• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
YAN Shuang, HUANG Kang-jun, FU Yong, BAO Zhi-an, MA Long, LONG Ke-shu, YE Yuan-mou, CHEN Rui, CHEN Man-zhi. Development of Separating and Purifying Methods for Lithium Isotope Analysis of Bauxite[J]. Rock and Mineral Analysis, 2020, 39(1): 41-52. DOI: 10.15898/j.cnki.11-2131/td.2019081201275
Citation: YAN Shuang, HUANG Kang-jun, FU Yong, BAO Zhi-an, MA Long, LONG Ke-shu, YE Yuan-mou, CHEN Rui, CHEN Man-zhi. Development of Separating and Purifying Methods for Lithium Isotope Analysis of Bauxite[J]. Rock and Mineral Analysis, 2020, 39(1): 41-52. DOI: 10.15898/j.cnki.11-2131/td.2019081201275

Development of Separating and Purifying Methods for Lithium Isotope Analysis of Bauxite

More Information
  • Received Date: August 11, 2019
  • Revised Date: September 11, 2019
  • Accepted Date: October 20, 2019
  • Published Date: December 31, 2019
  • HIGHLIGHTS
    (1) 12mL 0.5mol/L nitric acid as eluent can reach complete purification and recovery of Li.
    (2) Na/Li (mass ratio) < 1 after purification and the interference of Na on the analysis of Li isotopes can be ignored.
    (3) The proposed method was applicable to Li isotope analysis of sedimentary rocks, especially bauxite.
    BACKGROUNDBauxite is a product from extreme weathering, an important carrier of lithium. Due to its huge resources, the study on the mechanism and distribution of lithium in bauxite will be beneficial to the prospecting and prediction of bauxite deposits. Efficient and accurate analysis of lithium isotopes is the basis for deep understanding of the lithium enrichment mechanism and distribution driplines in the ores. The bauxite samples are more chemically stable and the sample dissolution process is more complicated. The content of matrix elements such as Al, Na, Ca and K is much higher than that of Li, which makes it difficult to purify Li.
    OBJECTIVESTo establish a method for separating and purifying lithium in bauxite for Li isotope analysis.
    METHODSOn the basis of previous studies, the separation, purification, and measurement scheme of Li in bauxite were investigated by leaching experiment.
    RESULTSIn this scheme, polytetrafluoroethylene exchange column with an inner diameter of 5mm and a column length of 190mm, and AG50W-X12 cation exchange resin were used. 34mL of 0.5mol/L nitric acid was used as the eluent and the final solution was 12mL, resulting in complete purification and recovery of Li in bauxite. At the same time, the method was used to purify the Li in international standard samples, L-SVEC, RGM-2 and GSP-2, and the values of δ7Li were measured by MC-ICP-MS, which were -0.26‰±0.09‰ (2SD, n=3), 3.19‰±0.37‰ (2SD, n=3), -0.78‰±0.22‰ (2SD, n=3). The analytical results were consistent with the previous results obtained by other methods, verifying the reliability of this method. The proposed method was used to purify bauxite standard sample, GBW07182, which yielded δ7Li of 10.16‰±0.21‰ (2SD, n=3).
    CONCLUSIONSThe purification method reduces the amount of eluent used and improves experimental efficiency.
  • Pistiner J S, Henderson G M.Lithium-isotope fractionation during continental weathering processes[J].Earth & Planetary Science Letters, 2003, 214(1):327-339. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026520886/
    Tomascak, Magna P, Dohmen T, et al.Advances in Lithium Isotope Geochemistry[M].Berlin:Springer-Verlag, 2016.
    Huh Y, Chan L H, Zhang L, et al.Lithium and its isotopes in major world rivers:Implications for weathering and the oceanic budget[J].Geochimica et Cosmochimica Acta, 1998, 62(12):2039-2051. doi: 10.1016/S0016-7037(98)00126-4
    Lemarchand E, Chabaux F, Vigier N, et al.Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France)[J].Geochimica et Cosmochimica Acta, 2010, 74(16):4612-4628. doi: 10.1016/j.gca.2010.04.057
    Liu X M, Rudnick R L, Mcdonough W F, et al.Influence of chemical weathering on the composition of the continental crust:Insights from Li and Nd isotopes in bauxite profiles developed on Columbia River Basalts[J].Geochimica et Cosmochimica Acta, 2013, 115(5):73-91. http://cn.bing.com/academic/profile?id=efb87ed0a9e605b013fcf8eb54965f9b&encoded=0&v=paper_preview&mkt=zh-cn
    汪齐连, 赵志琦, 刘丛强, 等.天然样品中锂的分离及其同位素比值的测定[J].分析化学, 2006, 34(6):764-768. doi: 10.3321/j.issn:0253-3820.2006.06.005

    Wang Q L, Zhao Z Q, Liu C Q, et al.Separation and isotopic determination of lithium in natural samples[J].Chinese Journal of Analytical Chemistry, 2006, 34(6):764-768. doi: 10.3321/j.issn:0253-3820.2006.06.005
    Zack T, Tomascak P B, Rudnick R L, et al.Extremely light Li in orogenic eclogites:The role of isotope fractionation during dehydration in subducted oceanic crust[J].Earth & Planetary Science Letters, 2003, 208(3):279-290. http://cn.bing.com/academic/profile?id=b30464dd8ec3f6ec9c2f2bfc8c86bfa9&encoded=0&v=paper_preview&mkt=zh-cn
    Brant C, Coogan L A, Gillis K M, et al.Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacific Rise[J].Geochimica et Cosmochimica Acta, 2012, 96(none):272-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=79b3e0f07008b195dd2ac3c86b79feea
    Chan L H, Lassiter J C, Hauri E H, et al.Lithium isotope systematics of lavas from the Cook-Austral Islands:Constraints on the origin of HIMU mantle[J].Earth and Planetary Science Letters, 2009, 277(3-4):433-442. doi: 10.1016/j.epsl.2008.11.009
    Tang Y J, Zhang H F, Deloule E, et al.Slab-derived lithium isotopic signatures in mantle xenoliths from Northeastern North China Craton[J].Lithos, 2012, 149(1):79-90. http://cn.bing.com/academic/profile?id=0aa3c2d158b0e13d4e1c02a1634c4d80&encoded=0&v=paper_preview&mkt=zh-cn
    Cullen J T, Hurwitz S, Barnes J D, et al.Temperature-dependent variations in mineralogy, major element chemistry and the stable isotopes of boron, lithium and chlorine resulting from hydration of rhyolite:Constraints from hydrothermal experiments at 150 to 350℃ and 25MPa[J].Geochimica et Cosmochimica Acta, 2019, 261:269-287. doi: 10.1016/j.gca.2019.07.012
    Bottomley D J, Katz A, Chan L H, et al.The origin and evolution of Canadian Shield brines:Evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton[J].Chemical Geology, 1999, 155(3-4):295-320. doi: 10.1016/S0009-2541(98)00166-1
    Orberger B, Rojas W, Millot R, et al.Stable isotopes (Li, O, H) combined with brine chemistry:Powerful tracers for Li origins in Salar deposits from the Puna Region, Argentina[J].Procedia Earth and Planetary Science, 2015, 13:307-311. doi: 10.1016/j.proeps.2015.07.072
    李建森, 凌智永, 山发寿, 等.东昆仑山南、北两侧富锂盐湖成因的氢、氧和锶同位素指示[J].湿地科学, 2019, 17(4):391-398. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201904003

    Li J S, Ling Z Y, Shan F S, et al.Hydrogen, oxygen and strontium isotopes indication on origin of lithium-rich salt lakes in Eastern Kunlun mountains[J].Wetland Science, 2019, 17(4):391-398. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201904003
    Magna T, Wiechert U, Halliday A N.New constraints on the lithium isotope compositions of the Moon and terrestrial planets[J].Earth and Planetary Science Letters, 2006, 243(3-4):336-353. doi: 10.1016/j.epsl.2006.01.005
    Liu M C, McKeegan K D, Goswami J N, et al.Isotopic records in CM hibonites:Implications for timescales of mixing of isotope reservoirs in the Solar nebula[J].Geochimica et Cosmochimica Acta, 2009, 73(17):5051-5079. doi: 10.1016/j.gca.2009.02.039
    Kunihiro K, Ota T, Nakamura E.Lithium and oxygen isotope compositions of chondrule constituents in the Allende Meteorite[J].Geochimica et Cosmochimica Acta, 2019, 252:107-125. doi: 10.1016/j.gca.2019.02.038
    Rudnick R L, Tomascak P B, Njo H B, et al.Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina[J].Chemical Geology, 2004, 212(1-2):45-57. doi: 10.1016/j.chemgeo.2004.08.008
    Ushikubo T, Kita N T, Cavosie A J, et al.Lithium in Jack Hills zircons:Evidence for extensive weathering of Earth's earliest crust[J].Earth & Planetary Science Letters, 2008, 272(3):666-676. http://cn.bing.com/academic/profile?id=5f6283982c3bbfe1ba03cd14eaafa501&encoded=0&v=paper_preview&mkt=zh-cn
    Sun H, Xiao Y, Gao Y, et al.Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permia-Triassic boundary[J].Proceedings of the National Academy of Sciences, 2018, 115(15):3782-3787. doi: 10.1073/pnas.1711862115
    Weynell M, Wiechert U, Schuessler J A.Lithium isotopes and implications on chemical weathering in the catchment of Lake Donggi Cona, Northeastern Tibetan Plateau[J].Geochimica et Cosmochimica Acta, 2017, 213:155-177. doi: 10.1016/j.gca.2017.06.026
    Kısakürek B, James R H, Harris N B W.Li and δ7Li in Himalayan rivers:Proxies for silicate weathering?[J].Earth and Planetary Science Letters, 2005, 237(3-4):387-401. doi: 10.1016/j.epsl.2005.07.019
    汪齐连, 刘丛强, 赵志琦, 等.长江流域河水和悬浮物的锂同位素地球化学研究[J].地球科学进展, 2008, 23(9):952-958. doi: 10.3321/j.issn:1001-8166.2008.09.006

    Wang Q L, Liu C Q, Zhao Z Q, et al.Lithium isotopic composition of the dissolved and suspended loads of the Yangtze River, China[J].Advances in Earth Science, 2008, 23(9):952-958. doi: 10.3321/j.issn:1001-8166.2008.09.006
    Murphy M J, Porcelli D, Strandmann P, et al.Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes[J].Geochimica et Cosmochimica Acta, 2019, 245:154-171. doi: 10.1016/j.gca.2018.10.024
    Qi H H, Ma C, He Z K, et al.Lithium and its isotopes as tracers of groundwater salinization:A study in the southern coastal plain of Laizhou Bay, China[J].Science of the Total Environment, 2019, 650:878-890. doi: 10.1016/j.scitotenv.2018.09.122
    张俊文.花岗岩风化过程锂同位素行为及其环境指示意义[D].武汉: 中国地质大学(武汉), 2018.

    Zhang J W.Behavior of Lithium Isotopes and Environmental Indications during Granite Weathering[D].Wuhan: China University of Geosciences (Wuhan), 2018.
    叶霖, 潘自平, 程增涛.贵州修文小山坝铝土矿中镓等伴生元素分布规律研究[J].矿物学报, 2008, 28(2):105-111. doi: 10.3321/j.issn:1000-4734.2008.02.001

    Ye L, Pan Z P, Cheng Z T.The regularities of distribution of associated elements in Xiaoshanba bauxite deposit, Guizhou[J].Acta Mineralogica Sinica, 2008, 28(2):105-111. doi: 10.3321/j.issn:1000-4734.2008.02.001
    于沨, 王登红, 于扬, 等.国内外主要沉积型锂矿分布及勘查开发现状[J].岩矿测试, 2019, 38(3):354-364. doi: 10.15898/j.cnki.11-2131/td.201901180013

    Yu F, Wang D H, Yu Y, et al.The distribution and exploration status of domestic and foreign sedimentary-type lithium deposits[J].Rock and Mineral Analysis, 2019, 38(3):354-364. doi: 10.15898/j.cnki.11-2131/td.201901180013
    Misra S, Froelich P N.Measurement of lithium isotope ratios by quadrupole-ICP-MS:Application to seawater and natural carbonates[J].Journal of Analytical Atomic Spectrometry, 2009, 24(11):1524-1533. doi: 10.1039/b907122a
    苏嫒娜, 田世洪, 李真真, 等.MC-ICP-MS高精度测定Li同位素分析方法[J].地学前缘, 2011, 18(2):304-314. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102027

    Su A N, Tian S H, Li Z Z, et al.High-precision measurement of lithium isotopes using MC-ICP-MS[J].Earth Science Frontiers, 2011, 18(2):304-314. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102027
    蔺洁, 刘勇胜, 胡兆初, 等.MC-ICP-MS准确测定地质样品中锂同位素组成[J].矿物岩石地球化学通报, 2016, 35(3):458-464. doi: 10.3969/j.issn.1007-2802.2016.03.008

    Lin J, Liu Y S, Hu Z C, et al.Accurate analysis of lithium isotopic composition of geological samples by MC-ICP-MS[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3):458-464. doi: 10.3969/j.issn.1007-2802.2016.03.008
    王琰, 孙洛新, 张帆, 等.电感耦合等离子体发射光谱法测定含刚玉的铝土矿中硅铝铁钛[J].岩矿测试, 2013, 32(5):719-723. doi: 10.3969/j.issn.0254-5357.2013.05.008

    Wang Y, Sun L X, Zhang F, et al.Determination of Si, Al, Fe and Ti in bauxite by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2013, 32(5):719-723. doi: 10.3969/j.issn.0254-5357.2013.05.008
    赵悦, 侯可军, 田世洪, 等.常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究[J].岩矿测试, 2015, 34(1):28-39. doi: 10.15898/j.cnki.11-2131/td.2015.01.004

    Zhao Y, Hou K J, Tian S H, et al.Study on measurements of lithium isotopic compositions for common standard reference materials using multi-collector inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2015, 34(1):28-39. doi: 10.15898/j.cnki.11-2131/td.2015.01.004
    Huang K F, You C F, Liu Y H, et al.Low-memory, small sample size, accurate and high-precision determinations of lithium isotopic ratios in natural materials by MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2010, 25(7):1019. doi: 10.1039/b926327f
    袁永海, 杨锋, 余红霞, 等.微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成[J].岩矿测试, 2018, 37(4):356-363. doi: 10.15898/j.cnki.11-2131/td.201707290122

    Yuan Y H, Yang F, Yu H X, et al.High-precision measurement of strontium and neodymium isotopic composition by multi-collector inductively coupled plasma-mass spectrometry with microwave digestion[J].Rock and Mineral Analysis, 2018, 37(4):356-363. doi: 10.15898/j.cnki.11-2131/td.201707290122
    Hoecke K V, Belza J, Croymans T, et al.Single-step chromatographic isolation of lithium from whole rock carbonate and clay for isotopic analysis with multi-collector ICP-mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2015, 30(12):2-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1a6388002a2eb5a24ede6a4b3dfdc19c
    程琤.溶液法大型多接收等离子质谱准确分析地质样品中的Si同位素组成研究[D].西安: 西北大学, 2016.

    Cheng C.Determination of Si Isotopic Compositions of Geological Samples Using Solution Nebulization High Resolution Multi-collector Inductively Coupled Plasma Mass Spectrometry[D].Xi'an: Northweat University, 2016.
    Zambardi T, Poitrasson F.Precise determination of silicon isotopes in silicate rock reference materials by MC-ICP-MS[J].Geostandards and Geoanalytical Research, 2010, 35(1):89-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=729af0dc086ca2555940bbfe1f60ca5e
    Nishio Y, Nakai S.Accurate and precise lithium isotopic determinations of igneous rock samples using multi-collector inductively coupled plasma mass spectrometry[J].Analytica Chimica Acta, 2002, 456(2):271-281. doi: 10.1016/S0003-2670(02)00042-9
    刘峪菲.钙镁同位素分析方法的改进完善和对西藏拉萨地块中新世火成岩的岩浆源区示踪[D].北京: 中国科学院大学, 2017.

    Liu Y F.The Improvements of Calcium and Magesum Isotope Analytical Methods and Their Implications for Tracing the Magma Source of Miocene Magmatic Rocks in the Lhasa Terrane, South Tibet[D].Beijing: University of Chinese Academy of Sciences, 2017.
    张路远, 陈宁, 侯小琳, 等.大气129I水平对超低129I含量地质样品分析中流程空白的影响[J].地球环境学报, 2016, 7(5):529-536. http://d.old.wanfangdata.com.cn/Periodical/dqhjxb201605010

    Zhang L Y, Chen N, Hou X L, et al.Influence of atmospheric 129I level on procedural blanks in analysis of ultra-low 129I geological samples[J].Journal of Earth Environment, 2016, 7(5):529-536. http://d.old.wanfangdata.com.cn/Periodical/dqhjxb201605010
    吕彩芬, 何红蓼, 周肇茹, 等.锍镍试金-等离子体质谱法测定地球化学勘探样品中的铂族元素和金Ⅱ.分析流程空白的降低[J].岩矿测试, 2002, 21(1):7-11. doi: 10.3969/j.issn.0254-5357.2002.01.002

    Lü C F, He H L, Zhou Z R, et al.Determination of platinum group elements and gold in geochemical exploration samples by nickel sulfide fire assay-ICP-MS. Ⅱ.Reduction of reagent blank[J].Rock and Mineral Analysis, 2002, 21(1):7-11. doi: 10.3969/j.issn.0254-5357.2002.01.002
    Bryant C J, McCulloch M T, Bennett V.Impact of matrix effects on the accurate measurement of Li isotope ratios by inductively coupled plasma mass spectrometry (MC-ICP-MS) under "cold" plasma conditions[J].Journal of Analytical Atomic Spectrometry, 2003, 18:734-737. doi: 10.1039/B212083F
    苟龙飞, 金章东, 邓丽, 等.高效分离Li及其同位素的MC-ICP-MS精确测定[J].地球化学, 2017, 46(6):528-537. doi: 10.3969/j.issn.0379-1726.2017.06.003

    Gou L F, Jin Z D, Deng L, et al.Efficient purification for Li and high-precision and accuracy determination of Li isotopic compositions by MC-ICP-MS[J].Geochimica, 2017, 46(6):528-537. doi: 10.3969/j.issn.0379-1726.2017.06.003
    史凯, 朱建明, 吴广亮, 等.地质样品中高精度铬同位素分析纯化技术研究进展[J].岩矿测试, 2019, 38(3):341-353. doi: 10.15898/j.cnki.11-2131/td.201805130059

    Shi K, Zhu J M, Wu G L, et al.A review on the progress of purification techniques for high precision determination of Cr isotopes in geological samples[J].Rock and Mineral Analysis, 2019, 38(3):341-353. doi: 10.15898/j.cnki.11-2131/td.201805130059
    Rosner M, Ball L, Ehrenbrink B P, et al.A simplified, accurate and fast method for lithium isotope analysis of rocks and fluids, and δ7Li values of seawater and rock reference materials[J].Geostandards and Geoanalytical Research, 2007, 31(2):77-88. doi: 10.1111/j.1751-908X.2007.00843.x
    Seitz H M, Brey G P, Lahaye Y, et al.Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes[J].Chemical Geology, 2004, 212(1-2):0-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ba93766f12546b5027f397a1b6300e5e
    Macpherson G L, Phan T T, Stewart B W.Direct determination (without chromatographic separation) of lithium isotopes in saline fluids using MC-ICP-MS:Establishing limits on water chemistry[J].Journal of Analytical Atomic Spectrometry, 2015, 30(7):1673-1678. doi: 10.1039/C5JA00060B
    Carignan J, Cardinal D, Eisenhauer A, et al.A reflection on Mg, Cd, Ca, Li and Si isotopic measurements and related reference materials[J].Geostandards & Geoanalytical Research, 2010, 28(1):139-148. http://cn.bing.com/academic/profile?id=d730a55054b75144e8ce7f092d099453&encoded=0&v=paper_preview&mkt=zh-cn
    Jeffcoate A B, Elliott T, Thomas A, et al.Precise/small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS[J].Geostandards & Geoanalytical Research, 2010, 28(1):161-172. http://cn.bing.com/academic/profile?id=d776db86de6ea94f500c6fd68dd734b4&encoded=0&v=paper_preview&mkt=zh-cn
    Simons K K, Harlow G E, Brueckner H K, et al.Lithium isotopes in Guatemalan and Franciscan HP-LT rocks:Insights into the role of sediment-derived fluids during subduction[J].Geochimica et Cosmochimica Acta, 2010, 74(12):3621-3641. doi: 10.1016/j.gca.2010.02.033
    Sun H, Gao Y, Xiao Y, et al.Lithium isotope fractionation during incongruent melting:Constraints from post-collisional leucogranite and residual enclaves from Bengbu Uplift, China[J].Chemical Geology, 2016, 439:71-82. doi: 10.1016/j.chemgeo.2016.06.004

Catalog

    Article views (2297) PDF downloads (69) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return