Citation: | WEN Jing, ZHANG Yu-xu, WEN Han-jie, ZHU Chuan-wei, FAN Hai-feng. Research on the Chemical Pretreatment for Mo Isotope Analysis of Special Geological Samples[J]. Rock and Mineral Analysis, 2020, 39(1): 30-40. DOI: 10.15898/j.cnki.11-2131/td.201906190087 |
朱祥坤, 王跃, 闫斌, 等.非传统稳定同位素地球化学的创建与发展[J].矿物岩石地球化学通报, 2013, 32(6):651-688. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201306002
Zhu X K, Wang Y, Yan B, et al.Developments of non-traditional stable isotope geochemistry[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(6):651-688. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201306002
|
Malinovsky D, Hammarlund D, Ilyashuk B, et al.Variations in the isotopic composition of molybdenum in freshwater lake systems[J].Chemical Geology, 2007, 236(3-4):181-198. doi: 10.1016/j.chemgeo.2006.09.006
|
Archer C, Vance D.The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans[J].Nature Geoscience, 2008, 1(9):597-600. doi: 10.1038/ngeo282
|
Nägler T F, Neubert N, Böttcher M E, et al.Molybdenum isotope fractionation in pelagic euxinia:Evidence from the modern Black and Baltic Seas[J].Chemical Geology, 2011, 289(1-2):1-11. doi: 10.1016/j.chemgeo.2011.07.001
|
Noordmann J, Weyer S, Montoya-Pino C, et al.Uranium and molybdenum isotope systematics in modern euxinic basins:Case studies from the central Baltic Sea and the Kyllaren Fjord (Norway)[J].Chemical Geology, 2015, 396(9):182-195. http://cn.bing.com/academic/profile?id=2d437b78217075593a08aae32b18cba4&encoded=0&v=paper_preview&mkt=zh-cn
|
Dahl T W, Wirth S B.Molybdenum isotope fractionation and speciation in a euxinic lake-Testing ways to discern isotope fractionation processes in a sulfidic setting[J].Chemical Geology, 2017, 460(5):84-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5977638c47070ba687d769cafd4da34a
|
Neely R A, Gislason S R, Ólafsson M, et al.Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland[J].Earth and Planetary Science Letters, 2018, 486(15):108-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9cabccfbc281a1b45fa8881b07c972b4
|
Siebert C, Nägler T F, Blanckenburg F V, et al.Molybdenum isotope record as a potential new proxy for paleoeanography[J].Earth and Planetary Science Letters, 2003, 211(1-2):159-171. doi: 10.1016/S0012-821X(03)00189-4
|
Arnold G L, Anbar A D, Barling J, et al.Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans[J].Science, 2004, 304(5667):87-90. doi: 10.1126/science.1091785
|
Lehmann B, Nägler T F, Holland H D, et al.Highly metalliferous carbonaceous shale and Early Cambrian seawater[J].Geology, 2007, 35(5):403-406. doi: 10.1130/G23543A.1
|
蒋少涌, 凌洪飞, 赵葵东, 等.华南寒武纪早期牛蹄塘组黑色岩系中Ni-Mo多金属硫化物层的钼同位素组成讨论[J].岩石矿物学杂志, 2008, 27(4):341-345. doi: 10.3969/j.issn.1000-6524.2008.04.011
Jiang S Y, Ling H F, Zhao K D, et al.Discussion on Mo isotopic compositions of black shale and Ni-Mo sulfide bed in the early Cambrian Niutitang Formation in South China[J].Acta Petrologica et Mineralogica, 2008, 27(4):341-345. doi: 10.3969/j.issn.1000-6524.2008.04.011
|
Kendall B, Komiya T, Lyons T W, et al.Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the Late Ediacaran Period[J].Geochimica et Cosmochimica Acta, 2015, 156(1):173-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=105ec9e88167bc09a96debc22b05c90d
|
Kurzweil F, Drost K, Pašava J, et al.Coupled sulfur, iron and molybdenum isotope data from black shales of the Teplá-Barrandian unit argue against deep ocean oxygenation during the Ediacaran[J].Geochimica et Cosmochimica Acta, 2015, 171(15):121-142. https://www.sciencedirect.com/science/article/abs/pii/S0016703715005256
|
Wen H J, Fan H F, Zhang Y X, et al.Reconstruction of Early Cambrian ocean chemistry from Mo isotopes[J].Geochimica et Cosmochimica Acta, 2015, 164(1):1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fd5c3e3cf51efe0e3c67e8967ba60fd0
|
Ruebsam W, Dickson A J, Hoyer E M, et al.Multiproxy reconstruction of oceanographic conditions in the Southern Epeiric Kupferschiefer Sea (Late Permian) based on redox-sensitive trace elements, molybdenum isotopes and biomarkers[J].Gondwana Research, 2017, 44:205-218. doi: 10.1016/j.gr.2016.10.017
|
Yin L, Li J, Tian H, et al.Rhenium-osmium and molybdenum isotope systematics of black shales from the Lower Cambrian Niutitang Formation, SW China:Evidence of a well oxygenated ocean at ca.520Ma[J].Chemical Geology, 2018, 499(5):26-42.
|
Chen J B, Zhao L S, Algeo T J, et al.Evaluation of paleomarine redox conditions using Mo-isotope data in low-[Mo] sediments:A case study from the Lower Triassic of South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519(1):178-193. https://www.sciencedirect.com/science/article/abs/pii/S0031018217310787
|
Duan Y, Anbar A D, Arnold G L, et al.Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event[J].Geochimica et Cosmochimica Acta, 2010, 74(23):6655-6668. doi: 10.1016/j.gca.2010.08.035
|
Wen H J, Carigan J, Zhang Y X, et al.Molybdenum isotopic records across the Precambrian-Cambrian Boundary[J].Geology, 2011, 39(8):775-778. doi: 10.1130/G32055.1
|
Eroglu S, Schoenberg R, Wille M, et al.Geochemical stratigraphy, sedimentology, and Mo isotope systematics of the ca.2.58-2.50 Ga-old Transvaal Supergroup carbonate platform, South Africa[J].Precambrian Research, 2015, 266:27-46. doi: 10.1016/j.precamres.2015.04.014
|
Kurzweil F, Wille M, Schoenberg R, et al.Continuously increasing δ98Mo values in Neoarchean blackshales and iron formations from the Hamersley Basin[J].Geochimica et Cosmochimica Acta, 2015, 164(1):523-542. https://www.sciencedirect.com/science/article/abs/pii/S0016703715002781
|
Li G S, Wang Y B, Shi G R, et al.Fluctuations of redox conditions across the Permian-Triassic Boundary-New evidence from the GSSP section in Meishan of South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 448(15):48-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c98fba540ac9a13248c245103589084
|
Dickson A J, Jenkyns H C, Porcelli D, et al.Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2(Late Cretaceous)[J].Geochimica et Cosmochimica Acta, 2016, 178(1):291-306. http://cn.bing.com/academic/profile?id=bf4c28aed97e3ef7a708a68879759feb&encoded=0&v=paper_preview&mkt=zh-cn
|
Kurzweil F, Wille M, Gantert N, et al.Manganese oxide shuttling in pre-GOE oceans-Evidence from molybdenum and iron isotopes[J].Earth and Planetary Science Letters, 2016, 452(15):69-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=773a3659d9e156bfbe3b20d0d709ba4a
|
Matthews A, Azrieli-Tal I, Benkovitz A, et al.Anoxic development of sapropel S1 in the Nile Fan inferred from redox sensitive proxies, Fe speciation, Fe and Mo isotopes[J].Chemical Geology, 2017, 475(25):24-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85af14d13ee9dd6a9cf0a1befb740a9d
|
Dong B H, Long X P, Li J, et al.Mo isotopic variations of a Cambrian sedimentary profile in the Huangling area, South China:Evidence for redox environment corresponding to the Cambrian Explosion[J].Gondwana Research, 2019, 69:45-55. doi: 10.1016/j.gr.2018.12.002
|
Murthy V R.Elemental and isotopic abundances of moly-bdenum in some meteorites[J].Geochimica et Cosmochimica Acta, 1963, 27:1171-1178. doi: 10.1016/0016-7037(63)90098-X
|
Nicolussi G K, Pellin M J, Lewis R S, et al.Molybdenum isotopic composition of individual presolar silicon carbide grains from the Murchison meteorite[J].Geochimica et Cosmochimica Acta, 1998, 62(6):1093-1104. doi: 10.1016/S0016-7037(98)00038-6
|
Burkhardt C, Hin R C, Kleine T, et al.Evidence for Mo isotope fractionation in the solar nebula and during planetary differentiation[J].Earth and Planetary Science Letters, 2014, 391(1):201-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8c2d5e903b1c71be7c889ddd72714c2f
|
Worsham E A, Burkhardt C, Budde G, et al.Distinct evolution of the carbonaceous and non-carbonaceous reservoirs:Insights from Ru, Mo, and W isotopes[J].Earth and Planetary Science Letters, 2019, 521(1):103-112. http://cn.bing.com/academic/profile?id=c2f36f44d57614e12971095dd01f70e4&encoded=0&v=paper_preview&mkt=zh-cn
|
Mathur R, Brantley S, Anbar A, et al.Variation of Mo isotopes from molybdenite in high-temperature hydrothermal ore deposits[J].Miner Deposita, 2010, 45(1):43-50. doi: 10.1007/s00126-009-0257-z
|
Shafiei B, Shamanian G, Mathur R, et al.Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems[J].Mineralium Deposita, 2015, 50(3):281-291. doi: 10.1007/s00126-014-0537-0
|
Lehmann B, Frei R, Xu L G, et al.Early Cambrian black shale-hosted Mo-Ni and V mineralization on the rifted margin of the Yangtze Platform, China:Reconnaissance chromium isotope data and a refined metallogenic model[J].Economic Geology, 2015, 111(1):89-103.
|
Wang Y, Zhou L, Gao S, et al.Variation of molybdenum isotopes in molybdenite from porphyry and vein Mo deposits in the Gangdese metallogenic belt, Tibetan Plateau and its implications[J].Mineralium Deposita2015, 51(2):201-210. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5e6f77431d5e3a87aa4af5e9911a409d
|
Yao J M, Mathur R, Sun W D, et al.Fractionation of Cu and Mo isotopes caused by vapor-liquid partitioning, evidence from the Dahutang W-Cu-Mo ore field[J].Geochemistry, Geophysics, Geosystems, 2016, 17(5):1725-1739. doi: 10.1002/2016GC006328
|
Migeon V, Bourdon B, Pili E, et al.Molybdenum isotope fractionation during acid leaching of a granitic uranium ore[J].Geochimica et Cosmochimica Acta, 2018, 231(15):30-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddb693ed5dc1a983fa945ba7dc53d610
|
胡文峰, 张烨恺, 刘金华, 等.西藏冈底斯斑岩型铜钼矿床的Cu、Mo同位素组成及其意义[J].地球科学, 2019, 44(6):1923-1934. http://d.old.wanfangdata.com.cn/Periodical/dqkx201906013
Hu W F, Zhang Y K, Liu J H, et al.The isotopic compositions of copper and molybdenum from porphyry Cu-Mo deposit in the Gangdese, Tibet, and their significance[J].Earth Science, 2019, 44(6):1923-1934. http://d.old.wanfangdata.com.cn/Periodical/dqkx201906013
|
孟郁苗, 胡瑞忠, 高剑峰, 等.锑的地球化学行为以及锑同位素研究进展[J].岩矿测试, 2016, 35(4):339-348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002
Meng Y M, Hu R Z, Gao J F, et al.Research progress on Sb geochemistry and Sb isotopes[J].Rock and Mineral Analysis, 2016, 35(4):339-348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002
|
尹鹏, 何倩, 何会军, 等.离子交换树脂法分离沉积物中锶和钕的影响因素研究[J].岩矿测试, 2018, 37(4):379-387. doi: 10.15898/j.cnki.11-2131/td.201804170046
Yin P, He Q, He H J, et al.Study on the factors influencing the separation of Sr and Nd in sediments by ion exchange resin[J].Rock and Mineral Analysis, 2018, 37(4):379-387. doi: 10.15898/j.cnki.11-2131/td.201804170046
|
袁永海, 杨锋, 余红霞, 等.微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成[J].岩矿测试, 2018, 37(4):356-363. doi: 10.15898/j.cnki.11-2131/td.201707290122
Yuan Y H, Yang F, Yu H X, et al.High-precision measurement of strontium and neodymium isotopic composition by multi-collector inductively coupled plasma-mass spectrometry with microwave digestion[J].Rock and Mineral Analysis, 2018, 37(4):356-363. doi: 10.15898/j.cnki.11-2131/td.201707290122
|
Barling J, Arnold G L, Anbar A D.Natural mass-dependent variations in the isotopic composition of molybdenum[J].Earth and Planetary Science Letters, 2001, 193(3-4):447-457. doi: 10.1016/S0012-821X(01)00514-3
|
Pietruszka A J, Walker R J, Candela P A.Determination of mass-dependent molybdenum isotopic variations by MC-ICP-MS:An evaluation of matrix effects[J].Chemical Geology, 2006, 225(1-2):121-136. doi: 10.1016/j.chemgeo.2005.09.002
|
张羽旭, 温汉捷, 樊海峰.地质样品中Mo同位素测定的前处理方法研究[J].分析化学, 2009, 37(2):216-220. doi: 10.3321/j.issn:0253-3820.2009.02.010
Zhang Y X, Wen H J, Fan H F.Chemical pretreatment methods for measurement of Mo isotope ratio on geological samples[J].Chinese Journal of Analytical Chemistry, 2009, 37(2):216-220. doi: 10.3321/j.issn:0253-3820.2009.02.010
|
张羽旭.非传统稳定同位素Mo、Cd的分析测试方法及其地质应用[D].北京: 中国科学院大学, 2010.
Zhang Y X.The Researches on Analytical Methods of the Isotope Fractionation of Non-traditional Stable Isotopes (Mo, Cd) and Its Application in Earth Sciences[D].Beijing: University of Chinese Academy of Sciences, 2010.
|
Liu J, Wen H J, Zhang Y X, et al.Precise Mo isotope ratio measurements of low-Mo(ng·g-1) geological samples using MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2016, 31(6):1287-1297. doi: 10.1039/C6JA00006A
|
Magnall J M, Gleeson S A, Poulton S W, et al.Links between seawater paleoredox and the formation of sediment-hosted massive sulphide (SHMS) deposits-Fe speciation and Mo isotope constraints from Late Devonian mudstones[J].Chemical Geology, 2018, 490(25):45-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f73fdb9ed0826f0f1e08d3d4004403ed
|
Pearce C R, Cohen A S, Parkinson I J.Quantitative separation of molybdenum and rhenium from geological materials for isotopic determination by MC-ICP-MS[J].Geostandards and Geoanalytical Research, 2009, 33(2):219-229. doi: 10.1111/j.1751-908X.2009.00012.x
|
李津, 朱祥坤, 唐索寒.钼化学纯化法及其适用的MC-ICP-MS仪器质量分馏校正方法对比[J].岩石矿物学杂志, 2011, 30(4):748-754. doi: 10.3969/j.issn.1000-6524.2011.04.021
Li J, Zhu X K, Tang S H.Ion-exchange separation of Mo and its suitability for sample-standard bracketing and double spiking techniques of mass bias correction[J].Acta Petrologica et Mineralogica, 2011, 30(4):748-754. doi: 10.3969/j.issn.1000-6524.2011.04.021
|
Li J, Zhu X K, Tang S H, et al.High-precision mea-surement of molybdenum isotopic compositions of selected geochemical reference materials[J].Geostandards and Geoanalytical Research, 2016, 40(3):405-415. doi: 10.1111/j.1751-908X.2015.00369.x
|
King E K, Thompson A, Chadwick O A, et al.Moly-bdenum sources and isotopic composition during early stages of pedogenesis along a basaltic climate transect[J].Chemical Geology, 2016, 445(16):54-67. https://www.sciencedirect.com/science/article/abs/pii/S0009254116300249
|
Kraus K A, Nelson F, Moore G E.Molybdenum(Ⅵ), tungsten(Ⅵ) and uranium(Ⅵ) in HCl and HCl-HF solutions[J].Journal of the American Chemical Society, 1955, 77(5):3972-3977.
|
Wen H J, Carigan J, Cloquet C, et al.Isotopic delta values of molybdenum standard reference and prepared solutions measured by MC-ICP-MS:Proposition for delta zero and secondary references[J].Journal of Analytical Atomic Spectrometry, 2010, 25(5):716-721. doi: 10.1039/b921060a
|
1. |
赵芳芳,诸堃,文芳. 超级微波消解-电感耦合等离子体发射光谱测银矿石中的银. 四川地质学报. 2024(01): 167-170 .
![]() | |
2. |
赵凯,芦新根,肖千鹏,张晶晶,谭书宇. 镍锍试金法富集地质样品中铂、钯、铑、铱. 化学分析计量. 2024(05): 66-71 .
![]() | |
3. |
郭家凡,陈笑语,孙勇,仲伟路,朱少璇,王琳. 镍锍试金富集-电感耦合等离子体质谱法测定地质样品中超痕量铂族元素. 岩矿测试. 2024(05): 693-702 .
![]() | |
4. |
王夺. 镍锍试金-微波消解法联合测定汽车三元催化剂中铑. 有色矿冶. 2023(02): 59-61+49 .
![]() | |
5. |
刘芳美,甘聪,廖彬玲,罗小兵,赖秋祥. 锍镍试金富集-电感耦合等离子体质谱法测定铜阳极泥中微量元素铱铑. 岩矿测试. 2023(02): 298-306 .
![]() | |
6. |
周彧琛,曲少鹏,吴俊,贾正勋,马景治. 改性三聚氰胺泡塑富集-电感耦合等离子体质谱(ICP-MS)法测定矿样中的钯. 中国无机分析化学. 2023(07): 735-740 .
![]() | |
7. |
李杰阳. 复杂多金属铜硫矿物中金含量的测定. 云南冶金. 2022(01): 110-115 .
![]() | |
8. |
陈永红,韩冰冰,洪博,芦新根,孟宪伟. 2019—2020年中国银分析测定的进展. 黄金. 2022(02): 104-110 .
![]() | |
9. |
杨昆. 铜镍硫化物矿物中铂族元素的分析研究. 化工管理. 2022(08): 13-15 .
![]() | |
10. |
张广安,张福元. 火试金灰皿在乙酸-H_2O体系中铅的浸出动力学. 过程工程学报. 2022(06): 774-781 .
![]() | |
11. |
樊蕾,王甜甜,姚明星,孙启亮,郭晓瑞. 锑铜试金-石墨炉原子吸收光谱法测定地球化学样品中痕量钌. 冶金分析. 2022(08): 35-41 .
![]() | |
12. |
胡振隆. 金矿的样品制备与分析方法研究进展. 世界有色金属. 2022(11): 187-189 .
![]() | |
13. |
刘向磊,孙文军,文田耀,王腾飞,王凯凯,刘宗超. 地质样品中贵金属分析方法现状及展望. 冶金分析. 2022(12): 23-35 .
![]() | |
14. |
王楠,周宇,任士远,陈明丽,刘西. 分离富集技术在痕量贵金属分析中的应用与进展. 冶金分析. 2022(12): 12-22 .
![]() | |
15. |
郭家凡,来新泽,王琳,胡家祯,高志军,来佳仪. 火试金反应原理及熔渣影响因素探究. 冶金分析. 2022(12): 1-11 .
![]() | |
16. |
贾欣欣. 地质样品中金的测定研究. 世界有色金属. 2020(06): 164-165 .
![]() | |
17. |
张强. 地质矿石样品中金、银含量测定方法的探讨. 世界有色金属. 2020(10): 157-158 .
![]() | |
18. |
张明,杨生鸿,朱琳,安国荣,韩永辉. 铜镍硫化物矿物中铂族元素的分析研究. 化工矿产地质. 2020(04): 343-347 .
![]() |