QIN Yan, XU Yan-ming, HOU Ke-jun, LI Yan-he, CHEN Lei. Progress of Analytical Techniques for Stable Iron Isotopes[J]. Rock and Mineral Analysis, 2020, 39(2): 151-161. DOI: 10.15898/j.cnki.11-2131/td.201908120120
Citation: QIN Yan, XU Yan-ming, HOU Ke-jun, LI Yan-he, CHEN Lei. Progress of Analytical Techniques for Stable Iron Isotopes[J]. Rock and Mineral Analysis, 2020, 39(2): 151-161. DOI: 10.15898/j.cnki.11-2131/td.201908120120

Progress of Analytical Techniques for Stable Iron Isotopes

More Information
  • Received Date: August 11, 2019
  • Revised Date: September 16, 2019
  • Accepted Date: October 20, 2019
  • Published Date: February 29, 2020
  • HIGHLIGHTS
    (1) Recent advances in Fe isotope analyses were reviewed.
    (2) The mechanism and correction method of isotopic fractionation during mass spectrometry analysis were summarized.
    (3) The advantages and disadvantages of solution and in situ methods for Fe isotope analyses were compared.
    BACKGROUNDIron is the most abundant element on earth with variable valences. It is widely distributed in various minerals, rocks, fluids and organisms, and is involved in diagenesis, mineralization, hydrothermal activities and life activities. The study of iron isotope composition provides important information for geochemistry, astrochemistry and biochemistry. The accurate measurement of Fe isotopes is an important basis for the development of related research.
    OBJECTIVESTo summarize the research progress of Fe isotope measurement technology.
    METHODSThe current chemical separation and purification methods and main instrumental analysis techniques commonly used for iron isotopes, were compared and analyzed in this review, and the mechanism of different types of fractionations during mass spectrometry were discussed. These advances included:(1) Improvement of anion resin during determination of iron isotope by solution method; (2) Mass spectrometry development from traditional thermal ionization mass spectrometry to multi-collector inductively coupled plasma mass spectrometry; (3) Development of laser in situ analytical technology. On this basis, the steps and calibration methods that would cause iron isotope fractionation during the analysis were summarized, and the advantages and disadvantages of different analytical methods were reviewed.
    RESULTSThe analysis process of solution method was long and complicated, but the precision was high (0.03‰, 2SD) and the method was stable. In situ iron isotope analysis method developed from nanosecond laser denudation to femtosecond laser denudation, with shorter pulse duration, higher pulse peak intensity (up to 1012W), and focusing intensity exceeding 1020W/cm2. In situ iron isotope analysis method was fast and had high spatial resolution, which can be used to discuss the geochemical process from the microscopic perspective. However, the presence of matrix effects limited the widespread use of iron isotopes.
    CONCLUSIONSShortening solution analysis process and developing a series of matrix-matched standard samples are the research direction of iron isotope analysis.
  • Beard B L, Johnson C M.High precision iron isotope measurements of terrestrial and lunar materials[J]. Geochimica et Cosmochimica Acta, 1999, 63(11-12):1653-1660. doi: 10.1016/S0016-7037(99)00089-7
    刘英俊, 曹励明, 李兆麟.元素地球化学[M].北京:科学出版社, 1984.

    Liu Y J, Cao L M, Li Z L.Element Geochemistry[M]. Beijing:Science Press, 1984.
    牟保磊.元素地球化学[M]北京:北京大学出版社, 1999.

    Mu B L.Element Geochemistry[M]. Beijing:Peking University Press, 1999.
    Dauphas N, John S G, Rouxel O.Iron isotope systematics[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1):415-510. doi: 10.2138/rmg.2017.82.11
    何永胜, 胡东平, 朱传卫.地球科学中铁同位素研究进展[J].地学前缘, 2015, 22(5):54-71. http://d.old.wanfangdata.com.cn/Periodical/dxqy201505004

    He Y S, Hu D P, Zhu C W.Progress of iron isotope geochemistry in geoscience[J.Earth Science Frontiers, 2015, 22(5):54-71. http://d.old.wanfangdata.com.cn/Periodical/dxqy201505004
    Beard B L, Johnson C M, Skulan J L, et al.Application of Fe isotopes to tracing the geochemical and biological cycling of Fe[J]. Chemical Geology, 2003, 195(1):87-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=844fae4abeb031e1d538eb65e08bd2f2
    Johnson C M, Beard B L, Roden E E.The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient earth[J]. Annual Review of Earth and Planetary Sciences, 2008, 36(1):457-493. doi: 10.1146/annurev.earth.36.031207.124139
    Dauphas N, Rouxel O.Mass spectrometry and natural va-riations of iron isotopes[J]. Mass Spectrometry Reviews, 2006, 25:515-550. doi: 10.1002/mas.20078
    Beard B L, Johnson C M, von Damm K L, et al.Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans[J]. Geology, 2003, 31(7):629-632. doi: 10.1130/0091-7613(2003)031<0629:IICOFC>2.0.CO;2
    Kodolányi J, Stephan T, Trappitsch R, et al.Iron and nickel isotope compositions of presolar silicon carbide grains from supernovae[J]. Geochimica et Cosmochimica Acta, 2018, 221:127-144. doi: 10.1016/j.gca.2017.05.029
    Conway T M, John S G.Quantification of dissolved iron sources to the North Atlantic Ocean[J]. Nature, 2014, 511(7508):212-215. doi: 10.1038/nature13482
    Anbar A D.Iron stable isotopes:Beyond biosignatures[J]. Earth and Planetary Science Letters, 2004, 217(3):223-236. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025852629/
    Labidi J.Iron Isotope Composition of Depleted MORB[C]//Proceedings of Agu Fall Meeting (AGU Fall Meeting Abstracts), 2015.
    Teng F Z, Dauphas N, Huang S, et al.Iron isotopic systematics of oceanic basalts[J]. Geochimica et Cosmochimica Acta, 2013, 107:12-26. doi: 10.1016/j.gca.2012.12.027
    Sossi P A, Nebel O, Anand M, et al.On the iron isotope composition of Mars and volatile depletion in the terrestrial planets[J]. Earth and Planetary Science Letters, 2016, 449:360-371. doi: 10.1016/j.epsl.2016.05.030
    Sossi P A, O'Neill H St C.The effect of bonding environment on iron isotope fractionation between minerals at high temperature[J]. Geochimica et Cosmochimica Acta, 2016, 196:121-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=941cca5adb4430ecca32fd1de9314be6
    Rouxel O, Toner B M, Manganini S J, et al.Geochemistry and iron isotope systematics of hydrothermal plume fall-out at East Pacific Rise 9°50'N[J]. Chemical Geology, 2016, 441:212-234. doi: 10.1016/j.chemgeo.2016.08.027
    Weyer S, Ionov D A.Partial melting and melt percolation in the mantle:The message from Fe isotopes[J]. Earth and Planetary Science Letters, 2007, 259:119-133. doi: 10.1016/j.epsl.2007.04.033
    Zhao Y, Xue C J, Liu S A, et al.Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni-Cu mineralization system[J]. Geochimica et Cosmochimica Acta, 2019, 249(15):42-58.
    Syverson D D, Luhmann A J, Tan C, et al.Fe isotope fractionation between chalcopyrite and dissolved Fe during hydrothermal recrystallization:An experimental study at 350℃ and 500bars[J]. Geochimica et Cosmochimica Acta, 2017, 200:87-109. doi: 10.1016/j.gca.2016.12.002
    Williams K B, Krawczynski M J, Nie N X, et al.The Role of Differentiation Processes in Mare Basalt Iron Isotope Signatures[C]//Proceedings of Lunar and Planetary Science Conference, 2016.
    Bau M, von Blanckenburg F, Ohmoto H.Iron isotope stratification of Late Archean Seawater:Evidence from dolomites and banded iron-formations[J]. Nature Immunology, 2017, 16 (5):467-75.
    McCoy V E, Asael D, Planavsky N.Benthic iron cycling in a high-oxygen environment:Implications for interpreting the Archean sedimentary iron isotope record[J]. Geobiology, 2017, 15(5):619-627. doi: 10.1111/gbi.12247
    Liu K, Wu L L, Couture R M, et al.Iron isotope fractionation in sediments of an oligotrophic freshwater lake[J]. Earth and Planetary Science Letters, 2015, 423:164-172. doi: 10.1016/j.epsl.2015.05.010
    Kurzweil F, Pasava J, Drost K, et al.Molybdenum (Mo) and Iron (Fe) Isotope Evidence of Tepla-Barrandian Black Shales against Widespread Deep Ocean Oxygenation in the Late Neoproterozoic[C]//Proceedings of the Fall Meeting 2014.American Geophysical Union, 2014.
    Severmann S, Lyons T W, Anbar A, et al.Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans[J]. Geology, 2008, 36(6):487-490. doi: 10.1130/G24670A.1
    Shollenberger Q R, Brennecka G A, Schuth S, et al.Iron Isotope Systematics of Refractory Inclusions and the Search for the Source of Nucleosynthetic Anomalies[C]//Proceedings of the 48th Lunar and Planetary Science Conference, 2017.
    Poitrasson F, Halliday A N, Lee D C, et al.Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms[J]. Earth and Planetary Science Letters, 2004, 223(3-4):0-266.
    Belshaw N S, Zhu X K, Guo Y, et al.High precision measurement of iron isotopes by plasma source mass spectrometry[J]. International Journal of Mass Spectrometry, 2000, 197(1-3):191-195. doi: 10.1016/S1387-3806(99)00245-6
    唐索寒, 朱祥坤, 李津, 等.用于多接收器等离子体质谱测定的铁铜锌同位素标准溶液研制[J].岩矿测试, 2016, 35(2):127-133. doi: 10.15898/j.cnki.11-2131/td.2016.02.003

    Tang S H, Zhu X K, Li J, et al.New standard solutions for measurement of iron, copper and zinc isotopic compositions by multi-collector inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(2):127-133. doi: 10.15898/j.cnki.11-2131/td.2016.02.003
    孙剑, 朱祥坤, 陈岳龙.碳酸盐矿物铁同位素测试的选择性溶解方法研究——以白云鄂博矿床赋矿白云岩为例[J].岩矿测试, 2013, 32(1):28-33. doi: 10.3969/j.issn.0254-5357.2013.01.005

    Sun J, Zhu X K, Chen Y L.The selective dissolution of carbonate minerals for Fe isotope determination:A case study on the ore-hosting dolomite marble in the Bayan Obo ore deposit[J]. Rock and Mineral Analysis, 2013, 32(1):28-33. doi: 10.3969/j.issn.0254-5357.2013.01.005
    唐索寒, 闫斌, 朱祥坤, 等.玄武岩标准样品铁铜锌同位素组成[J].岩矿测试, 2012, 31(2):218-224. doi: 10.3969/j.issn.0254-5357.2012.02.004

    Tang S H, Yan B, Zhu X K, et al.Iron, copper and zinc isotopic compositions of basaltic standard reference materials[J]. Rock and Mineral Analysis, 2012, 31(2):218-224. doi: 10.3969/j.issn.0254-5357.2012.02.004
    侯可军, 秦燕, 李延河.Fe同位素的MC-ICP-MS测试方法[J].地球学报, 2012, 33(6):885-892. http://d.old.wanfangdata.com.cn/Periodical/dqxb201206008

    Hou K J, Qin Y, Li Y H.High-precision measurements of Fe isotopes using MC-ICP-MS[J]. Acta Geoscientica Sinica, 2012, 33(6):885-892. http://d.old.wanfangdata.com.cn/Periodical/dqxb201206008
    Zhu X K, Guo Y, Williams R J P, et al.Mass fractionation processes of transition metal isotopes[J].Earth and Planetary Science Letters, 2002, 200(1-2):47-62. doi: 10.1016/S0012-821X(02)00615-5
    Rosman K J R, Taylor P D P.Isotopic compositions of the elements 1997 (Technical Report)[J]. Pure and Applied Chemistry, 1998, 70(1):217-235. doi: 10.1351/pac199870010217
    Kraus K A, Moore G E.Anion exchange studies:The divalent transition elements manganese to zinc in hydrochloric acid[J]. Journal of the American Chemical Society, 1953, 75:1460-1462. doi: 10.1021/ja01102a054
    Kosler J, Pedersen R B, Kruber C, et al.Comment on "Analysis of Fe isotopes in sulfides and iron meteorites by laser ablation high-mass resolution multi-collector-ICP mass spectrometry"—Reply[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(2):214-216. doi: 10.1039/B512647A
    Strelow F W E.Improved separation of iron from copper and other elements by anion-exchange chromatography on a 4% cross-linked resin with high concentrations of hydrochloric acid[J]. Talanta, 1980, 27(9):727-732. doi: 10.1016/0039-9140(80)80166-4
    Anbar A D.Nonbiological fractionation of iron isotopes[J]. Science, 2000, 288(5463):126-128. doi: 10.1126/science.288.5463.126
    Dauphas N, Janney P E, Mendybaev R A, et al. Chromatographic separation and multicollection ICPMS analysis of iron.Investigating mass-dependent and independent isotope effects[J]. Analytical Chemistry, 2004, 76(19):5855-5863. doi: 10.1021/ac0497095
    van der Walt T N, Strelow F W E, Haasbroek F J.Separation of iron-52 from chromium cyclotron targets on the 2% cross-linked anion-exchange resin AG1-X2 in hydrochloric acid[J]. Talanta, 1985, 32(4):313-317. doi: 10.1016/0039-9140(85)80086-2
    Marechal C N.Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 156(1-4):251-273. doi: 10.1016/S0009-2541(98)00191-0
    Archer C, Vance D.Mass discrimination correction in multiple-collector plasma source mass spectrometry:An example using Cu and Zn isotopes[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(5):656-665. doi: 10.1039/b315853e
    Sossi P A, Halverson G P, Nebel O, et al.Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination[J]. Geostandards and Geoanalytical Research, 2015, 39(2):129-149. doi: 10.1111/j.1751-908X.2014.00298.x
    Poitrasson F, Freydier R.Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS[J]. Chemical Geology, 2005, 222(1):132-147.
    唐索寒, 闫斌, 李津.少量AG1-X4阴离子交换树脂分离地质标样中的铁及铁同位素测定[J].地球化学, 2013(1):46-52. doi: 10.3969/j.issn.0379-1726.2013.01.006

    Tang S H, Yan B, Li J.Separation of Fe using a small amount of AG1-X4 anion exchange resin and Fe isotope compositions of geological reference materials[J]. Geochimica, 2013(1):46-52. doi: 10.3969/j.issn.0379-1726.2013.01.006
    马信江, 梁细荣, 涂相林, 等.AG MP-1M阴离子分离Cu、Fe、Zn及其在Fe同位素测定上的应用[J].地球化学, 2009, 38(5):70-76. http://d.old.wanfangdata.com.cn/Periodical/dqhx200905007

    Ma X J, Liang X R, Tu X L, et al.Separation of Cu, Fe and Zn using AG MP-1M anion exchange resin and applications for Fe isotope determination[J]. Geochimica, 2009, 38(5):70-76. http://d.old.wanfangdata.com.cn/Periodical/dqhx200905007
    孙剑, 朱祥坤, 唐索寒, 等.AG MP-1阴离子交换树脂元素分离方法再研究[J].高校地质学报, 2006, 24(3):398-403. doi: 10.3969/j.issn.1006-7493.2006.03.014

    Sun J, Zhu X K, Tang S H, et al.Further investigation on elemental separation using AG MP-1 anion exchange resin[J]. Geological Journal of China Universities, 2006, 24(3):398-403. doi: 10.3969/j.issn.1006-7493.2006.03.014
    Craddock P R, Dauphas N.Iron isotopic compositions of geological reference materials and chondrites[J]. Geostandards and Geoanalytical Research, 2011, 35(1):101-123. doi: 10.1111/j.1751-908X.2010.00085.x
    Sossi P A, Halverson G P, Nebel O, et al.Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination[J]. Geostandards and Geoanalytical Research, 2015, 39(2):129-149. doi: 10.1111/j.1751-908X.2014.00298.x
    Liu S A, Li D, Li S, et al.High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2013, 29(1):122-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be3cff31ad013d50e69a4d2225615a6b
    Taylor P D P, Maeck R, Bièvre P D.Determination of the absolute isotopic composition and atomic weight of a reference sample of natural iron[J]. International Journal of Mass Spectrometry and Ion Processes, 1992, 121(1-2):111-125. doi: 10.1016/0168-1176(92)80075-C
    Rudge J F, Reynolds B C, Bourdon B.The double spike toolbox[J]. Chemical Geology, 2009, 265(3-4):0-431. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e97d8b2ef9fa6c95a32479f7de88e1bb
    Zhu X K, Makishima A, Guo Y, et al.High precision measurement of titanium isotope ratios by plasma source mass spectrometry[J]. International Journal of Mass Spectrometry, 2002, 220(1):21-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9099dd076fb6a250206f149ef5360336
    Kehm K, Hauri E H, Alexander C M O, et al.High precision iron isotope measurements of meteoritic material by cold plasma ICP-MS[J]. Geochimica et Cosmochimica Acta, 2003, 67(15):2879-2891. doi: 10.1016/S0016-7037(03)00080-2
    Weyer S, Schwieters J.High precision Fe isotope measurements with high mass resolution MC-ICPMS[J]. International Journal of Mass Spectrometry, 2003, 226:355-368. doi: 10.1016/S1387-3806(03)00078-2
    朱祥坤, 李志红, 赵新苗, 等.铁同位素的MC-ICP-MS测定方法与地质标准物质的铁同位素组成[J].岩石矿物学杂志, 2008, 27(4):263-272. doi: 10.3969/j.issn.1000-6524.2008.04.001

    Zhu X K, Li Z H, Zhao X M, et al.High-precision measurement of Fe isotopes isotopes using MC-ICP-MS and Fe isotope compositons of geological regerence materials[J]. Acta Petrologica et Mineralogica, 2008, 27(4):263-272. doi: 10.3969/j.issn.1000-6524.2008.04.001
    唐索寒, 朱祥坤, 蔡俊军, 等.用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法[J].岩矿测试, 2006, 25(1):5-8. doi: 10.3969/j.issn.0254-5357.2006.01.002

    Tang S H, Zhu X K, Cai J J, et al.Chromatographic separation of Cu, Fe and Zn using AG MP-1 anion exchange resin for isotope determination by MC-ICPMS[J]. Rock and Mineral Analysis, 2006, 25(1):5-8. doi: 10.3969/j.issn.0254-5357.2006.01.002
    Zhu X K, O'Nions R K, Guo Y, et al.Determination of natural Cu-isotope variation by plasma-source mass spectrometry:Implications for use as geochemical tracers[J]. Chemical Geology, 2000, 163(1):139-149.
    Arnold T, Markovic T, Kirk G J D, et al.Iron and zinc isotope fractionation during uptake and translocation in rice (Oryza sativa) grown in oxic and anoxic soils[J]. Comptes Rendus Geoscience, 2015, 347(7-8):397-404. doi: 10.1016/j.crte.2015.05.005
    Dideriksen K, Baker J A, Stipp S L S.Iron isotopes in natural carbonate minerals determined by MC-ICP-MS with a 58Fe-54Fe double spike[J]. Geochimica et Cosmochimica Acta, 2006, 70(1):0-132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd9632e7ee81087155324249c10d032b
    Rudge J F, Reynolds B C, Bourdon B.The double-spike toolbox[J]. Chemical Geology, 2009, 265(3-4):420-431. doi: 10.1016/j.chemgeo.2009.05.010
    Dauphas N, Pourmand A, Teng F Z.Routine isotopic analysis of iron by HR-MC-ICPMS:How precise and how accurate?[J]. Chemical Geology, 2009, 267(3-4):0-184.
    丁悌平.激光探针稳定同位素分析技术的现状及发展前景[J].地学前缘, 2003, 10(2):263-268. doi: 10.3321/j.issn:1005-2321.2003.02.001

    Ding T P.The present status and prospect on laser-microprobe analysis techiques for stable isotopes[J]. Earth Science Frontiers, 2003, 10(2):263-268. doi: 10.3321/j.issn:1005-2321.2003.02.001
    Gray A L.Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry[J]. Analyst, 1985, 110:551. doi: 10.1039/an9851000551
    Horn I, Hinton R W, Jackson S E, et al.Ultra-trace element analysis of NIST SRM 616 and 614 using laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS):A comparison with secondary ion mass spectrometry (SIMS)[J]. Geostandards and Geoanalytical Research, 2010, 21(2):191-203.
    Horn I, Rudnick R L, Mcdonough W F.Precise elemen-tal and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS:Application to U-Pb geochronology[J]. Chemical Geology, 2000, 164(3):281-301.
    Mank A J G, Mason P R D.A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples[J]. Journal of Analytical Atomic Spectrometry, 1999, 14(8):1143-1153. doi: 10.1039/a903304a
    Günther D, Heinrich C A.Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier[J]. Journal of Analytical Atomic Spectrometry, 1999, 14(9):1363-1368. doi: 10.1039/A901648A
    Arrowsmith P.Laser ablation of solids for elemental analysis by inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 1987, 59:10(10):1437-1444. doi: 10.1021-ac00137a014/
    Norman M D, Pearson N J, Sharma A, et al.Quantitative analysis of trace elements in geological materials by laser ablation ICPMS:Instrumental operating conditions and calibration values of NIST glasses[J]. Geostandards and Geoanalytical Research, 2010, 20(2):247-261. doi: 10.1111-j.1751-908X.1996.tb00186.x/
    Horn I, von Blanckenburg F, Schoenberg R, et al.In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes[J]. Geochimica et Cosmochimica Acta, 2006, 70:3677-3688. doi: 10.1016/j.gca.2006.05.002
    Hirata T, Ohno T.In-situ isotopic ratio analysis of iron using laser ablation-multiple collector-inductively coupled plasma mass spectrometry (LA-MC-ICP-MS)[J]. Journal of Analytical Atomic Spectrometry, 2001, 16(5):487-491. doi: 10.1039/b100946j
    Graham S, Pearson N, Jackson S, et al.Tracing Cu and Fe from source to porphyry:In situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit[J]. Chemical Geology, 2004, 207(3):147-169.
    Kosler J, Pedersen R B, Kruber C, et al.Analysis of Fe isotopes in sulfides and iron meteorites by laser ablation high-mass resolution multi-collector ICP mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2005, 21:192-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbe86928b9161dcc69d2fd2ceeda6743
    Horn I, Schoenberg R, Blanckenburg F V.Comment on "Analysis of Fe isotopes in sulfides and iron meteorites by laser ablation high-mass resolution multi-collector-ICP mass spectrometry" by J.Košler, R.B.Pedersen, C.Kruber and P.J.Sylvester[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(2):211-213. doi: 10.1039/B504720J
    d'Abzac F X, Beard B L, Czaja A D, et al.Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbononates[J]. Analytical Chemistry, 2013, 85(24):11885-11892. doi: 10.1021/ac402722t
    d'Abzac F X, Czaja A D, Beard B L, et al.Iron dis-tribution in size-resolved aerosols generated by UV-femtosecond laser ablation:Influence of cell geometry and implications for in situ isotopic determination by LA-MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2014, 38 (3):293-309. doi: 10.1111/j.1751-908X.2014.00281.x
    Oeser M, Weyer S, Horn I, et al.High-precision Fe and Mg isotope ratios of silicate reference glasses determined in situ by femtosecond LA-MC-ICP-MS and by solution nebulisation MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2014, 38:311-328. doi: 10.1111/j.1751-908X.2014.00288.x
    Oeser M, Dohmen R, Horn I, et al.Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines[J]. Geochimica et Cosmochimica Acta, 2015, 154:130-150. doi: 10.1016/j.gca.2015.01.025
    Teng F Z, Dauphas N, Helz R T, et al.Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine[J]. Earth and Planetary Science Letters, 2011, 308(3-4):0-324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=026e55831e6dece4fad57dbaa02498a1
    Corliss K I S, Dauphas N.Thermal and crystallization histories of magmatic bodies by Monte Carlo inversion of Mg-Fe isotopic profiles in olivine[J]. Geology, 2017, 45(1):67-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4058f6d0500f4241e8d4196792fd28e9
    Collinet M, Charlier B, Namur O, et al.Crystallization history of enriched shergottites from Fe and Mg isotope fractionation in olivine megacrysts[J]. Geochimica et Cosmochimica Acta, 2017, 207:277-297. doi: 10.1016/j.gca.2017.03.029
    Horn I, von Blanckenburg F.Investigation on elemental and isotopic fractionation during 196nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry[J]. Spectrochim Acta Part B:Atomic Spectroscopy, 2007, 62:410-422. doi: 10.1016/j.sab.2007.03.034
    Öder H R.Laser-generated aerosols in laser ablation for inductively coupled plasma spectrometry[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2006, 61(3):284-300. doi: 10.1016/j.sab.2006.02.001
    Momma C, Chichkov B N, Nolte S, et al.Short-pulse laser ablation of solid targets[J]. Optics Communications, 1996, 129(1-2):134-142. doi: 10.1016/0030-4018(96)00250-7
    Russo R E, Mao X, Gonzalez J J, et al.Femtosecond vs.nanosecond laser pulse duration for laser ablation chemical analysis[J]. Spectroscopy, 2013, 28(1):24-39.
    Günther D, Hattendorf B.Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry[J]. TrAC Trends in Analytical Chemistry, 2005, 24(3):255-265. doi: 10.1016/j.trac.2004.11.017
    Koch J, von Bohlen A, Hergenröder R, et al.Particle size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(2):267-272. doi: 10.1039/B310512A
    陈开运, 范超, 袁洪林, 等.飞秒激光剥蚀-多接收电感耦合等离子质谱原位微区分析青铜中铅同位素组成——以古铜钱币为例[J].光谱学与光谱分析, 2013, 32(5):1342-1349. doi: 10.3964/j.issn.1000-0593(2013)05-1342-08

    Chen K Y, Fan C, Yuan H L, et al.High-precision in situ analysis of the lead isotopic composition in copper using femtosecond laser ablation MC-ICP-MS and the application in ancient coins[J]. Spectroscopy and Spectral Analysis, 2013, 32(5):1342-1349. doi: 10.3964/j.issn.1000-0593(2013)05-1342-08
    杨文武, 史光宇, 商琦, 等.飞秒激光剥蚀电感耦合等离子体质谱在地球科学中的应用进展[J].光谱学与光谱分析, 2017, 37(7):208-214. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201707036

    Yang W W, Shi G Y, Shang Q, et al.Applications of femtosecond (fs) laser ablation-inductively coupled plasma-mass spectrometry in Earth sciences[J]. Spectroscopy and Spectral Analysis, 2017, 37(7):208-214. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201707036
    Zheng X Y, Beard B L, Lee S, et al.Contrasting particle size distributions and Fe isotope fractionations during nanosecond and femtosecond laser ablation of Fe minerals:Implications for LA-MC-ICP-MS analysis of stable isotopes[J]. Chemical Geology, 2017, 450:235-247. doi: 10.1016/j.chemgeo.2016.12.038
    Zheng X Y, Beard B L, Johnson C M.Assessment of matrix effects associated with Fe isotope analysis using 266nm femtosecond and 193nm nanosecond laser ablation multi-collector inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2018, 33:68-83. doi: 10.1039/C7JA00272F
    Teng F Z, Li W Y, Ke S, et al.Magnesium isotopic com-position of the Earth and chondrites[J]. Geochimica et Cosmochimica Acta, 2010, 74(14):4150-4166. doi: 10.1016/j.gca.2010.04.019
    Janney P E, Richter F M, Mendybaev R A, et al.Matrix effects in the analysis of Mg and Si isotope ratios in natural and synthetic glasses by laser ablation-multicollector ICPMS:A comparison of single- and double-focusing mass spectrometers[J]. Chemical Geology, 2011, 281(1-2):26-40. doi: 10.1016/j.chemgeo.2010.11.026
    Sio C K I, Dauphas N, Teng F Z, et al.Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg-Fe isotopic analyses[J]. Geochimica et Cosmochimica Acta, 2013, 123(2):302-321. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=313c4f174cc4f182644f09f4292f62ad
  • Cited by

    Periodical cited type(3)

    1. 刘建栋,王秉璋,李五福,金婷婷,张新远,王春涛,曹锦山,郑英,赵忠国. 电子探针技术研究东昆仑大格勒角闪石岩中铌和稀土元素的含量和赋存状态. 岩矿测试. 2023(04): 721-736 . 本站查看
    2. 杨世平,杨细华,李安邦,范鹏飞,赵子娟,陈小凡,余飞翔. 电子探针技术研究大别造山带富硫独居石地球化学特征及稀土矿化成因. 岩矿测试. 2022(04): 541-553 . 本站查看
    3. 刘金,王剑,王桂君,张晓刚,尚玲. 利用电子探针和X射线衍射研究准噶尔盆地风城组淡钡钛石矿物学特征. 岩矿测试. 2022(05): 764-773 . 本站查看

    Other cited types(2)

Catalog

    Article views (2590) PDF downloads (136) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return