• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
FANG Biao, YAN Xue-jun, SUN Qing, WU Jing-yi, LI Shu-hua, YAN Jun. Study on the Unique Mineral Microstructure of Seawater Cultured Gray Akoya Pearl by SEM, FTIR and Reflection Spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 42-49. DOI: 10.15898/j.cnki.11-2131/td.201908200124
Citation: FANG Biao, YAN Xue-jun, SUN Qing, WU Jing-yi, LI Shu-hua, YAN Jun. Study on the Unique Mineral Microstructure of Seawater Cultured Gray Akoya Pearl by SEM, FTIR and Reflection Spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 42-49. DOI: 10.15898/j.cnki.11-2131/td.201908200124

Study on the Unique Mineral Microstructure of Seawater Cultured Gray Akoya Pearl by SEM, FTIR and Reflection Spectroscopy

More Information
  • Received Date: August 19, 2019
  • Revised Date: January 30, 2020
  • Accepted Date: May 12, 2020
  • Published Date: January 27, 2021
  • HIGHLIGHTS
    (1) The discovery of a brown organic transition layer between the nacre and the nucleus.
    (2) Amorphous structural morphology composed of aragonite and calcite were found in nacre near the nucleus.
    (3) The reflection spectra of the inner concave surface of nacre with or without a brown interlayer are almost the same, which is consistent with the reflection spectrum of the whole pearl.
    BACKGROUNDSeawater cultured gray Akoya pearls have become popular as jewelry in the recent years. In the early stage, some research focused mainly on investigating the cultured environment of seawater or freshwater pearls, element occurrence characteristics of each structural unit, irradiation treatment and the identification method of irradiated pearls.
    OBJECTIVESTo further study the gemological characteristics and fine microstructure of a type of gray pearl with a white nucleus.
    METHODSUltraviolet-visible reflection spectrum, micro-infrared spectrum and scanning electron microscope methods were used.
    RESULTSA brown transition layer of organic matter between the nacre and nucleus was discovered, which measures several microns in thickness. A layer with no fixed morphology composed of calcite and vaterite in the nacre near the brown transition layer was also discovered. Quasi plates of aragonite exist in the nacre near the surface of the pearl. The morphology of these aragonite tablets in the middle area of the nacre was more regular, the thickness of individual aragonite plate gradually decreased in the direction from the nucleus to the surface of the pearls. The reflectance spectrum of the entire pearl surface was consistent with the spectral characteristics of the outer single nacre. The brown transition layer had no direct effect on the UV-Vis reflectance spectrum of the entire pearl. Therefore, whether or not the brown transition layer affected the gray appearance of the pearl needs further discussion.
    CONCLUSIONSThe research work has important guiding significance for the coloring mechanism of gray Akoya pearls and the identification of the formation attributes. It can also aid in the recognition of the fine structure and mineralization characteristics of pearls with a thin layer of nacre of 0.3mm to 0.6mm.

  • 张蓓莉. 系统宝石学[M]. 北京: 地质出版社, 1997.

    Zhang B L. Systematic gemmology[M]. Beijing: Geological Publishing House, 1997.
    Kripa V, Mohamed K S, Appukuttan K K, et al. Production of Akoya pearls from the southwest coast of India[J]. Aquaculture, 2007, 262(2): 347-354. http://www.sciencedirect.com/science/article/pii/S0044848606007368
    Otter L M, Agbaje O B A, Huong L T, et al. Akoya cul-tured pearl farming in eastern Australia[J]. Gems & Gemology, 2017, 53(4): 423-437. http://www.researchgate.net/publication/322203243_Akoya_Cultured_Pearl_Farming_in_Eastern_Australia
    Tsujii T. The change of pearl colors by the irradiation with γ-ray or neutron ray[J]. Journal of Radiation Research, 1963, 4(2-4): 120-125. doi: 10.1269/jrr.4.120
    李立平, 陈钟惠. 养殖珍珠的辐照处理[J]. 宝石与宝石学, 2002, 4(3): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200203007.htm

    Li L P, Chen Z H. Irradiation treatment of cultured pearls[J]. Journal of Gems and Gemmology, 2002, 4(3): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200203007.htm
    Kim H Y, Hanifehpour Y, Narayan A, et al. Structural studies and optical properties of pearl nucleus irradiated by γ-ray[J]. Radiation Effects and Defects in Solids, 2013, 168(9): 696-704. doi: 10.1080/10420150.2012.761997
    Kim Y, Choi H, Lee B, et al.Identification of irradiated south sea cultured pearls using electron spin resonance spectroscopy[J].Gems & Gemology, 48(4): 292-299.
    Choi H, Lee B, Kim Y. Detection of gamma irradiated South Sea cultured pearls[J]. Journal of the Korean Crystal Growth and Crystal Technology, 2012, 22(1): 36-41. doi: 10.6111/JKCGCT.2012.22.1.036
    宋彦军, 张义丞, 武云龙, 等. 银灰色马氏贝海水珍珠的光谱学特征与颜色成因[J]. 矿物学报, 2017, 37(6): 712-716. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201706005.htm

    Song Y J, Zhang Y C, Wu Y L, et al. Spectra characteristics and coloration mechanism of silver-gray color seawater cultured pearls produced by Pinctada Martensii[J]. Acta Mineralogica Sinica, 2017, 37(6): 712-716. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201706005.htm
    邵惠萍, 严雪俊, 严俊, 等. 应用傅里叶变换红外光谱与紫外可见吸收光谱鉴别两类海水养殖灰色珍珠[J]. 岩矿测试, 2019, 38(5): 489-496. doi: 10.15898/j.cnki.11-2131/td.2015.05.003

    Shao H P, Yan X J, Yan J, et al. Identification of two kinds of seawater cultured gray pearls by Fourier transform infrared spectroscopy and ultraviolet-visible absorption spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(5): 489-496. doi: 10.15898/j.cnki.11-2131/td.2015.05.003
    Ma H Y, Su A A, Zhang B L, et al. Vaterite or aragonite observed in the prismatic layer of freshwater-cultured pearls from South China[J]. Progress in Natural Science, 2009, 19: 817-820. doi: 10.1016/j.pnsc.2008.11.005
    Alberto P H, Cuif J P, Dauphin Y, et al. Crystallography of calcite in pearls[J]. European Journal of Mineralogy, 2014, 26(4): 507-516. doi: 10.1127/0935-1221/2014/0026-2390
    Ma H Y, Li R K, Yang L X, et al. A modified integrated model of the internal structure of Chinese cultured pearls[J]. Journal of Wuhan University of Technology (Material Science), 2011, 26(3): 510-514. doi: 10.1007/s11595-011-0258-5
    Murr L E, Ramirez D A. The microstructure of the cul-tured freshwater pearl[J]. Journal of the Minerals, Metals & Materials Society, 2012, 64(4): 469-474. doi: 10.1007/s11837-012-0297-1
    Satitkune S, Monarumit N, Boonmee C, et al. Combina-tion of FTIR and SEM for identifying freshwater-cultured pearls from different quality[J]. Optikai Spektroskopiya, 2016, 120(3): 500-504. doi: 10.1134/S0030400X16030231
    Zuo S C, Wei Y G. Microsturcture observation and mechanical behavior modeling for limnetic nacre[J]. Acta Mechanica Sinica, 2008, 24(1): 83-89. doi: 10.1007/s10409-007-0125-y
    闻辂. 矿物红外光谱[M]. 重庆: 重庆大学出版社, 1988.

    Wen L. Mineral infrared spectroscopy[M]. Chongqing: Chongqing University Press, 1988.
    张刚生, 李浩璇. 生物成因文石与无机成因文石的FTIR光谱区别[J]. 矿物岩石, 2006, 26(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200601000.htm

    Zhang G S, Li H X. The FTIR spectra difference between biogenic and abiogenic aragonites[J]. Journal of Mineralogy and Petrology, 2006, 26(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200601000.htm
    Pokroy B, Fieramosca J S, von Dreele R B, et al. Atomic structure of biogenic aragonite[J]. Chemistry Materials, 2007, 19(13): 3244-3251. doi: 10.1021/cm070187u
    张刚生, 丁世磊, 贾太轩, 等. 珍珠及贝壳珍珠层文石的异常红外光谱特征[J]. 宝石和宝石学杂志, 2005, 7(3): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200503003.htm

    Zhang G S, Ding S L, Jia T S, et al. Unusual characteristics of FTIR spectra aragonites from nacreous layers of pearls and bivalve shells[J]. Journal of Gems and Gemmology, 2005, 7(3): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200503003.htm
    丁世磊, 张刚生. 天然文石质陶瓷三角帆蚌贝壳的FTIR光谱研究[J]. 光谱学与光谱分析, 2006, 26(12): 2200-2202. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200612010.htm

    Ding S L, Zhang G S. FTIR spectroscopic study on natural aragonite ceramics bivalve shells of Hyriopsis cumingii[J]. Spectroscopy and Spectral Analysis, 2006, 26(12): 2200-2202. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200612010.htm
    Elen S. Update on the identification of treated "Golden" South Sea cultured pearls[J]. Gems & Gemology, 2002, 38(2): 156-159. http://www.researchgate.net/publication/271300531_Update_on_the_Identification_of_Treated_Golden_South_Sea_Cultured_Pearls
    史凌云, 郭守国, 王以群. 黑色海水珍珠与人工处理黑色珍珠的光谱学特征研究[J]. 激光与光电子学报, 2012, 49(6): 063002-1-063002-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201206028.htm

    Shi L Y, Guo S G, Wang Y Q. Study on spectral characteristics of black saltwater pearls and treated black pearls[J]. Laser & Optoelectronics Progress, 2012, 49(6): 063002-1-063002-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201206028.htm
    亓利剑, 黄艺兰, 曾春光, 等. 各类金色海水珍珠的呈色属性及UV-Vis的反射光谱[J]. 宝石与宝石学, 2008, 10(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200804002.htm

    Qi L J, Huang Y L, Zeng C G. Colouration attributes and UV-Vis reflection spectra of various golden seawater cultured pearls[J]. Journal of Gems and Gemmology, 2008, 10(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200804002.htm
    郭倩, 徐志. 天然金珍珠和染色金珍珠的致色因素和鉴定分析方法研究进展[J]. 岩矿测试, 2015, 34(5): 512-519. doi: 10.15898/j.cnki.11-2131/td.2015.05.003

    Guo Q, Xu Z. Coloring factors of natural and dyed golden pearls and research progress on their identification methods[J]. Rock and Mineral Analysis, 2015, 34(5): 512-519. doi: 10.15898/j.cnki.11-2131/td.2015.05.003
    陈育, 郭守国, 史凌云. 光谱学在金黄色海水珍珠鉴定中的应用[J]. 光学学报, 2009, 29(6): 1706-1709. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200906055.htm

    Chen Y, Guo S G, Shi L Y. Application of spectroscopy in identification of golden saltwater pearl[J]. Acta Optica Sinica, 2009, 29(6): 1706-1709. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200906055.htm
    Wang W Y, Scarratt K, Hyatt A, et al. Identification of "Chocolate Pearls" treated by ballerina pearl Co[J]. Gems & Gemology, 2006, 42(4): 222-235. http://www.researchgate.net/publication/262028457_Identification_of_Chocolate_Pearls_Treated_by_Ballerina_Pearl_Co
    Yan J, Zhang J, Tao J B, et al. Origin of the common UV absorption feature in cultured pearls and shells[J]. Journal of Materials Science, 2017, 52(14): 8362-8369. doi: 10.1007/s10853-017-1111-9
    Agatonovic K S, Morton D W. The use of UV-visible re-flectance spectroscopy as an objective tool to evaluate pearl quality[J]. Marine Drugs, 2012, 10(7): 1459-1475. http://europepmc.org/articles/pmc3407924/
    严雪俊, 严俊, 方飚, 等. 钻石的紫外-可见-近红外光谱与光致发光光谱温敏特征及其鉴定指示意义[J]. 光学学报, 2019, 39(9): 0930005-1-0930005-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201909046.htm

    Yan X J, Yan J, Fang B, et al. Temperature sensitivity of UV-visible-near infrared and photoluminescence spectra of diamond and its significance for identification[J]. Acta Optica Sinica, 2019, 39(9): 0930005-1-0930005-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201909046.htm
    Wang W Y, Ulrika F S, Johansson D H, et al. CVD syn-thetic diamonds from gemesis corp[J]. Gems & Gemology, 2012, 48(2): 80-97. http://www.researchgate.net/publication/269403690_CVD_Synthetic_Diamonds_from_Gemesis_Corp/download
    Shigley J E, Breeding C M. Optical defects in diamond: A quick reference chart[J]. Gems & Gemology, 2013, 49(2): 107-111. http://d.wanfangdata.com.cn/periodical/e9f7225fd73ff7881bf2dbcd761fc9cb
  • Related Articles

    [1]LIU Xiao, ZHANG Qiyan, SHI Weixin, GE Tianzhu, SONG Liqiang. Mineralogical Characteristics of Carbonate Rocks of the Upper Triassic Bolila Formation in the Eastern Part of the North Qiangtang Basin[J]. Rock and Mineral Analysis, 2024, 43(3): 440-448. DOI: 10.15898/j.ykcs.202212010227
    [2]HE Wei, WU Liang, WEI Xiangcheng, TAO Rui, SONG Yang. Geochemical Characteristics of Rare, Dispersed, and Rare Earth Elements in the Middle Jurassic Yan'an Formation of the Ningdong Coalfield and Their Indication for a Sedimentary Environment[J]. Rock and Mineral Analysis, 2022, 41(6): 962-977. DOI: 10.15898/j.cnki.11-2131/td.202111080169
    [3]Qing-gao YAN, Chao LI, Xiao-jun JIANG, Zhong-qiang WANG, Yun-ju LI, Wei LI. The Age and Sedimentary Environment of the Kunyang Phosphate Deposit, Central Yunnan: Constraints from Re-Os Isotopes[J]. Rock and Mineral Analysis, 2018, 37(4): 462-474. DOI: 10.15898/j.cnki.11-2131/td.201805040054
    [4]Qian ZHANG, Qian YU, Jian WANG, Yuan-fu XIAO, Jin-xiang CHENG, An-kun ZHAO, Bin ZHANG. Application of ICP-MS to Study the Rare Earth Element Characteristics and Sedimentary Environment of Black Shale in the Longmaxi Formation in the Southwestern Sichuan Basin[J]. Rock and Mineral Analysis, 2018, 37(2): 217-224. DOI: 10.15898/j.cnki.11-2131/td.201705090078
    [5]Hai-ou YANG, Chang-cheng WANG, Wen-jie LI, Hua DONG, Xiao-xing GONG. Research on the Sedimentary and Paleoclimate Environment of the Xiaoheba Formation in Southeastern Sichuan Based on the Trace Elements Ratio Method[J]. Rock and Mineral Analysis, 2017, 36(3): 289-296. DOI: 10.15898/j.cnki.11-2131/td.201607200103
    [6]Kai-bo DUAN, Deng-hong WANG, Han-jiang HE, Guo-dong ZHENG, Xian-xiao XIONG, Jian-guo YUAN, Bao-bao HE, Yun-yan QU. Study on Geochemical Characteristics of Rare Earth Elements of Xinhua Phosphate Rocks in the Upper Yangtze, South China by ICP-MS/AES and Its Sedimentology Implications[J]. Rock and Mineral Analysis, 2015, 34(2): 261-267. DOI: 10.15898/j.cnki.11-2131/td.2015.02.018
    [7]WU Yi, DENG Tian-long, XU Qing, GUO Ya-fei, LIAO Meng-xia. Research Progress on Speciation Analysis of Phosphorus in Aquatic Environment[J]. Rock and Mineral Analysis, 2010, 29(5): 557-564.
    [8]Progresses in Research on Analysis of Benzene Series in Aquatic Environment[J]. Rock and Mineral Analysis, 2008, 27(2): 141-145.
    [9]Advances on Speciation Analysis of Nitrogen and Phosphorus in Aquatic Environment[J]. Rock and Mineral Analysis, 2008, 27(2): 137-141.
    [10]A Method for Separation of Calcite and Dolomite in Loess and Sedimentary Rocks[J]. Rock and Mineral Analysis, 2000, (4): 264-267.
  • Cited by

    Periodical cited type(13)

    1. 孟珂,王笑梅,杜晓冉,张晓曼,罗娟. 罕见多矿物晶体共生标本的综合鉴定. 矿产综合利用. 2025(01): 200-205 .
    2. 陈彪,金海龙,贾晓琪,孙庆,候少春,王振江. 白云鄂博主矿云母型矿石中钍矿物的赋存状态微观分析. 矿物学报. 2024(02): 200-210 .
    3. 温利刚,贾木欣,赵建军,王清,付强. 工艺矿物学参数自动分析系统在铜矿浮选尾矿银赋存特征研究中的应用. 岩矿测试. 2024(03): 417-431 . 本站查看
    4. 刘亚芳,张悦,马梦玲,程琳. 自动矿物分析技术在岩矿稀有金属元素鉴定中运用浅析. 世界有色金属. 2024(12): 220-222 .
    5. 马驰,王守敬. 我国矿物含量定量测定的研究进展. 冶金分析. 2023(06): 47-54 .
    6. 张涛,宋文磊,陈倩,杨金昆,胡轶,黄军,许丹妮,徐亦桐. 矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用. 岩矿测试. 2023(04): 748-759 . 本站查看
    7. 肖绣. 岩矿分析的检测方法和质量要求探究. 世界有色金属. 2023(11): 196-198 .
    8. 孙晓旭,冯坚,李超,高野,王雷,苗彤,徐杨,闫伟. 自动矿物识别和表征系统在辽东吉祥峪稀土矿矿物鉴定和赋存状态研究中的应用. 岩矿测试. 2023(06): 1120-1131 . 本站查看
    9. 胡欢,王汝成,车旭东,靳文楷,汤志敏,谢磊,陶湘媛. 关键金属元素铍的原位分析技术研究进展. 岩石学报. 2022(07): 1890-1900 .
    10. 罗晓锋,杨占峰,王振江,李强,王其伟,朱雪峰,王艳艳. 白云鄂博东矿萤石型铌-稀土-铁矿石中铌的赋存状态及分布规律. 矿物学报. 2022(05): 659-668 .
    11. 程秀花,李艳广,叶美芳,张明祖,黎卫亮,李忠煜,韩延兵,汪双双. 西北地区地质实验测试技术研究进展及其在地质调查中的应用. 西北地质. 2022(03): 170-190 .
    12. 何佳乐,龚婷婷,潘忠习,杜谷. 细微矿物拉曼成像分析技术与方法研究. 岩矿测试. 2021(04): 491-503 . 本站查看
    13. 谢海云,柳彦昊,纪翠翠,晋艳玲,张培,田小松,刘榕鑫. 铜铅锌混合精矿的矿物学特征分析及分离效率探究. 岩矿测试. 2021(04): 542-549 . 本站查看

    Other cited types(2)

Catalog

    Article views (4169) PDF downloads (45) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return