disadvantages of incomplete digestion, slow speed and high detection limit contribute to the inefficiency of the method.
    OBJECTIVESTo develop a rapid method for the determination of 48 elements in marine sediments by ICP-MS.
    METHODSLithium metaborate was used as a flux to decompose the sample. The obtained sample was leached with 5% nitric acid and determined by ICP-MS. An analytical method for the rapid determination of 48 elements in marine sediments was established. Using the national standard references materials of marine sediment as the high point, the standard working curve was drawn. The amount of flux LiBO2, dilution ratio, analytical isotope and internal standard elements of each element to be measured, instrument measurement mode and interference correction equation of individual elements were determined, an optimal decomposition conditions and measurement conditions were obtained.
    RESULTSThe results showed that the accurate results of P, As, Se, Cd, Hg cannot be obtained due to high temperature loss, yet microwave digestion or other methods could be used for pretreatment to avoid loss before determination. The accurate results of 48 elements may be obtained by this method, the relative standard deviation (RSD) of each element was less than 9.7%. The measured values of the national standard references of marine sediments GBW07333, GBW07314, GBW07335 and GBW07336 were consistent with the certified values. The recoveries of each element in marine sediment samples ranged from 83.6% to 118.6%.
    CONCLUSIONSThis method greatly improves the analysis efficiency, and can analyze more elements, suitable for the analysis of large numbers of samples.

  • Guan Y, Sun X M, Shi G Y, et al. Rare earth elements composition and constraint on the genesis of the polymetallic crusts and nodules in the South China Sea[J]. Acta Geologica Sinica (English Edition), 2017, 91(5): 1751-1766. doi: 10.1111/1755-6724.13409
    Wegorzewski A V, Grangeon S, Webb S M, et al. Mineralogical transformations in polymetallic nodules and the change of Ni, Cu and Co crystal-chemistry upon burial in sediments[J]. Geochimica et Cosmochimica Acta, 2020, 282: 19-37. doi: 10.1016/j.gca.2020.04.012
    Wang X H, Gao Y S, Wang Y M, et al. Three cobalt-rich seamount crust reference materials: GSMC-1 to 3[J]. Geostandards & Geoanalytical Research, 2003, 27(3): 251-257.
    Levin L A, Mengerink K, Gjerde K M, et al. Defining "serious harm" to the marine environment in the context of deep-seabed mining[J]. Marine Policy, 2016, 74: 245-259. doi: 10.1016/j.marpol.2016.09.032
    German C R, Petersen S, Hannington M D. Hydrothermal exploration of mid-ocean ridges: Where might the largest sulfide deposits be forming?[J]. Chemical Geology, 2016, 420: 114-126. doi: 10.1016/j.chemgeo.2015.11.006
    Monecke T, Petersen S, Hannington M, et al. The global rare element endowment of seafloor massive sulfide deposits[J]. 13th SGA Biennial Meeting, 2015, 3: 1261-1263.
    Takaya Y, Yasukawa K, Kawasaki T, et al. The tremendous potential of deep-sea mud as a source of rare-earth elements[J]. Scientific Reports, 2018, 8: 5763. doi: 10.1038/s41598-018-23948-5
    Li J R, Lius F, Feng X L, et al. Major and trace element geochemistry of the mid-bay of Bengal surface sediments: Implications for provenance[J]. Acta Oceanologica Sinica, 2017, 36(3): 82-90. doi: 10.1007/s13131-017-1041-z
    Pham D T, Gouramanis C, Switzer A D, et al. Elemental and mineralogical analysis of marine and coastal sediments from Phra Thong Island, Thailand: Insights into the provenance of coastal hazard deposits[J]. Marine Geology, 2017, 385: 274-292. doi: 10.1016/j.margeo.2017.01.004
    冯利, 冯秀丽, 王晓明, 等. 末次盛冰期以来南海西北陆坡沉积物来源及其常微量元素对古气候变化的响应[J]. 中国海洋大学学报, 2020, 50(6): 88-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY202006010.htm

    Feng L, Feng X L, Wang X M, et al. Sediment provenance and climate change since the last glacial maximum record by major and trace elements in the northwestern slope of the South China Sea[J]. Periodical of Ocean University of China, 2020, 50(6): 88-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY202006010.htm
    Santos I R, Favaro D I, Schaefer C E, et al. Sediment geochemistry in coastal maritime Antarctica (Admiralty Bay, King George Island): Evidence from rare earths and other elements[J]. Marine Chemistry, 2007, 107(4): 464-474. doi: 10.1016/j.marchem.2007.09.006
    Xu F J, Hu B Q, Dou T G, et al. Sediment provenance and paleoenvironmental changes in the northwestern shelf mud area of the South China Sea since the mid-Holocene[J]. Continental Shelf Research, 2017, 144: 21-30. doi: 10.1016/j.csr.2017.06.013
    贾福福, 沙龙滨, 李冬玲, 等. 西伯利亚极地海域第四纪以来古海洋环境研究进展[J]. 极地研究, 2020, 32(2): 250-263. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ202002012.htm

    Jia F F, Sha L B, Li D L, et al. Review of research on quaternary paleoceanography of the Siberian arctic seas[J]. Chinese Journal of Polar Research, 2020, 32(2): 250-263. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ202002012.htm
    Yasukawa K, Nakamura K, Fujinaga K, et al. Rare-earth, major, and trace element geochemistry of deep-sea sediments in the Indian Ocean: Implications for the potential distribution of REY-rich mud in the Indian Ocean[J]. Geochemical Journal, 2015, 49(6): 621-635. doi: 10.2343/geochemj.2.0361
    Iijima K, Yasukawa K, Fujinaga K, et al. Discovery of extremely REY-rich mud in the western North Pacific Ocean[J]. Geochemical Journal, 2016, 50(6): 557-573. doi: 10.2343/geochemj.2.0431
    曾志刚, 陈祖兴, 张玉祥, 等. 海底热液活动的环境与产物[J]. 海洋科学, 2020, 44(7): 143-155. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX202007013.htm

    Zeng Z G, Chen Z X, Zhang Y X, et al. Seafloor hydrothermal activities and their geological environments and products[J]. Marine Sciences, 2020, 44(7): 143-155. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX202007013.htm
    Begum Z, Balaram V, Ahmad S M, et al. Determination of trace and rare earth elements in marine sediment reference materials by ICP-MS: Comparison of open and closed acid digestion methods[J]. Atomic Spectroscopy, 2007, 28(2): 41-50.
    高晶晶, 刘季花, 张辉, 等. 高压密闭消解-电感耦合等离子体质谱法测定海洋沉积物中稀土元素[J]. 岩矿测试, 2012, 31(3): 425-429. doi: 10.3969/j.issn.0254-5357.2012.03.007

    Gao J J, Liu J H, Zhang H, et al. Determination of rare earth elements in the marine sediments by inductively coupled plasma-mass spectrometry with high-pressure closed digestion[J]. Rock and Mineral Analysis, 2012, 31(3): 425-429. doi: 10.3969/j.issn.0254-5357.2012.03.007
    王初丹, 罗盛旭. 硝酸-氢氟酸消解ICP-MS测定海洋沉积物中多种金属元素[J]. 桂林理工大学学报, 2016, 36(2): 337-340. doi: 10.3969/j.issn.1674-9057.2016.02.024

    Wang C D, Luo S X. Determination of metal elements in marine sediments by nitric acid-hydrofluoric acid digestion and ICP-MS[J]. Journal of Guilin University of Technology, 2016, 36(2): 337-340. doi: 10.3969/j.issn.1674-9057.2016.02.024
    孙友宝, 宋晓红, 孙媛媛, 等. 电感耦合等离子体原子发射光谱法(ICP-AES)测定海洋沉积物中的多种金属元素[J]. 中国无机分析化学, 2014, 4(3): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201403011.htm

    Sun Y B, Song X H, Sun Y Y, et al. Determination of multiple metallic elements in oceanic sediments by ICP-AES[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(3): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201403011.htm
    Ahmed A Y, Abdullah P, Wood A K, et al. Determination of some trace elements in marine sediment using ICP-MS and XRF (A comparative study)[J]. Oriental Journal of Chemistry, 2013, 29(2): 645-653.
    张颖, 朱爱美, 张迎秋, 等. 波长与能量色散复合式X射线荧光光谱技术测定海洋沉积物元素[J]. 分析化学, 2019, 47(7): 19. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201907019.htm

    Zhang Y, Zhu A M, Zhang Y Q, et al. Fast analysis of major and minor elements in marine sediments by wavelength and energy dispersive X-ray fluorescence spectrometer[J]. Chinese Journal of Analytical Chemistry, 2019, 47(7): 19. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201907019.htm
    孙萱, 宋金明, 于颖, 等. 熔融制样XRF法测定海洋沉积物中10种主量元素的条件优化[J]. 海洋环境科学, 2020, 39(6): 902-908. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ202006013.htm

    Sun X, Song J M, Yu Y, et al. Optimum conditions for the determination of 10 main elements in marine sediments by the fused bead-X-ray fluorescence spectrometry[J]. Marine Environmental Science, 2020, 39(6): 902-908. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ202006013.htm
    王娜, 徐铁民, 魏双, 等. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J]. 岩矿测试, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043

    Wang N, Xu T M, Wei S, et al. Determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043
    王蕾, 何红蓼, 李冰. 碱熔沉淀-等离子体质谱法测定地质样品中的多元素[J]. 岩矿测试, 2003, 22(2): 86-92. http://www.ykcs.ac.cn/article/id/ykcs_20030225

    Wang L, He H L, Li B. Multi-element determination in geological samples by inductively coupled plasma mass spectrometry after fusion-precipitation treatment[J]. Rock and Mineral Analysis, 2003, 22(2): 86-92. http://www.ykcs.ac.cn/article/id/ykcs_20030225
    罗磊, 付胜波, 肖洁, 等. 电感耦合等离子体发射光谱法测定含重晶石的银铅矿中的铅[J]. 岩矿测试, 2014, 33(2): 203-207. http://www.ykcs.ac.cn/article/id/b2b8f425-60ab-4b67-8e4d-151c5e29622d

    Luo L, Fu S B, Xiao J, et al. Determination of lead in argentalium ores containing barite by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 203-207. http://www.ykcs.ac.cn/article/id/b2b8f425-60ab-4b67-8e4d-151c5e29622d
    杨辉, 王书言, 黄继勇, 等. 同时检测土壤中铅镉铬汞砷重金属元素含量方法的优化[J]. 河南科技大学学报(自然科学版), 2020, 41(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX202001014.htm

    Yang H, Wang S Y, Huang J Y, et al. Optimization of simultaneous detection method for heavy metal elements content of Pb, Cd, Cr, Hg and As in soil[J]. Journal of Henan University of Science and Technology (Natural Science), 2020, 41(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX202001014.htm
    杨常青, 张双双, 吴楠, 等. 微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究[J]. 岩矿测试, 2016, 35(5): 481-487. doi: 10.15898/j.cnki.11-2131/td.2016.05.006

    Yang C Q, Zhang S S, Wu N, et al. Feasibility study on content determination of mercury and arsenic in high organic anthracite by microwave digestion-hydride generation-atomic fluorescence spectrometry and mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(5): 481-487. doi: 10.15898/j.cnki.11-2131/td.2016.05.006
    苗雪雪, 苗莹, 龚浩如, 等. 不同消解方法测定植株中磷含量的比较研究[J]. 中国农学通报, 2019, 35(20): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201920024.htm

    Miao X X, Miao Y, Gong H R, et al. Digestion methods for determining phosphorus content in plants[J]. Chinese Agricultural Science Bulletin, 2019, 35(20): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201920024.htm
    汪勇先, 秦俊法, 吉倩梅, 等. 不同的干燥和灰化过程中生物样品微量元素损失的放射性示踪研究——Ⅰ. 锌、钼、镉和硒[J]. 分析化学, 1985, 13(3): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198503016.htm

    Wang Y X, Qin J F, Ji Q M, et al. Investigation on the loss of trace elements in biological materials in different drying and ashing procedures by using radioactive tracers. Ⅰ: Zn, Mo, Cd and Se[J]. Chinese Journal of Analytical Chemistry, 1985, 13(3): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198503016.htm
    冯婧. 重金属元素分析消解技术在镉、砷检测中的应用比较[J]. 食品研究与开发, 2017, 38(16): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-SPYK201716034.htm

    Feng J. Comparison and application of digestion methods of heavy metals on cadmium and arsenic determination[J]. Food Research and Development, 2017, 38(16): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-SPYK201716034.htm
    任玲玲, 谭胜楠, 李建朝. 微波消解-电感耦合等离子体原子发射光谱法测定烧结除尘灰中9种元素[J]. 冶金分析, 2020, 40(6): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202006012.htm

    Ren L L, Tan S N, Li J C. Determination of nine elements in sintering dedusting ash by inductively coupled plasma atomic emission spectrometry after microwave digestion[J]. Metallurgical Analysis, 2020, 40(6): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202006012.htm
    刘珂珂, 霍现宽, 褚艳红, 等. 超声辅助-王水提取法在测定土壤中重金属元素的应用[J]. 冶金分析, 2019, 39(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201901008.htm

    Liu K K, Huo X K, Chu Y H, et al. Application of ultrasonic-assisted aqua regia extraction in the determination of heavy metal elements in soil[J]. Metallurgical Analysis, 2019, 39(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201901008.htm
    禹莲玲, 郭斌, 柳昭, 等. 电感耦合等离子体质谱法测定高锡地质样品中的痕量镉[J]. 岩矿测试, 2020, 39(1): 77-84. doi: 10.15898/j.cnki.11-2131/td.201906270094

    Yu L L, Guo B, Liu Z, et al. Determination of low-content cadmium in Sn-rich geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 77-84. doi: 10.15898/j.cnki.11-2131/td.201906270094
    董学林, 贾正勋, 汪慧平, 等. 共沉淀分离-电感耦合等离子体质谱法测定多金属矿石中硒和碲[J]. 冶金分析, 2016, 36(3): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201603002.htm

    Dong X L, Jia Z X, Wang H P, et al. Determination of selenium and tellurium in polymetallic ore by coprecipitation separation-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(3): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201603002.htm
    范爽, 郭超, 张百慧, 等. 基于实验室间协作实验评估土壤中重金属能量色散X射线荧光光谱分析方法性能[J]. 冶金分析, 2020, 40(8): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202008002.htm

    Fan S, Guo C, Zhang B H, et al. Evaluation of analytical method performance for determination of heavy metals in soils by energy dispersive X-ray fluorescence spectrometry based on inter-laboratory collaborative experiments[J]. Metallurgical Analysis, 2020, 40(8): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202008002.htm
    张瑞仙, 崔智勇, 王建绣, 等. 高压罐消解和湿法消解测定食品中铅的比较[J]. 中国卫生检验杂志, 2016, 26(17): 2468-2470. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201617012.htm

    Zhang R X, Cui Z Y, Wang J X, et al. Comparison between high pressure tank digestion and wet digestion in the determination of lead in food[J]. Chinese Journal of Health Laboratory Technology, 2016, 26(17): 2468-2470. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201617012.htm
    徐浩然, 张瑞娜, 胡济民, 等. 硫和硫化物对垃圾焚烧过程中Pb迁移分布的影响[J]. 环境工程学报, 2019, 13(1): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201901022.htm

    Xu H R, Zhang R N, Hu J M, et al. Influence of sulfur and sulfide on migration and distribution of lead in waste incineration process[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201901022.htm
    邱海鸥, 郑洪涛, 汤志勇. 岩石矿物分析[J]. 分析试验室, 2014, 33(11): 1349-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201411032.htm

    Qiu H O, Zheng H T, Tang Z Y. Analysis of rocks and minerals[J]. Chinese Journal of Analysis Laboratory, 2014, 33(11): 1349-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201411032.htm
    门倩妮, 沈平, 甘黎明, 等. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪[J]. 岩矿测试, 2020, 39(1): 59-67. doi: 10.15898/j.cnki.11-2131/td.201905100060

    Men Q N, Shen P, Gan L M, et al. Determination of rare earth elements and Nb, Ta, Zr, Hf in polymetallic mineral samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J]. Rock and Mineral Analysis, 2020, 39(1): 59-67. doi: 10.15898/j.cnki.11-2131/td.201905100060
    李占江. 金银及有色金属地勘矿冶分析手册[M]. 北京: 地质出版社, 2013: 490-495.

    Li Z J. Handbook for geological prospecting and metallurgy of gold, silver and nonferrous metals[M]. Beijing: Geological Publishing House, 2013: 490-495.
  • Cited by

    Periodical cited type(9)

    1. 李光一,马景治,李策,汪岸,贾正勋,董学林. 电弧分馏富集-发射光谱法测定含铌钽矿石中铌钽. 冶金分析. 2025(02): 49-55 .
    2. 兰明国,李飞,陈贵仁,何袖辉,郭家泽,石友昌. 交流电弧光电直读发射光谱法测定有机土壤中银锡硼. 冶金分析. 2024(09): 45-52 .
    3. 王冠,董俊,徐国栋,胡志中. 偏硼酸锂熔融-电感耦合等离子体发射光谱法结合扫描电镜-能谱测定锡矿石中锡钨锌铜铁锰. 岩矿测试. 2023(01): 114-124 . 本站查看
    4. 黄海波,袁静,凌波,白晓,李民敬,刘建坤. 电弧发射光谱技术发展及其在地质领域的应用. 华东地质. 2023(01): 103-117 .
    5. 蒿艳飞,陈璐,辜洋建,李云龙,毕建玲,高玉花. 石墨消解-电感耦合等离子体光谱法测定土壤中全硼. 化学分析计量. 2023(06): 57-60 .
    6. 肖细炼,刘杰,魏立,陈燕波,杨小丽,杨红梅. 微波消解—电感耦合等离子体发射光谱法同时测定生物样品中12种元素的方法. 物探与化探. 2023(03): 739-746 .
    7. 刘向磊,孙文军,文田耀,王腾飞,王凯凯,刘宗超. 地质样品中贵金属分析方法现状及展望. 冶金分析. 2022(12): 23-35 .
    8. 马景治,曲少鹏,李光一,董学兵,吴萌,吴俊,李策,董学林. 固体进样-发射光谱法同时测定地球化学样品中铜铅锌镍. 岩矿测试. 2022(06): 1007-1016 . 本站查看
    9. 祁雨凡. 交流电弧原子发射光谱测定地质样品中银、硼、锡效果研究. 世界有色金属. 2021(21): 123-124 .

    Other cited types(0)

Catalog

    Article views (4163) PDF downloads (61) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return