• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LI Ying-chun, ZHANG Lei, ZHOU Wei, SHANG Wen-yu. Determination of Major and Minor Elements in Rocks, Soils and Sediments and Complex Samples by Wavelength and Energy Dispersive X-ray Fluorescence Spectrometer with Fusion Sampling[J]. Rock and Mineral Analysis, 2020, 39(6): 828-838. DOI: 10.15898/j.cnki.11-2131/td.201912250178
Citation: LI Ying-chun, ZHANG Lei, ZHOU Wei, SHANG Wen-yu. Determination of Major and Minor Elements in Rocks, Soils and Sediments and Complex Samples by Wavelength and Energy Dispersive X-ray Fluorescence Spectrometer with Fusion Sampling[J]. Rock and Mineral Analysis, 2020, 39(6): 828-838. DOI: 10.15898/j.cnki.11-2131/td.201912250178

Determination of Major and Minor Elements in Rocks, Soils and Sediments and Complex Samples by Wavelength and Energy Dispersive X-ray Fluorescence Spectrometer with Fusion Sampling

More Information
  • Received Date: May 28, 2020
  • Revised Date: July 23, 2020
  • Accepted Date: September 18, 2020
  • Published Date: October 31, 2020
  • HIGHLIGHTS
    (1) Major and trace elements were simultaneously determined by WD-ED X-ray fluorescence spectrometer.
    (2) The voltage and current conditions of some elements were modified, and the energy spectrum measurement time was effectively prolonged. The accuracy of major and minor elements was evaluated.
    (3) The quantitative analysis of major and minor elements in complex mineralized samples was discussed by summing major elements of Ba, Cu and Ni in mineralized samples.
    BACKGROUNDAt present, the major elements in silicate samples are generally determined by X-ray fluorescence spectrometry with fusion sample preparation. Not only can the single element determination results not exceed the limit, but also the percentage sum must meet the requirements of sum quality (99.3%-100.7%). However, for the analysis of mineralized samples, due to the high content of trace elements, it is often not possible to meet the requirements of sum quality. The wavelength and energy dispersive X-ray fluorescence spectrometer are fully utilized. The advantages of the determination can make the analysts to get the information of sample composition as soon as possible, which is of great significance to evaluate the data quality of mineralized samples.
    OBJECTIVESTo develop a method for determination of major elements in mineralized samples.
    METHODSThe wavelength-energy dispersive X-ray fluorescence spectrometer was used to determine the major elements while adding more minor elements to the determination without prolonging the analysis time. The main elements were quantified by wavelength dispersion, while the minor elements were mainly determined by energy dispersion. Under the condition of ensuring the accuracy of the major elements, the measurement conditions were reasonably set and the energy spectrum measurement time was extended.
    RESULTSThe method achieved the measurement of the major elements within 12 minutes using wavelength dispersion, and also provided results of 14 minor elements such as Rb, Sr, Y, Zr, Ba, Cu, Zn and the semi-quantitative results of 10 elements with narrow linear range or low content such as Co, Ge, Pr and Ta. The maximum limit of detection of 24 minor elements was 16.76μg/g.
    CONCLUSIONSThrough the accuracy assessment, the determination results of major elements are consistent with the certified values, and the determination of minor elements with high content also meets the requirements of quantitative analysis. This method makes the analysts to get the information of sample composition quickly, provides a basis for more accurate and reliable data, and effectively solves the determination of major elements in complex mineralized samples.
  • 刘菊琴, 李小莉.波长与能量色散复合型X射线荧光光谱仪测定海洋沉积物, 水系沉积物, 岩石和土壤样品中15种稀土元素[J].冶金分析, 2018, 38(5):7-12.

    Liu J Q, Li X L.Determination of fifteen rare earth elements in ocean sediment, stream sediment, rock and soil samples by wavelength dispersion energy dispersion combined type X-ray fluorescence spectrometer[J].Metallurgical Analysis, 2018, 38(5):7-12.
    张颖, 朱爱美, 张迎秋, 等.波长与能量色散复合式X射线荧光光谱技术测定海洋沉积物元素[J].分析化学, 2019, 47(7):1090-1106.

    Zhang Y, Zhu A M, Zhang Y Q, et al.Fast analysis of major and minor elements in marine sediments by wavelength and energy dispersive X-ray fluorescence spectrometer[J].Chinese Journal of Analytical Chemistry, 2019, 47(7):1090-1097.
    沈亚婷, 李迎春, 孙梦荷, 等.波长与能量色散复合式X射线荧光光谱仪特性研究及矿区土壤分析[J].光谱学与光谱分析, 2017, 37(7):2216-2224.

    Shen Y T, Li Y C, Sun M H, et al.Studies on characteristics on a combined wavelength and energy dispersion X-ray fluorescence spectrometer and determinations of major, minor and trace elements in soils around a mining area[J].Spectroscopy and Spectral Analysis, 2017, 37(7):2216-2224.
    Tugulan L C, Gradinaru J, Duliu O.An EDXRF and WDXRF inter comparison case study:Major elements content of Dobrogea loess[J].Romanian Journal of Physics, 2016, 61:1626-1634.
    吉昂.X射线荧光光谱三十年[J].岩矿测试, 2012, 31(3):383-398.

    Ji A.Development of X-ray fluorescence spectrometry in the 30 years[J].Rock and Mineral Analysis, 2012, 31(3):383-398.
    章连香, 符斌.X射线荧光光谱分析技术的发展[J].中国无机分析化学, 2013, 3(3):1-7.

    Zhang L X, Fu B.Advances in X-ray fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2013, 3(3):1-7.
    苏晓鸣, 詹秀春, 李思源.偏振激发能量色散X荧光法在地球化学分析中应用及其与波长色散X荧光法的比较[J].上海地质, 2004(3):31-37.

    Su X M, Zhan X C, Li S Y.Application of polarized EDXRF in geochemical sample analysis and comparison with WDXRF[J].Shanghai Geology, 2004(3):31-37.
    宋春苗, 周超, 胡学强.用于波长色散X射线荧光光谱仪的闪烁计数器及信号处理系统的研制[J].冶金分析, 2020, 40(5):68-73.

    Song C M, Zhou C, Hu X Q.Development of a scintillator counter and signal processing system for wavelength dispersive X-ray fluorescence spectrometer[J].Metallurgical Analysis, 2020, 40(5):68-73.
    刘建坤, 郑荣华, 骆宏玉, 等.波长色散X射线荧光光谱仪的内部校准[J].光谱实验室, 2013, 30(6):3142-3144.

    Liu J K, Zheng R H, Luo H Y, et al.In-house calibration of wavelength dispersive X-ray fluorescence spectrometer[J].Spectroscopy Laboratory, 2013, 30(6):3142-3144.
    周超, 宋春苗, 胡学强.一种用于波长色散X射线荧光光谱仪的流气式正比计数器的研制[J].冶金分析, 2019, 30(10):14-17.

    Zhou C, Song C M, Hu X Q.Development of a flow-gas proportional counter for wavelength dispersive X-ray fluorescence spectrometer[J].Metallurgical Analysis, 2019, 39(10):14-17.
    林庆文, 杨俊, 刘玉纯.波长色散X射线荧光光谱仪的检定[J].化学分析计量, 2018, 27(4):118-121.

    Lin Q W, Yang J, Liu Y C.Verification of wavelength dispersive X-ray fluorescence spectrometer[J].Chemical Analysis and Meterage, 2018, 27(4):118-121.
    程锋, 张庆贤, 葛良全, 等.能量色散X射线荧光分析中改进型基本参数法研究[J].光谱学与光谱分析, 2015, 35(7):2034-2037.

    Cheng F, Zhang Q X, Ge L Q, et al.The study of advanced fundamental parameter method in EDXRFA[J].Spectroscopy and Spectral Analysis, 2015, 35(7):2034-2037.
    詹秀春, 樊兴涛, 李迎春, 等.直接粉末制样-小型偏振激发能量色散X射线荧光光谱法分析地质样品中多元素[J].岩矿测试, 2009, 28(6):501-506.

    Zhan X C, Fan X T, Li Y C, et al.Multi-element determination in geological materials by bench-top polarized energy dispersive X-ray fluorescence spectrometry coupled with directly pressed powder sample preparation technique[J].Rock and Mineral Analysis, 2009, 28(6):501-506.
    王川.熔融制样-X射线荧光光谱法测定深海沉积物中20种主次组分[J].冶金分析, 2020, 40(6):49-55.

    Wang C.Determination of twenty major and minor components in abyssal sediments by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2020, 40(6):49-55.
    牟英华, 胡维铸, 张鲁宁, 等.熔融制样-X射线荧光光谱法测定渣铁中主次成分[J].冶金分析, 2020, 40(5):15-19.

    Mou Y H, Hu W Z, Zhang L N, et al.Determination of major and minor components in slab iron by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2020, 40(5):15-19.
    夏传波, 成学海, 张会堂, 等.熔融制样-X射线荧光光谱法测定电气石中12种主次量元素[J].岩矿测试, 2018, 37(1):36-42.

    Xia C B, Cheng X H, Zhang H T, et al.Determination of twelve major and minor elements in tourmaline by X-ray fluorescence spectrometry with fusion sample preparation[J].Rock and Mineral Analysis, 2018, 37(1):36-42.
    马景治.熔融制样-X射线荧光测定锰矿中10种主次成分的条件优化[J].分析测试技术与仪器, 2017, 23(4):261-266.

    Ma J Z.Condition optimization of X-ray fluorescence spectrometry with fusion sample preparation for determination of ten major and minor components in manganese ores[J].Analysis and Testing Technology and Instruments, 2017, 23(4):261-266.
    黄康, 李仲夏, 朱文静, 等.熔融制样-X射线荧光光谱法测定金红石中主次组分[J].冶金分析, 2020, 40(3):68-72.

    Huang K, Li Z X, Zhu W J, et al.Determination of major and minor components in ruble by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2020, 40(3):68-72.
    刘恒杰, 贾海峰, 谭清月.熔融制样-X射线荧光光谱法测定钨相锡矿中的主次成分[J].中国无机分析化学, 2020, 10(1):70-75.

    Liu H J, Jia H F, Tan Q Y.Determination of primary and secondary components in tunggium-molybdenum tin mine by X-ray fluorescence with melt sample[J].Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(1):70-75.
    周伟, 曾梦, 王健, 等.熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J].岩矿测试, 2018, 37(3):298-305.

    Zhou W, Zeng M, Wang J, et al.Determination of major and rare earth elements in rare earth ores by X-ray fluorescence spectrometry with fusion sample preparation[J].Rock and Mineral Analysis, 2018, 37(3):298-305.
    陈慧娟, 李曼, 韩蔚, 等.XRF检测镁质耐火材料的方法与应用[J].中国建材科技, 2019(2):1-5.

    Chen H J, Li M, Han W, et al.Method and application of XRF detection of magnesium refractories[J].China Building Materials Science & Technology, 2019(2):1-5.
    陈美瑜, 兰琳.熔融制样X射线荧光光谱法测定陶瓷中的硅含量[J].功能材料, 2018, 49(12):12217-12220.

    Chen M Y, Lan L.Determination of silicon in ceramic by X-ray fluorescence spectrometry with fusion sample preparation[J].Journal of Functional Materials, 2018, 49(12):12217-12220.
    姚强, 朱宇宏, 王琼, 等.X射线荧光光谱法测定钒铁合金中钒铝硅锰[J].冶金分析, 2016, 36(9):62-65.

    Yao Q, Zhu Y H, Wang Q, et al.Determination of vanadium, aluminum, silicon and manganese in ferrovanadium alloy by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2016, 36(9):62-65.
    赵海峰.熔融制样-X射线荧光光谱法测定连铸保护渣中7种组分[J].冶金分析, 2017, 37(4):62-66.

    Zhao H F.Determination of seven components in conti-nuous casting mold powder by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2017, 37(4):62-66.
    周雯闻.X射线荧光光谱法测定炼钢辅料化学成分研究[J].现代盐化工, 2017, 44(1):20-21.

    Zhou W W.Study on the determination of chemical components in steel accessories by X-ray fluorescence spectrometry[J].Modern Salt and Chemical Industry, 2017, 44(1):20-21.
    杨洪春.X射线荧光光谱法测定高铬型钒渣中主次组分[J].理化检验(化学分册), 2018, 54(6):640-643.

    Yang H C.Determination of major and minor components in high chromium type vanadium slag by X-ray fluorescence spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2018, 54(6):640-643.
    刘艳辉, 常利民, 祁巍熔, 等.熔融制样X射线荧光光谱法测定硅铁合金主次元素含量[J].冶金设备, 2019(1):132-134.

    Liu Y H, Chang L M, Qi W R, et al.Determination of primary and secondary elements in ferrosilicon by X-ray fluorescence by fusion method[J].Metallurgical Equipment, 2019(1):132-134.
    贺忠翔.能量色散X射线荧光光谱法测定污染企业周边土壤重金属[J].环境与发展, 2019(2):163-164.

    He Z X.Determination of heavy metal elements in soil peripheral of contaminated enterprises by energy dispersion X-ray fluorescence spectrometry[J].Environment and Development, 2019(2):163-164.
    汪虹敏, 张颖, 徐磊, 等.能量色散X射线荧光光谱法测定海洋碎屑沉积物中28种元素[J].海洋科学进展, 2020, 38(1):71-80.

    Wang H M, Zhang Y, Xu L, et al.Determination of twenty-eight elements in marine clastic sediment samples by energy dispersive X-ray fluorescence spectrometry[J].Advances in Marine Science, 2020, 38(1):71-80.
    霍红英, 邹敏, 张天益, 等.粉末压片能量色散X射线荧光光谱法测定钛精矿中6种组分[J].冶金分析, 2019, 39(9):26-31.

    Huo H Y, Zou M, Zhang T Y, et al.Determination of six components in titanium concentrate by energy dispersive X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2019, 39(9):26-31.
    李迎春, 周伟, 王健, 等.X射线荧光光谱法测定高锶高钡的硅酸盐样品中主量元素[J].岩矿测试, 2013, 32(2):249-253.

    Li Y C, Zhou W, Wang J, et al.Determination of major elements in silicate samples with high content strontium and barium by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2013, 32(2):249-253.
  • Cited by

    Periodical cited type(3)

    1. 严慧,戴长文,叶明,王干珍,汤行,邓飞跃. 电感耦合等离子体原子发射光谱(ICP-AES)法测定石煤钒矿石中钒、铁、钛的含量. 中国无机分析化学. 2024(03): 324-329 .
    2. 安帅,陈鉴惠,王伟丹,马健生,赵恩好,周小帆. 电感耦合等离子体发射光谱法测定不同pH土壤的交换性盐. 地质与资源. 2024(05): 725-732 .
    3. 于汀汀,王蕾,郭琳,安子怡,臧慧媛,马生凤. 酸溶-电感耦合等离子体发射光谱测定不同类型铍矿中的主次量元素方法优化. 岩矿测试. 2023(05): 923-933 . 本站查看

    Other cited types(0)

Catalog

    Article views (3349) PDF downloads (89) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return