• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LI Tan-ping, LI Ai-yang. Determination of Trace Elements in Attapulgite Clay by Inductively Coupled Plasma-Tandem Mass Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 196-205. DOI: 10.15898/j.cnki.11-2131/td.202004090043
Citation: LI Tan-ping, LI Ai-yang. Determination of Trace Elements in Attapulgite Clay by Inductively Coupled Plasma-Tandem Mass Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 196-205. DOI: 10.15898/j.cnki.11-2131/td.202004090043

Determination of Trace Elements in Attapulgite Clay by Inductively Coupled Plasma-Tandem Mass Spectrometry

More Information
  • Received Date: April 08, 2020
  • Revised Date: July 29, 2020
  • Accepted Date: January 11, 2021
  • Published Date: March 27, 2021
  • HIGHLIGHTS
    (1) Nitric acid-hydrochloric acid-hydrofluoric acid was used to speed up the digestion and improve the stability of analytical elements.
    (2) The spectral interferences in the MS/MS mode were eliminated by mass shift and on-mass methods.
    (3) The flow rate of reaction gas was optimized by using a matrix simulation solution.
    BACKGROUNDAttapulgite clay is a water-rich magnesium aluminosilicate mineral with a layered chain structure. The different genesis of the deposit results in a different composition of trace elements in attapulgite clay. Elements Be, Cr, Ni, As, Cd, Sb, Hg, and Pb have adverse effects to health and environment, while V, Mn, Co, Cu, Zn, Mo, Sn and Ba can affect the performance and application of attapulgite clay. Therefore, accurate analysis of trace elements in attapulgite clay can provide a theoretical basis for the high-efficiency value-added deep processing of attapulgite clay. Determination of trace elements in rocks and minerals by inductively coupled plasma-mass spectrometry (ICP-MS) has the characteristics of low limit of detection (LOD) and high sensitivity. Complex spectral interference during the analysis is difficult to completely eliminate, even if collision reaction cell (CRC) technology is used.
    OBJECTIVESTo establish an analytical method for the accurate determination of trace elements in attapulgite clay by ICP-MS/MS.
    METHODSIn view of the spectral interference in the analysis process, in the MS/MS mode, O2 and NH3/He were added into CRC as reaction gases, and the corresponding oxide ions and cluster ions were generated by mass shift reaction to eliminate the interference. Internal standard elements with similar mass number and similar mass spectrometry behavior were selected to correct the matrix effect and stabilize the analysis signal.
    RESULTSThe microwave digestion of attapulgite samples with mixed nitric acid, hydrochloric acid and hydrofluoric acid can not only accelerate the digestion speed of the sample, but also maintain the stability of the analytical elements in the digestion solution. The method was used to determine 16 trace elements in national standard reference material basalt (GBW07105). The relative errors of analytes were -9.60%-8.21%, and the relative standard deviation (RSD) was less than 6.0%. Under the selected analytical conditions, the LOD of analyte was 0.13-51.6ng/L.
    CONCLUSIONSICP-MS/MS can effectively reduce the interference of mass spectrometry and improve the accuracy and sensitivity of some specific isotopes in complex media. The method is suitable for the rapid determination of trace elements in attapulgite clay.

  • 周苏闽, 冯良东, 王莉. 化学沉积法制备凹凸棒土/银核壳结构棒状银粉[J]. 非金属矿, 2011, 34(4): 15-18. doi: 10.3969/j.issn.1000-8098.2011.04.005

    Zhou S M, Feng L D, Wang L. Preparation of attapulgite/Ag core-shell structure rod-like silver powder by electroless deposition[J]. Non-Metallic Mines, 2011, 34(4): 15-18. doi: 10.3969/j.issn.1000-8098.2011.04.005
    杨敏, 王丽娟, 宋岩. 凹凸棒石吸附重金属的研究进展[J]. 硅酸盐通报, 2019, 38(11): 3445-3464. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201911011.htm

    Yang M, Wang L J, Song Y. Research progress on heavy metals adsorption by attapulgite[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3445-3464. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201911011.htm
    周灵群. 凹凸棒石油脂脱色行为及其机理[J]. 食品科学, 2019, 40(3): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201903014.htm

    Zhou L Q. Adsorption behavior and mechanism of attapulgite when used in oil bleaching[J]. Food Science, 2019, 40(3): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201903014.htm
    Junior E D, de Almeida J M F, do Nascimento Silva I, et al. pH-responsive release system of isoniazid using palygorskite as a nanocarrier[J]. Journal Drug Delivery Science and Technology, 2020, 55: 101399. doi: 10.1016/j.jddst.2019.101399
    白国梁, 陶海兵, 蔡思敏, 等. 凹凸棒石(PG)负载V2O5催化剂脱除气态Hg0的研究[J]. 环境科学学报, 2019, 39(7): 2369-2376. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201907032.htm

    Bai G L, Tao H B, Cai S M, et al. Removal of vapor-phase Hg0 over a V2O5/PG catalyst[J]. Acta Scientiae Circumstantiae, 2019, 39(7): 2369-2376. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201907032.htm
    Aguzzi C, Cerezo P, Viseras C, et al.Use of clays as drug delivery systems: Possibilities and limitations[J].2007, 36: 22-36.
    Ding C, Xiao S, Lin Y, et al. Attapulgite-supported nano-Fe0/peroxymonsulfate for quinclorac removal: Performance, mechanism and degradation pathway[J]. Chemical Engineering Journal, 2019, 360: 104-114. doi: 10.1016/j.cej.2018.11.189
    Haden W L. Attapulgite: properties and uses[J]. Clays and Clay Minerals, 1961, 10: 284-290. doi: 10.1346/CCMN.1961.0100123
    陈明岩, 程大明, 李玲, 等. 食品添加剂凹凸棒黏土的测定与表征[J]. 化学试剂, 2011, 33(3): 236-238. doi: 10.3969/j.issn.0258-3283.2011.03.012

    Chen M Y, Cheng D M, Li L, et al. Determination and characterization of food additive attapulgite clay[J]. Chemical Reagents, 2011, 33(3): 236-238. doi: 10.3969/j.issn.0258-3283.2011.03.012
    Yang H, Tang A, Ouyang J, et al. From natural atta-pulgite to mesoporous materials: Methodology, characterization and structural evolution[J]. Journal of Physics Chemistry B, 2010, 114(7): 2390-2398. doi: 10.1021/jp911516b
    凌霞, 吴洁, 孟元华. 电感耦合等离子体发射光谱法测定凹凸棒黏土中的多种金属元素[J]. 化学试剂, 2012, 34(6): 529-531. doi: 10.3969/j.issn.0258-3283.2012.06.013

    Lin X, Wu J, Meng Y H. Determination of multi-metal in attapulgite by ICP-AES[J]. Chemical Reagents, 2012, 34(6): 529-531. doi: 10.3969/j.issn.0258-3283.2012.06.013
    董学林, 何海洋, 储溱, 等. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素[J]. 岩矿测试, 2019, 38(6): 620-630. doi: 10.15898/j.cnki.11-2131/td.201901090004

    Dong X L, He H Y, Chu Q, et al. Determination of rare earth elements in barite-associated rare earth ores by alkaline precipitation separation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 620-630. doi: 10.15898/j.cnki.11-2131/td.201901090004
    Liu T, He T, Shi Q, et al. Rapid Determination of boron in 61 soil, sediment, and rock reference materials by ICP-MS[J]. Atomic Spectroscopy, 2019, 40(2): 55-62. doi: 10.46770/AS.2019.02.004
    阳国运, 唐裴颖, 张洁, 等. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J]. 岩矿测试, 2019, 38(2): 154-159. doi: 10.15898/j.cnki.11-2131/td.201805070055

    Yang G Y, Tang P Y, Zhang J, et al. Determination of boron, iodine, tin and germanium in geochemical samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 154-159. doi: 10.15898/j.cnki.11-2131/td.201805070055
    Zhang L Y, Fang M, Sun H L, et al. Analysis of iodine isotopes in travertine from baishuitai, Yunnan Province, China[J]. Atomic Spectroscopy, 2020, 41(5): 181-187. http://www.researchgate.net/publication/344453804_Analysis_of_Iodine_Isotopes_in_Travertine_from_Baishuitai_Yunnan_Province_China/download
    徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394-402. doi: 10.15898/j.cnki.11-2131/td.201812070131

    Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394-402. doi: 10.15898/j.cnki.11-2131/td.201812070131
    Doker S. Exploiting aerosol dilution for the determination of ultra-trace elements in honey by collision/reaction cell inductively coupled plasma mass spectrometry (CRC-ICP-MS) without thermal digestion[J]. Analytical Methods, 2017, 9: 1710-1717. doi: 10.1039/C6AY03140D
    Fernandez S D, Encinar J R, Sanz-Medel A, et al. Determination of low B/Ca ratios in carbonates using ICP-QQQ[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(6): 2005-2014. doi: 10.1002/2015GC005817
    Machado R C, Amaral C D B, Schiavo D, et al. Complex samples and spectral interferences in ICP-MS: Evaluation of tandem mass spectrometry for interference-free determination of cadmium, tin and platinum group elements[J]. Microchemical Journal, 2017, 130: 271-275. doi: 10.1016/j.microc.2016.09.011
    陈文, 樊小伟, 郭才女, 等. 电感耦合等离子体串联质谱法测定高纯稀土中铁的含量[J]. 分析化学, 2019, 47(3): 403-409. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201903011.htm

    Chen W, Fan X W, Guo C N, et al. Determination of iron content in high purity rare earth by inductively coupled plasma-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 403-409. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201903011.htm
    Perez-Alvarez E P, Garcia R, Barrulas P, et al. Classification of wines according to several factors by ICP-MS multi-element analysis[J]. Food Chemistry, 2019, 270: 273-280. doi: 10.1016/j.foodchem.2018.07.087
    Petrov P, Russell B, Douglas D N, et al. Interference-free determination of sub ng kg-1 levels of long-lived 93Zr in the presence of high concentrations (μg kg-1) of 93Mo and 93Nb using ICP-MS/MS[J]. Analytical and Bioanalytical Chemistry, 2017, 410(3): 1029-1037. http://www.ncbi.nlm.nih.gov/pubmed/29030672
    Xing S, Zhang W, Qiao J, et al. Determination of ultra-low level plutonium isotopes (239Pu, 240Pu) in environmental samples with high uranium[J]. Talanta, 2018, 189: 357-364. http://www.sciencedirect.com/science/article/pii/S0039914018305447
    El-Eswed B I, Aldagag O M, Khalili F I, et al. Efficiency and mechanism of stabilization/solidification of Pb(Ⅱ), Cd(Ⅱ), Cu(Ⅱ), Th(Ⅳ) and U(Ⅵ) in metakaolin based geopolymers[J]. Applied Clay Science, 2017, 140: 148-156. doi: 10.1016/j.clay.2017.02.003
    符靓, 施树云, 陈晓青. 电感耦合等离子体串联质谱法测定活性白土中痕量毒理性元素[J]. 分析化学, 2018, 46(8): 1253-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201808017.htm

    Fu L, Shi S Y, Chen X Q. Accurate determination of trace toxic elements in activated clay using inductively coupled plasma tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(8): 1253-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201808017.htm
    Kopp J F, Müller S M, Pohl G, et al. A quick and simple method for the determination of six trace elements in mammalian serum samples using ICP-MS/MS[J]. Journal of Trace Elements in Medicine and Biology, 2019, 54: 221-225. doi: 10.1016/j.jtemb.2019.04.015
    王丙涛, 赵旭, 涂小珂, 等. ICP-MS/MS检测食品中磷、硒、砷的含量[J]. 现代食品科技, 2017, 33(7): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GZSP201707041.htm

    Wang B T, Zhao X, Tu X K, et al. The determination of P, As and Se in food by triple quadrupole inductively coupled plasma mass spectrometry[J]. Modern Food Science and Technology, 2017, 33(7): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GZSP201707041.htm
    Fu L, Xie H, Huang J, et al. Rapid determination of trace elements in serum of hepatocellular carcinoma patients by inductively coupled plasma tandem mass spectrometry[J]. Analytica Chimica Acta, 2020, 1112: 1-7. doi: 10.1016/j.aca.2020.03.054
    Balcaen L, Bolea-Fernandez E, Resano M, et al. Inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra) trace elements-A tutorial review[J]. Analytica Chimica Acta, 2015, 894: 7-19. doi: 10.1016/j.aca.2015.08.053
    Amaral C D B, Amais R S, Fialho L L, et al. A novel strategy to determine As, Cr, Hg and V in drinking water by ICP-MS/MS[J]. Analytical Methods, 2015, 7: 1215-1220. doi: 10.1039/C4AY02811B
    Walkner C, Gratzer R, Meisel T, et al. Multi-element analysis of crude oils using ICP-QQQ-MS[J]. Organic Geochemistry, 2017, 103: 22-30. doi: 10.1016/j.orggeochem.2016.10.009
    Amaral C D B, Machado R C, Virgilio A, et al. Critical evaluation of internal standardization in ICP tandem mass spectrometry and feasibility of the oxygen reaction for boron determination in plants[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(6): 1179-1184. http://smartsearch.nstl.gov.cn/paper_detail.html?id=8d8ef648fc041185bcc1b3830a8cc7a1
    Fu L, Xie H, Shi S. Multielement analysis of Zanthoxylum bungeanum Maxim. essential oil using ICP-MS/MS[J]. Analytical and Bioanalytical Chemistry, 2018, 410: 3769-3778. http://www.ncbi.nlm.nih.gov/pubmed/29651525
    Sesi N N, Hieftje G M. Studies into the interelement matrix effect in inductively coupled plasma spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1996, 51(13): 1601-1628. http://www.sciencedirect.com/science/article/pii/S0584854796015601
    张杨赞. 高盐样品基体效应的研究及SPE-ICP-MS分析方法的建立[D]. 天津: 天津大学, 2019: 23-35.

    Zhang Y Z.The research on matrix effect of high salt samples and the establishment of analysis method using solid phase extraction-inductively coupled plasma mass spectrometry[D].Tianjin: Tianjin University, 2019: 23-35.
    Virgilio A, Amais R S, Amaral C D B, et al. Reactivity and analytical performance of oxygen as cell gas in inductively coupled plasma tandem mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 126: 31-36. http://smartsearch.nstl.gov.cn/paper_detail.html?id=7b3078b4c3446359e5f8685d20bee6f1
    江波, 黄建华. 应用ICP-MS/MS准确测定紫苏好油中的重金属元素[J]. 中国粮油快报, 2019, 34(1): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLYX201901023.htm

    Jiang B, Huang J H. Accurately determination the heavy metal elements in perilla seed oil applying ICP-MS/MS[J]. Journal of the Chinese Cereals and Oil Association, 2019, 34(1): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLYX201901023.htm
    刘元元, 胡静宇. 电感耦合等离子体串联质谱法测定高纯钼中痕量镉[J]. 冶金分析, 2018, 38(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201805001.htm

    Liu Y Y, Hu J Y. Determination of trace cadmium in high-purity molybdenum by inductively coupled plasma tandem mass spectrometry[J]. Metallurgical Analysis, 2018, 38(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201805001.htm
    Balcaen L, Bolea-Fernandez E, Resano M, et al. Accurate determination of ultra-trace levels of Ti in blood serum using ICP-MS/MS[J]. Analytica Chimica Acta, 2014, 809: 1-8. http://www.sciencedirect.com/science/article/pii/S0003267013013251
  • Cited by

    Periodical cited type(3)

    1. 严慧,戴长文,叶明,王干珍,汤行,邓飞跃. 电感耦合等离子体原子发射光谱(ICP-AES)法测定石煤钒矿石中钒、铁、钛的含量. 中国无机分析化学. 2024(03): 324-329 .
    2. 安帅,陈鉴惠,王伟丹,马健生,赵恩好,周小帆. 电感耦合等离子体发射光谱法测定不同pH土壤的交换性盐. 地质与资源. 2024(05): 725-732 .
    3. 于汀汀,王蕾,郭琳,安子怡,臧慧媛,马生凤. 酸溶-电感耦合等离子体发射光谱测定不同类型铍矿中的主次量元素方法优化. 岩矿测试. 2023(05): 923-933 . 本站查看

    Other cited types(0)

Catalog

    Article views (4285) PDF downloads (55) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return