• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
WEN Jing, ZHANG Yu-xu, WEN Han-jie, ZHU Chuan-wei, FAN Hai-feng. Research on the Chemical Pretreatment for Mo Isotope Analysis of Special Geological Samples[J]. Rock and Mineral Analysis, 2020, 39(1): 30-40. DOI: 10.15898/j.cnki.11-2131/td.201906190087
Citation: WEN Jing, ZHANG Yu-xu, WEN Han-jie, ZHU Chuan-wei, FAN Hai-feng. Research on the Chemical Pretreatment for Mo Isotope Analysis of Special Geological Samples[J]. Rock and Mineral Analysis, 2020, 39(1): 30-40. DOI: 10.15898/j.cnki.11-2131/td.201906190087

Research on the Chemical Pretreatment for Mo Isotope Analysis of Special Geological Samples

More Information
  • Received Date: June 18, 2019
  • Revised Date: July 31, 2019
  • Accepted Date: October 20, 2019
  • Published Date: December 31, 2019
  • BACKGROUNDMo isotopes have been widely used in the field of geosciences. They can be used to trace the global cycle of Mo, paleoocean redox conditions, mineralization processes, and astronomical evolution. Before the analysis of Mo isotope by multi-collector inductivity coupled plasma-mass spectrometry (MC-ICP-MS), the samples must be pretreated to enrich Mo and remove the interference elements (Zr, Ru, Fe and Mn). According to the traditional anion-cation exchange resin double-column method, it is necessary to use a cation-exchange resin multiple times to separate Fe. The steps are more complicated and the Mo recovery will be reduced. According to the traditional anion-exchange resin single-column method, 1mol/L hydrofluoride acid-0.5mol/L hydrochloric acid medium will produce more CaF2 precipitation and affect the separation and purification results.
    OBJECTIVESTo develop a new method for managing Ca-bearing geological samples with high Fe content before Mo isotope analysis.
    METHODSFor such special geological samples, the same anionic resin column (AG1-X8, 100-200 mesh) was used to rinse the sample twice, the first time using 6mol/L hydrochloric acid, and the second time using 1mol/L hydrofluoride acid-0.1mol/L hydrochloric acid and 6mol/L hydrochloric acid.
    RESULTSResults showed that Mo recovery was better than 96%, and the removal of the interference elements was good, especially the Ru removal rate, which was higher than the previous methods by 12%, up to 100%. The results of experiments on actual samples also showed that the recovery of Mo and the removal of interfering elements meet the requirements, and the measured values of δ98/95Mo were consistent with those reported in the literature.
    CONCLUSIONSThe improved anion exchange resin single-column elution method is suitable for special samples with high Fe and Ca content, which reduces the analysis cost and is applicable to most geological samples.
  • 朱祥坤, 王跃, 闫斌, 等.非传统稳定同位素地球化学的创建与发展[J].矿物岩石地球化学通报, 2013, 32(6):651-688. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201306002

    Zhu X K, Wang Y, Yan B, et al.Developments of non-traditional stable isotope geochemistry[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(6):651-688. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201306002
    Malinovsky D, Hammarlund D, Ilyashuk B, et al.Variations in the isotopic composition of molybdenum in freshwater lake systems[J].Chemical Geology, 2007, 236(3-4):181-198. doi: 10.1016/j.chemgeo.2006.09.006
    Archer C, Vance D.The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans[J].Nature Geoscience, 2008, 1(9):597-600. doi: 10.1038/ngeo282
    Nägler T F, Neubert N, Böttcher M E, et al.Molybdenum isotope fractionation in pelagic euxinia:Evidence from the modern Black and Baltic Seas[J].Chemical Geology, 2011, 289(1-2):1-11. doi: 10.1016/j.chemgeo.2011.07.001
    Noordmann J, Weyer S, Montoya-Pino C, et al.Uranium and molybdenum isotope systematics in modern euxinic basins:Case studies from the central Baltic Sea and the Kyllaren Fjord (Norway)[J].Chemical Geology, 2015, 396(9):182-195. http://cn.bing.com/academic/profile?id=2d437b78217075593a08aae32b18cba4&encoded=0&v=paper_preview&mkt=zh-cn
    Dahl T W, Wirth S B.Molybdenum isotope fractionation and speciation in a euxinic lake-Testing ways to discern isotope fractionation processes in a sulfidic setting[J].Chemical Geology, 2017, 460(5):84-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5977638c47070ba687d769cafd4da34a
    Neely R A, Gislason S R, Ólafsson M, et al.Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland[J].Earth and Planetary Science Letters, 2018, 486(15):108-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9cabccfbc281a1b45fa8881b07c972b4
    Siebert C, Nägler T F, Blanckenburg F V, et al.Molybdenum isotope record as a potential new proxy for paleoeanography[J].Earth and Planetary Science Letters, 2003, 211(1-2):159-171. doi: 10.1016/S0012-821X(03)00189-4
    Arnold G L, Anbar A D, Barling J, et al.Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans[J].Science, 2004, 304(5667):87-90. doi: 10.1126/science.1091785
    Lehmann B, Nägler T F, Holland H D, et al.Highly metalliferous carbonaceous shale and Early Cambrian seawater[J].Geology, 2007, 35(5):403-406. doi: 10.1130/G23543A.1
    蒋少涌, 凌洪飞, 赵葵东, 等.华南寒武纪早期牛蹄塘组黑色岩系中Ni-Mo多金属硫化物层的钼同位素组成讨论[J].岩石矿物学杂志, 2008, 27(4):341-345. doi: 10.3969/j.issn.1000-6524.2008.04.011

    Jiang S Y, Ling H F, Zhao K D, et al.Discussion on Mo isotopic compositions of black shale and Ni-Mo sulfide bed in the early Cambrian Niutitang Formation in South China[J].Acta Petrologica et Mineralogica, 2008, 27(4):341-345. doi: 10.3969/j.issn.1000-6524.2008.04.011
    Kendall B, Komiya T, Lyons T W, et al.Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the Late Ediacaran Period[J].Geochimica et Cosmochimica Acta, 2015, 156(1):173-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=105ec9e88167bc09a96debc22b05c90d
    Kurzweil F, Drost K, Pašava J, et al.Coupled sulfur, iron and molybdenum isotope data from black shales of the Teplá-Barrandian unit argue against deep ocean oxygenation during the Ediacaran[J].Geochimica et Cosmochimica Acta, 2015, 171(15):121-142. https://www.sciencedirect.com/science/article/abs/pii/S0016703715005256
    Wen H J, Fan H F, Zhang Y X, et al.Reconstruction of Early Cambrian ocean chemistry from Mo isotopes[J].Geochimica et Cosmochimica Acta, 2015, 164(1):1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fd5c3e3cf51efe0e3c67e8967ba60fd0
    Ruebsam W, Dickson A J, Hoyer E M, et al.Multiproxy reconstruction of oceanographic conditions in the Southern Epeiric Kupferschiefer Sea (Late Permian) based on redox-sensitive trace elements, molybdenum isotopes and biomarkers[J].Gondwana Research, 2017, 44:205-218. doi: 10.1016/j.gr.2016.10.017
    Yin L, Li J, Tian H, et al.Rhenium-osmium and molybdenum isotope systematics of black shales from the Lower Cambrian Niutitang Formation, SW China:Evidence of a well oxygenated ocean at ca.520Ma[J].Chemical Geology, 2018, 499(5):26-42.
    Chen J B, Zhao L S, Algeo T J, et al.Evaluation of paleomarine redox conditions using Mo-isotope data in low-[Mo] sediments:A case study from the Lower Triassic of South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519(1):178-193. https://www.sciencedirect.com/science/article/abs/pii/S0031018217310787
    Duan Y, Anbar A D, Arnold G L, et al.Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event[J].Geochimica et Cosmochimica Acta, 2010, 74(23):6655-6668. doi: 10.1016/j.gca.2010.08.035
    Wen H J, Carigan J, Zhang Y X, et al.Molybdenum isotopic records across the Precambrian-Cambrian Boundary[J].Geology, 2011, 39(8):775-778. doi: 10.1130/G32055.1
    Eroglu S, Schoenberg R, Wille M, et al.Geochemical stratigraphy, sedimentology, and Mo isotope systematics of the ca.2.58-2.50 Ga-old Transvaal Supergroup carbonate platform, South Africa[J].Precambrian Research, 2015, 266:27-46. doi: 10.1016/j.precamres.2015.04.014
    Kurzweil F, Wille M, Schoenberg R, et al.Continuously increasing δ98Mo values in Neoarchean blackshales and iron formations from the Hamersley Basin[J].Geochimica et Cosmochimica Acta, 2015, 164(1):523-542. https://www.sciencedirect.com/science/article/abs/pii/S0016703715002781
    Li G S, Wang Y B, Shi G R, et al.Fluctuations of redox conditions across the Permian-Triassic Boundary-New evidence from the GSSP section in Meishan of South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 448(15):48-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c98fba540ac9a13248c245103589084
    Dickson A J, Jenkyns H C, Porcelli D, et al.Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2(Late Cretaceous)[J].Geochimica et Cosmochimica Acta, 2016, 178(1):291-306. http://cn.bing.com/academic/profile?id=bf4c28aed97e3ef7a708a68879759feb&encoded=0&v=paper_preview&mkt=zh-cn
    Kurzweil F, Wille M, Gantert N, et al.Manganese oxide shuttling in pre-GOE oceans-Evidence from molybdenum and iron isotopes[J].Earth and Planetary Science Letters, 2016, 452(15):69-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=773a3659d9e156bfbe3b20d0d709ba4a
    Matthews A, Azrieli-Tal I, Benkovitz A, et al.Anoxic development of sapropel S1 in the Nile Fan inferred from redox sensitive proxies, Fe speciation, Fe and Mo isotopes[J].Chemical Geology, 2017, 475(25):24-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85af14d13ee9dd6a9cf0a1befb740a9d
    Dong B H, Long X P, Li J, et al.Mo isotopic variations of a Cambrian sedimentary profile in the Huangling area, South China:Evidence for redox environment corresponding to the Cambrian Explosion[J].Gondwana Research, 2019, 69:45-55. doi: 10.1016/j.gr.2018.12.002
    Murthy V R.Elemental and isotopic abundances of moly-bdenum in some meteorites[J].Geochimica et Cosmochimica Acta, 1963, 27:1171-1178. doi: 10.1016/0016-7037(63)90098-X
    Nicolussi G K, Pellin M J, Lewis R S, et al.Molybdenum isotopic composition of individual presolar silicon carbide grains from the Murchison meteorite[J].Geochimica et Cosmochimica Acta, 1998, 62(6):1093-1104. doi: 10.1016/S0016-7037(98)00038-6
    Burkhardt C, Hin R C, Kleine T, et al.Evidence for Mo isotope fractionation in the solar nebula and during planetary differentiation[J].Earth and Planetary Science Letters, 2014, 391(1):201-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8c2d5e903b1c71be7c889ddd72714c2f
    Worsham E A, Burkhardt C, Budde G, et al.Distinct evolution of the carbonaceous and non-carbonaceous reservoirs:Insights from Ru, Mo, and W isotopes[J].Earth and Planetary Science Letters, 2019, 521(1):103-112. http://cn.bing.com/academic/profile?id=c2f36f44d57614e12971095dd01f70e4&encoded=0&v=paper_preview&mkt=zh-cn
    Mathur R, Brantley S, Anbar A, et al.Variation of Mo isotopes from molybdenite in high-temperature hydrothermal ore deposits[J].Miner Deposita, 2010, 45(1):43-50. doi: 10.1007/s00126-009-0257-z
    Shafiei B, Shamanian G, Mathur R, et al.Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems[J].Mineralium Deposita, 2015, 50(3):281-291. doi: 10.1007/s00126-014-0537-0
    Lehmann B, Frei R, Xu L G, et al.Early Cambrian black shale-hosted Mo-Ni and V mineralization on the rifted margin of the Yangtze Platform, China:Reconnaissance chromium isotope data and a refined metallogenic model[J].Economic Geology, 2015, 111(1):89-103.
    Wang Y, Zhou L, Gao S, et al.Variation of molybdenum isotopes in molybdenite from porphyry and vein Mo deposits in the Gangdese metallogenic belt, Tibetan Plateau and its implications[J].Mineralium Deposita2015, 51(2):201-210. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5e6f77431d5e3a87aa4af5e9911a409d
    Yao J M, Mathur R, Sun W D, et al.Fractionation of Cu and Mo isotopes caused by vapor-liquid partitioning, evidence from the Dahutang W-Cu-Mo ore field[J].Geochemistry, Geophysics, Geosystems, 2016, 17(5):1725-1739. doi: 10.1002/2016GC006328
    Migeon V, Bourdon B, Pili E, et al.Molybdenum isotope fractionation during acid leaching of a granitic uranium ore[J].Geochimica et Cosmochimica Acta, 2018, 231(15):30-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddb693ed5dc1a983fa945ba7dc53d610
    胡文峰, 张烨恺, 刘金华, 等.西藏冈底斯斑岩型铜钼矿床的Cu、Mo同位素组成及其意义[J].地球科学, 2019, 44(6):1923-1934. http://d.old.wanfangdata.com.cn/Periodical/dqkx201906013

    Hu W F, Zhang Y K, Liu J H, et al.The isotopic compositions of copper and molybdenum from porphyry Cu-Mo deposit in the Gangdese, Tibet, and their significance[J].Earth Science, 2019, 44(6):1923-1934. http://d.old.wanfangdata.com.cn/Periodical/dqkx201906013
    孟郁苗, 胡瑞忠, 高剑峰, 等.锑的地球化学行为以及锑同位素研究进展[J].岩矿测试, 2016, 35(4):339-348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002

    Meng Y M, Hu R Z, Gao J F, et al.Research progress on Sb geochemistry and Sb isotopes[J].Rock and Mineral Analysis, 2016, 35(4):339-348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002
    尹鹏, 何倩, 何会军, 等.离子交换树脂法分离沉积物中锶和钕的影响因素研究[J].岩矿测试, 2018, 37(4):379-387. doi: 10.15898/j.cnki.11-2131/td.201804170046

    Yin P, He Q, He H J, et al.Study on the factors influencing the separation of Sr and Nd in sediments by ion exchange resin[J].Rock and Mineral Analysis, 2018, 37(4):379-387. doi: 10.15898/j.cnki.11-2131/td.201804170046
    袁永海, 杨锋, 余红霞, 等.微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成[J].岩矿测试, 2018, 37(4):356-363. doi: 10.15898/j.cnki.11-2131/td.201707290122

    Yuan Y H, Yang F, Yu H X, et al.High-precision measurement of strontium and neodymium isotopic composition by multi-collector inductively coupled plasma-mass spectrometry with microwave digestion[J].Rock and Mineral Analysis, 2018, 37(4):356-363. doi: 10.15898/j.cnki.11-2131/td.201707290122
    Barling J, Arnold G L, Anbar A D.Natural mass-dependent variations in the isotopic composition of molybdenum[J].Earth and Planetary Science Letters, 2001, 193(3-4):447-457. doi: 10.1016/S0012-821X(01)00514-3
    Pietruszka A J, Walker R J, Candela P A.Determination of mass-dependent molybdenum isotopic variations by MC-ICP-MS:An evaluation of matrix effects[J].Chemical Geology, 2006, 225(1-2):121-136. doi: 10.1016/j.chemgeo.2005.09.002
    张羽旭, 温汉捷, 樊海峰.地质样品中Mo同位素测定的前处理方法研究[J].分析化学, 2009, 37(2):216-220. doi: 10.3321/j.issn:0253-3820.2009.02.010

    Zhang Y X, Wen H J, Fan H F.Chemical pretreatment methods for measurement of Mo isotope ratio on geological samples[J].Chinese Journal of Analytical Chemistry, 2009, 37(2):216-220. doi: 10.3321/j.issn:0253-3820.2009.02.010
    张羽旭.非传统稳定同位素Mo、Cd的分析测试方法及其地质应用[D].北京: 中国科学院大学, 2010.

    Zhang Y X.The Researches on Analytical Methods of the Isotope Fractionation of Non-traditional Stable Isotopes (Mo, Cd) and Its Application in Earth Sciences[D].Beijing: University of Chinese Academy of Sciences, 2010.
    Liu J, Wen H J, Zhang Y X, et al.Precise Mo isotope ratio measurements of low-Mo(ng·g-1) geological samples using MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2016, 31(6):1287-1297. doi: 10.1039/C6JA00006A
    Magnall J M, Gleeson S A, Poulton S W, et al.Links between seawater paleoredox and the formation of sediment-hosted massive sulphide (SHMS) deposits-Fe speciation and Mo isotope constraints from Late Devonian mudstones[J].Chemical Geology, 2018, 490(25):45-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f73fdb9ed0826f0f1e08d3d4004403ed
    Pearce C R, Cohen A S, Parkinson I J.Quantitative separation of molybdenum and rhenium from geological materials for isotopic determination by MC-ICP-MS[J].Geostandards and Geoanalytical Research, 2009, 33(2):219-229. doi: 10.1111/j.1751-908X.2009.00012.x
    李津, 朱祥坤, 唐索寒.钼化学纯化法及其适用的MC-ICP-MS仪器质量分馏校正方法对比[J].岩石矿物学杂志, 2011, 30(4):748-754. doi: 10.3969/j.issn.1000-6524.2011.04.021

    Li J, Zhu X K, Tang S H.Ion-exchange separation of Mo and its suitability for sample-standard bracketing and double spiking techniques of mass bias correction[J].Acta Petrologica et Mineralogica, 2011, 30(4):748-754. doi: 10.3969/j.issn.1000-6524.2011.04.021
    Li J, Zhu X K, Tang S H, et al.High-precision mea-surement of molybdenum isotopic compositions of selected geochemical reference materials[J].Geostandards and Geoanalytical Research, 2016, 40(3):405-415. doi: 10.1111/j.1751-908X.2015.00369.x
    King E K, Thompson A, Chadwick O A, et al.Moly-bdenum sources and isotopic composition during early stages of pedogenesis along a basaltic climate transect[J].Chemical Geology, 2016, 445(16):54-67. https://www.sciencedirect.com/science/article/abs/pii/S0009254116300249
    Kraus K A, Nelson F, Moore G E.Molybdenum(Ⅵ), tungsten(Ⅵ) and uranium(Ⅵ) in HCl and HCl-HF solutions[J].Journal of the American Chemical Society, 1955, 77(5):3972-3977.
    Wen H J, Carigan J, Cloquet C, et al.Isotopic delta values of molybdenum standard reference and prepared solutions measured by MC-ICP-MS:Proposition for delta zero and secondary references[J].Journal of Analytical Atomic Spectrometry, 2010, 25(5):716-721. doi: 10.1039/b921060a
  • Cited by

    Periodical cited type(18)

    1. 赵芳芳,诸堃,文芳. 超级微波消解-电感耦合等离子体发射光谱测银矿石中的银. 四川地质学报. 2024(01): 167-170 .
    2. 赵凯,芦新根,肖千鹏,张晶晶,谭书宇. 镍锍试金法富集地质样品中铂、钯、铑、铱. 化学分析计量. 2024(05): 66-71 .
    3. 郭家凡,陈笑语,孙勇,仲伟路,朱少璇,王琳. 镍锍试金富集-电感耦合等离子体质谱法测定地质样品中超痕量铂族元素. 岩矿测试. 2024(05): 693-702 . 本站查看
    4. 王夺. 镍锍试金-微波消解法联合测定汽车三元催化剂中铑. 有色矿冶. 2023(02): 59-61+49 .
    5. 刘芳美,甘聪,廖彬玲,罗小兵,赖秋祥. 锍镍试金富集-电感耦合等离子体质谱法测定铜阳极泥中微量元素铱铑. 岩矿测试. 2023(02): 298-306 . 本站查看
    6. 周彧琛,曲少鹏,吴俊,贾正勋,马景治. 改性三聚氰胺泡塑富集-电感耦合等离子体质谱(ICP-MS)法测定矿样中的钯. 中国无机分析化学. 2023(07): 735-740 .
    7. 李杰阳. 复杂多金属铜硫矿物中金含量的测定. 云南冶金. 2022(01): 110-115 .
    8. 陈永红,韩冰冰,洪博,芦新根,孟宪伟. 2019—2020年中国银分析测定的进展. 黄金. 2022(02): 104-110 .
    9. 杨昆. 铜镍硫化物矿物中铂族元素的分析研究. 化工管理. 2022(08): 13-15 .
    10. 张广安,张福元. 火试金灰皿在乙酸-H_2O体系中铅的浸出动力学. 过程工程学报. 2022(06): 774-781 .
    11. 樊蕾,王甜甜,姚明星,孙启亮,郭晓瑞. 锑铜试金-石墨炉原子吸收光谱法测定地球化学样品中痕量钌. 冶金分析. 2022(08): 35-41 .
    12. 胡振隆. 金矿的样品制备与分析方法研究进展. 世界有色金属. 2022(11): 187-189 .
    13. 刘向磊,孙文军,文田耀,王腾飞,王凯凯,刘宗超. 地质样品中贵金属分析方法现状及展望. 冶金分析. 2022(12): 23-35 .
    14. 王楠,周宇,任士远,陈明丽,刘西. 分离富集技术在痕量贵金属分析中的应用与进展. 冶金分析. 2022(12): 12-22 .
    15. 郭家凡,来新泽,王琳,胡家祯,高志军,来佳仪. 火试金反应原理及熔渣影响因素探究. 冶金分析. 2022(12): 1-11 .
    16. 贾欣欣. 地质样品中金的测定研究. 世界有色金属. 2020(06): 164-165 .
    17. 张强. 地质矿石样品中金、银含量测定方法的探讨. 世界有色金属. 2020(10): 157-158 .
    18. 张明,杨生鸿,朱琳,安国荣,韩永辉. 铜镍硫化物矿物中铂族元素的分析研究. 化工矿产地质. 2020(04): 343-347 .

    Other cited types(1)

Catalog

    Article views (2931) PDF downloads (59) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return