Citation: | DOU Xiangli, ZHANG Wangqiang, HEI Wenlong, YIN Taogang. Determination of Vanadium, Iron, Aluminum and Phosphorus in Stone Coal Vanadium Ore by ICP-OES with Open Acid Dissolution[J]. Rock and Mineral Analysis, 2022, 41(4): 673-679. DOI: 10.15898/j.cnki.11-2131/td.202002200020 |
The exploration, research and utilization of stone coal vanadium ore resources need accurate composition determination, while there is no standard method for the determination of its main components such as vanadium, iron, aluminum and phosphorus. At the same time, every analysis method currently used has its own shortcomings. When the sample of stone coal vanadium ore is treated by alkali fusion and determined by ICP-OES, the high concentration of soluble salt will lead to high background and interference with the determination. The acid dissolution method can avoid the above problems, but when the conventional four acid system composed of HF+HCl+HNO3+HClO4 is used to digest the sample, the components to be tested in the sample cannot be completely released, so the sample needs to be burned at high temperature to remove carbon, making the process is cumbersome.
In order to establish a method for the determination of the main components in stone coal vanadium ore samples by ICP-OES using five acid systems to digest samples.
A mixed acid system of H2SO4+HF+HCl+HNO3+HClO4 with electric hot plate heating and hydrochloric acid extraction were used to digest the samples. The contents of vanadium, iron, aluminum and phosphorus in stone coal vanadium were determined by ICP-OES.
Using the strong oxidizing property of sulfuric acid to oxidize a large amount of carbon in the sample into carbon dioxide, eliminated the process of burning carbon removal, eliminated the adsorption and wrapping of carbon-containing substances on the sample, and significantly enhanced the digestion effect. When the sample weight was 0.1g and the concentration of sulfuric acid was 0.30mL, the digestion rate of the sample reached more than 99%. The detection limit was 17-51mg/kg, relative standard deviation (
The method has the advantages of low background, high efficiency and accuracy, and can meet the detection requirements of stone coal and vanadium ore samples.
[1] |
付雪瑞, 徐林刚, 丁建华, 等. 中国沉积型钒矿成矿规律与找矿方向[J]. 矿床地质, 2021, 40(6): 1160-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202106002.htm
Fu X R, Xu L G, Ding J H, et al. Metallogenic regularity and prospecting area selection of sedimentary vanadium deposit in China[J]. Mineral Deposits, 2021, 40(6): 1160-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202106002.htm
|
[2] |
Wang X, Lin H, Dong Y B, et al. Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase[J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(3): 253-261. doi: 10.1007/s12613-018-1568-9
|
[3] |
舒多友, 吴自成, 张命桥, 等. 黔东北地区钒矿石与围岩稀土元素地球化学特征及其意义[J]. 地质与勘探, 2012, 32(6): 1118-1128. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201206009.htm
Shu D Y, Wu Z C, Zhang M Q, et al. REE geochemistry of vanadium ores and wall rocks in northeastern Guizhou and their geological significance[J]. Geology and Exploration, 2012, 32(6): 1118-1128. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201206009.htm
|
[4] |
游先军, 戴塔根, 息朝庄, 等. 湘西北下寒武统黑色岩系地球化学特征[J]. 大地构造与成矿学, 2009, 33(2): 304-312. doi: 10.3969/j.issn.1001-1552.2009.02.015
You X J, Dai T G, Xi C Z, et al. Geochemical characteristics of lower Cambrian black rock series in northwestern Hunan, China[J]. Geotectonica et Metallogenia, 2009, 33(2): 304-312. doi: 10.3969/j.issn.1001-1552.2009.02.015
|
[5] |
陈明辉, 胡详昭, 孙际茂, 等. 湖南省寒武系黑色岩系页岩型钒矿概论[J]. 地质找矿论丛, 2012, 27(4): 410-420. doi: 10.6053/j.issn.1001-1412.2012.04.004
Chen M H, Hu X Z, Sun J M, et al. Overview on the Cambrian black shale-hosted vanadium deposit in Hunan[J]. Contributions to Geology and Mineral Resources Research, 2012, 27(4): 410-420. doi: 10.6053/j.issn.1001-1412.2012.04.004
|
[6] |
徐林刚, 付雪瑞, 叶会寿, 等. 南秦岭地区下寒武统黑色页岩赋存的千家坪大型钒矿地球化学特征及成矿环境[J]. 地学前缘, 2022, 29(1): 160-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202201013.htm
Xu L G, Fu X R, Ye H S, et al. Geochemical composition and Paleoceanic environment of the lower Cambrian black shale-hosted Qianjiaping vanadium deposit in the southern Qinling Region[J]. Earth Science Frontiers, 2022, 29(1): 160-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202201013.htm
|
[7] |
张愿宁, 张艳, 赵志成, 等. 甘肃敦煌五一山钒矿地质特征及成因[J]. 矿产勘查, 2020, 11(3): 496-502. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202003012.htm
Zhang Y N, Zhang Y, Zhao Z C, et al. Geological characteristics and genesis of the Wuyishan vanadium deposit in Dunhuang, Gansu Province[J]. Mineral Exploration, 2020, 11(3): 496-502. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202003012.htm
|
[8] |
Liu C, Zhang Y M, Bao S X. Vanadium recovery from stone coal through roasting and flotation[J]. Transactions of Nonferrous Metals Society of China, 2017(1): 197-203.
|
[9] |
叶国华, 朱思琴, 陈子杨, 等. 石煤钒矿的选矿预富集研究评述[J]. 稀有金属, 2022, 46(1): 120-130. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS202201013.htm
Ye G H, Zhu S Q, Chen Z Y, et al. A research review on beneficiation pre-concentration of vanadium-bearing stone coal[J]. Chinese Journal of Rare Metals, 2022, 46(1): 120-130. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS202201013.htm
|
[10] |
田宗平, 易晓明, 曹健, 等. 黑色岩系(石煤)钒矿矿物特征研究与应用[J]. 中国冶金, 2016, 26(2): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYE201602004.htm
Tian Z P, Yi X M, Cao J, et al. Black rock series (stone coal) vanadium ore mineral characteristics research and application[J]. China Metallurgy, 2016, 26(2): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYE201602004.htm
|
[11] |
王彩虹, 杨云虎. 采用浮选工艺降低某石煤钒矿中碳含量的试验研究[J]. 矿冶工程, 2018, 38(1): 64-70. doi: 10.3969/j.issn.0253-6099.2018.01.014
Wang C H, Yang Y H. Flotation technology for reducing carbon content in vanadium-bearing stone coal[J]. Mining and Metallurgical Engineering, 2018, 38(1): 64-70. doi: 10.3969/j.issn.0253-6099.2018.01.014
|
[12] |
胡洋, 何东升, 谢志豪, 等. 石煤型钒矿预富集技术研究现状[J]. 金属矿山, 2018(12): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201812014.htm
Hu Y, He D S, Xie Z H, et al. Research status of pre-concentration technology of stone coal type vanadium ore[J]. Metal Mine, 2018(12): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201812014.htm
|
[13] |
李红湘, 颜文斌, 蔡俊. 助浸剂亚硝酸钠对石煤中钒浸出率的影响[J]. 稀有金属与硬质合金, 2019, 47(4): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY201904003.htm
Li H X, Yan W B, Cai J. Effect of sodium nitrite as leaching aid on vanadium leaching rate in stone coal[J]. Rare Metals and Cemented Carbides, 2019, 47(4): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY201904003.htm
|
[14] |
曾少乾, 陈昊, 秦毅, 等. 湖南省某黑色页岩钒矿选冶试验研究[J]. 矿业研究与开发, 2020, 40(1): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202001021.htm
Zeng S Q, Chen H, Qin Y, et al. Experimental study on beneficiation and metallurgy of a black shale vanadium ore in Hunan Province[J]. Mining Research and Development, 2020, 40(1): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202001021.htm
|
[15] |
吴峥, 张飞鸽, 张艳. 电感耦合等离子体发射光谱法测定石煤中的13种元素[J]. 岩矿测试, 2013, 32(6): 978-981. doi: 10.3969/j.issn.0254-5357.2013.06.021
Wu Z, Zhang F G, Zhang Y. Determination of 13 elements in stone-like coal by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 978-981. doi: 10.3969/j.issn.0254-5357.2013.06.021
|
[16] |
刘立平, 赵锦华, 张佑云, 等. 石煤钒矿中五氧化二钒测定方法的确认与应用[J]. 湿法冶金, 2018, 37(5): 425-430. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201805018.htm
Liu L P, Zhao J H, Zhang Y Y, et al. Confirmation and application of determination of method of vanadium pentoxide in stone coal vanadium mine[J]. Hydrometallurgy of China, 2018, 37(5): 425-430. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201805018.htm
|
[17] |
罗琦, 曾少乾, 田宗平. 石煤钒矿中五氧化二钒容量法测定及量值溯源研究[J]. 中国锰业, 2017, 35(4): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201704031.htm
Luo Q, Zeng S Q, Tian Z P. Tracing research of capacity method determination and its volume value in vanadium pentoxide of stone coal vanadium mine[J]. China's Manganese Industry, 2017, 35(4): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201704031.htm
|
[18] |
《岩石矿物分析》编委会. 岩石矿物分析(第四版第三分册)[M]. 北京: 地质出版社, 2011.
The editorial committee of 《Rock and Mineral Analysis》. Rock and mineral analysis (The fourth edition: Vol. Ⅲ)[M]. Beijing: Geological Publishing House, 2011.
|
[19] |
隆英兰, 王景凤, 韩俊丽, 等. 硫酸亚铁铵滴定法测定低品位石煤钒矿中的五氧化二钒[J]. 化学分析计量, 2019, 28(5): 41-44. doi: 10.3969/j.issn.1008-6145.2019.05.010
Long Y N, Wang J F, Han J L, et al. Determination of vanadium pentoxide in low content stone coal vanadium ore by ammonium ferrous sulfate titration[J]. Chemical Analysis and Meterage, 2019, 28(5): 41-44. doi: 10.3969/j.issn.1008-6145.2019.05.010
|
[20] |
吴少尉, 葛文, 金萍, 等. 富氧空气-乙炔火焰原子吸收光谱法测定地质样品中的钒[J]. 岩矿测试, 2003, 22(4): 300-302. doi: 10.3969/j.issn.0254-5357.2003.04.012
Wu S W, Ge W, Jin P, et al. Determination of vanadium in geological samples by air mixed oxygen-acetylene flame atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2003, 22(4): 300-302. doi: 10.3969/j.issn.0254-5357.2003.04.012
|
[21] |
阳亚玲, 颜文斌, 蔡俊, 等. 溶液制样-偏振能量色散X射线荧光光谱法分析石煤钒矿中五氧化二钒[J]. 冶金分析, 2014, 34(12): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201412003.htm
Yang Y L, Yan W B, Cai J, et al. Determination of vanadium pentoxide in stone coal vanadium ore by polarized energy dispersive X-ray fluorescence spectrometry with sample solution preparation[J]. Metallurgical Analysis, 2014, 34(12): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201412003.htm
|
[22] |
王干珍, 汤行, 叶明, 等. 电感耦合等离子体原子发射光谱法测定含碳质钒矿石中硅铝铁钒磷[J]. 冶金分析, 2016, 36(5): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201605006.htm
Wang G Z, Tang X, Ye M, et al. Determination of silicon, aluminum, iron, vanadium and phosphorus in carbon-bearing vanadium ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2016, 36(5): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201605006.htm
|
[23] |
田宗平, 彭君, 王干珍, 等. 石煤钒矿成分分析标准物质的研制[J]. 岩矿测试, 2021, 40(1): 111-120. doi: 10.15898/j.cnki.11-2131/td.202001070008
Tian Z P, Peng J, Wang G Z, et al. Preparation of standard materials for composition analysis of stone coal vanadium ore[J]. Rock and Mineral Analysis, 2021, 40(1): 111-120. doi: 10.15898/j.cnki.11-2131/td.202001070008
|
[24] |
牟英华, 张鲁宁, 胡维铸. 碱熔-电感耦合等离子体原子发射光谱法测定钒钛磁铁矿中钒和钛[J]. 冶金分析, 2021, 41(5): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202105012.htm
Mu Y H, Zhang L N, Hu W Z. Determination of vanadium and titanium in vanadium-titanium magnetite by alkali fusion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2021, 41(5): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202105012.htm
|
[25] |
孙孟华, 李晓敬, 王文娟, 等. 过氧化钠碱熔-电感耦合等离子体质谱法测定地质样品中锆铌铪钽锂铍钒磷铀锰[J]. 冶金分析, 2022, 42(1): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202201012.htm
Sun M H, Li X J, Wang W J, et al. Determination of zirconium, niobium, hafmium, tantalum, lithium, beryllium, vanadium, phosphorus, uranium and manganese in geological samples by inductively coupled plasma mass spectrometry with sodium peroxide alkali fusion[J]. Metallurgical Analysis, 2022, 42(1): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202201012.htm
|
[26] |
朱霞萍, 尹继先, 陈卫东, 等. 微波消解ICP-OES快速测定难溶钒钛磁铁矿中铁、钛、钒[J]. 光谱学与光谱分析, 2010, 30(8): 2277-2280. doi: 10.3964/j.issn.1000-0593(2010)08-2277-04
Zhu X P, Yin J X, Chen W D, et al. Determination of Fe, Ti and V in vanadium and titanium magnetite by ICP-OES and microwave-assisted digestion[J]. Spectroscopy and Spectral Analysis, 2010, 30(8): 2277-2280. doi: 10.3964/j.issn.1000-0593(2010)08-2277-04
|
[27] |
成勇, 袁金红, 彭慧仙. 电感耦合等离子体原子发射光谱法(ICP-OES)测定含钒尾渣中钒的含量[J]. 中国无机分析化学, 2013, 3(4): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201304016.htm
Cheng Y, Yuan J H, Peng H X. Determination of vanadium context in vanadium containing tailing slags by ICP-OES[J]. Chinese Journal of Inorganic Analytical Chemistry, 2013, 3(4): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201304016.htm
|
[28] |
褚晓君, 姜炳南, 宮嘉辰. ICP测定钒钛磁铁矿中的钒[J]. 有色矿冶, 2016, 32(3): 52-54. doi: 10.3969/j.issn.1007-967X.2016.03.016
Chu X J, Jiang B N, Gong J C. Study on the simultaneous determination of vanadium in vanadium-titanium magnetite by ICP-AES[J]. Non-Ferrous Mining and Metallurgy, 2016, 32(3): 52-54. doi: 10.3969/j.issn.1007-967X.2016.03.016
|
[29] |
贺攀红, 杨珍, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒[J]. 岩矿测试, 2020, 39(2): 235-242. doi: 10.15898/j.cnki.11-2131/td.201904160048
He P H, Yang Z, Gong Z X. Simultaneous determination of trace arsenic, copper, lead, zinc, nickel and vanadium in soils by hydride generation-inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2020, 39(2): 235-242. doi: 10.15898/j.cnki.11-2131/td.201904160048
|
[30] |
黄超冠, 蒙义舒, 郭焕花, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铝合金中的铬铁钼硅[J]. 岩矿测试, 2018, 37(1): 30-35. doi: 10.15898/j.cnki.11-2131/td.201704240065
Huang C G, Meng Y S, Guo H H, et al. Determination of chromium, iron, molybdenum and silicon in Ti-Al alloy by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2018, 37(1): 30-35. doi: 10.15898/j.cnki.11-2131/td.201704240065
|
[31] |
田宗平, 邓圣为, 曹健, 等. 石煤钒矿直接硫酸浸出试验的研究[J]. 湖南有色金属, 2012, 28(3): 17-19, 45. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201203007.htm
Tian Z P, Deng S W, Cao J, et al. Study on direct sulfuric acid leaching test of stone coal vanadium mine[J]. Hunan Nonferrous Metals, 2012, 28(3): 17-19, 45. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201203007.htm
|
1. |
严慧,戴长文,叶明,王干珍,汤行,邓飞跃. 电感耦合等离子体原子发射光谱(ICP-AES)法测定石煤钒矿石中钒、铁、钛的含量. 中国无机分析化学. 2024(03): 324-329 .
![]() | |
2. |
安帅,陈鉴惠,王伟丹,马健生,赵恩好,周小帆. 电感耦合等离子体发射光谱法测定不同pH土壤的交换性盐. 地质与资源. 2024(05): 725-732 .
![]() | |
3. |
于汀汀,王蕾,郭琳,安子怡,臧慧媛,马生凤. 酸溶-电感耦合等离子体发射光谱测定不同类型铍矿中的主次量元素方法优化. 岩矿测试. 2023(05): 923-933 .
![]() |