• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
WANG Xue-qiu, ZHANG Qin, BAI Jin-feng, YAO Wen-sheng, LIU Mei, LIU Xue-min, WANG Wei. Comparison of Laboratory Analysis Parameters and Guidelines for Global Geochemical Baselines and Environmental Monitoring[J]. Rock and Mineral Analysis, 2020, 39(1): 1-14. DOI: 10.15898/j.cnki.11-2131/td.201906050080
Citation: WANG Xue-qiu, ZHANG Qin, BAI Jin-feng, YAO Wen-sheng, LIU Mei, LIU Xue-min, WANG Wei. Comparison of Laboratory Analysis Parameters and Guidelines for Global Geochemical Baselines and Environmental Monitoring[J]. Rock and Mineral Analysis, 2020, 39(1): 1-14. DOI: 10.15898/j.cnki.11-2131/td.201906050080

Comparison of Laboratory Analysis Parameters and Guidelines for Global Geochemical Baselines and Environmental Monitoring

More Information
  • Received Date: June 04, 2019
  • Revised Date: August 25, 2019
  • Accepted Date: August 31, 2019
  • Published Date: December 31, 2019
  • HIGHLIGHTS
    (1) Geochemical data from China, Europe, the United States and Australia were compared.
    (2) The reasons for the differences in data of mercury, cadmium and tungsten were analyzed.
    (3) It was suggested that sampling error and laboratory analysis error should be minimized to ensure the accuracy of geochemical reference values.
    BACKGROUND Global harmonious high-quality geochemical data and accompanying maps are reference baselines for quantifying future human-induced or natural environmental changes.
    OBJECTIVESTo ensure the accuracy of geochemical reference values and analysis data, advices were made for laboratory analysis.
    METHODSThe analytical data of Cd, Hg and W from China, USA, Europe and Australia were compared and two analysis data collected 15 years apart from one laboratory in China were also compared.
    RESULTSAll of the cadmium analysis data were consistent with a correlation coefficient of 0.96. Mercury was poorly consistent with a correlation coefficient of 0.74, and tungsten was not comparable with a correlation coefficient of 0.56. The analysis results of cadmium were highly consistent because the analysis method was the same and the detection limit was comparable. The consistency of mercury was poor, especially the low-content mercury, which was significantly different due to different analysis methods and detection limits. Tungsten was not comparable due to different laboratory analysis methods. The prerequisite for recognition of environmental changes (RCenv > REsmpl+RDlab) was that the change value must be larger than the value of field sampling error (REsmpl) and laboratory analysis error (RDlab). Therefore, sampling error and laboratory analysis error must be minimized.
    CONCLUSIONSSix general guidelines are proposed. (1) The original sample is separated through a 10-mesh sieve and processed to a particle size of less than 200 mesh using a pollution-free method. (2) A total of 71 elements plus other parameters should be determined by well-established multiple analysis methods, e.g., fused glass bead-XRF for major elements and 4-acids ICP-MS and ICP-OES for minor elements in combination with other methods. (3) The method detection limits must be lower than crustal abundance of the chemical elements and reportable data percentage must be more than 90%. (4) The geochemical reference materials used for quality control should contain the reported certified CRM values for all elements. (5) Analytical relative errors for the triplicate samples should be less than 40% (RD ≤ 40%) if concentration of the element is less than 3 times detection limits, and less than 20% (RD ≤ 20%) for the elements with concentration more than 3 times detection limits as well as major elements, Fe-group elements and toxic metals. (6) The total contents of major elements SiO2, Al2O3, Fe2O3, FeO, MnO, MgO, CaO, Na2O, K2O, TiO2, P2O5, H2O+, CO2, SO2 and organic matters or those of SiO2, Al2O3, Fe2O3, FeO, MnO, MgO, CaO, Na2O, K2O, TiO2, P2O5 and LOI should be at 99.3%-100.7%.
  • Darnley A G, Björklund A, Bølviken B, et al.A global geochemical database for environmental and resource management: Final report of IGCP Project 259, Earth Sciences, 19, UNESCO Publishing, Paris, 1995, 122 pp.http://www.globalgeochemicalbaselines.eu/wp-content/uploads/2012/07/BlueBook_GGDIGCP259.pdf (last access 5 March 2014).
    Smith D B, Wang X, Reeder S, et al.The IUGS/IAGC task group on global geochemical baselines[J].Earth Science Frontiers, 2012, 19:1-6. http://cn.bing.com/academic/profile?id=c1b7b8c9250a4a4b4e1d079fedcdb532&encoded=0&v=paper_preview&mkt=zh-cn
    王学求.全球地球化学基准:了解过去, 预测未来[J].地学前缘, 2012, 19(3):7-18. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203003

    Wang X Q.Global geochemical baselines:Understanding the past and predicting the future[J].Earth Science Frontiers, 2012, 19(3):7-18. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203003
    王学求, 周建, 徐善法, 等.全国地球化学基准网建立与土壤地球化学基准值特征[J].中国地质, 2016, 43(5):1469-1480. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201605001

    Wang X Q, Zhou J, Xu S F, et al.China soil geochemical baselines networks:Data characteristics[J].Geology in China, 2016, 43(5):1469-1480. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201605001
    王学求, 谢学锦, 张本仁, 等.地壳全元素探测——构建"化学地球"[J].地质学报, 2010, 84(6):854-864. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201006009

    Wang X Q, Xie X J, Zhang B R, et al.China geochemical probe:Making "Geochemical Earth"[J].Acta Geological Sinica, 2010, 84(6):854-864. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201006009
    聂兰仕, 王学求, 徐善法, 等.全球地球化学数据管理系统:"化学地球"软件研制[J].地学前缘, 2012, 5(3):43-48. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203006

    Nie L S, Wang X Q, Xu S F, et al.Global geochemical data management:Development of chemical earth software[J].Earth Science Frontiers, 2012, 5(3):43-48. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203006
    Darnley A G.International geochemical mapping:A new global project[J].Journal of Geochemical Exploration, 1990, 39:1-13. doi: 10.1016/0375-6742(90)90066-J
    Xie X, Cheng H.The suitability of floodplain sediment as global sampling medium: Evidence from China.In: G.F.Taylor and R.Davy (Eds.), Geochemical Exploration 1995[J].Journal of Geochemical Exploration, 1997, 58: 51-62.
    Wang X Q.The CGB sampling team, China geochemical baselines:Sampling methodology[J].Journal of Geochemical Exploration, 2015, 148:25-39. doi: 10.1016/j.gexplo.2014.05.018
    Wang X Q, Liu X M, Han Z R, et al.Concentration and distribution of mercury in drainage catchment sediment and alluvial soil of China[J].Journal of Geochemical Exploration, 2015, 154:32-48. doi: 10.1016/j.gexplo.2015.01.008
    王学求, 周建, 徐善法, 等, 全国地球化学基准网建立与地球化学基准值特征[J].中国地质, 2016, 43(5):1469-1480. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201605001

    Wang X Q, Zhou J, Xu S F, et al.China soil geochemical baselines networks:Data characteristics[J].Geology in China, 2016, 43(5):1469-1480. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201605001
    Salminen R, Tarvainen T, Demetriades A, et al.FOREGS Geochemical Mapping Field Manual.Geological Survey of Finland, Espoo, Guide 47, 36 pp., 1 Appendix.http://arkisto.gsf.fi/op/op47/op47.pdf (last access 5 March 2014).1998.
    Salminen R (Chief Editor), Batista M J, Bidovec M, et al.FOREGS Geochemical Atlas of Europe, Part 1—Background information, methodology and maps.Geological Survey of Finland, Espoo, 2005, 526 pp.http://weppi.gtk.fi/publ/foregsatlas/ (last access 5 March 2014).
    Reimann C, Demetriades A, Eggen O A, et al.Euro-GeoSurveys Geochemistry Expert Group.The EuroGeoSurveys Geochemical mapping of agricultural and grazing land soils project (GEMAS)—Evaluation of quality control results of total C and S, total organic carbon (TOC), cation exchange capacity (CEC), XRF, pH, and particle size distribution (PSD) analyses.NGU Report 2011, 043, 90 pp., http://www.ngu.no/upload/Publikasjoner/Rapporter/2011/2011_043.pdf (last access 5 March 2014).
    Reimann C, Demetriades A, Birke M, et al.EuroGeoSurveys Geochemistry Expert Group.The EuroGeoSurveys Geochemical Mapping of Agricultural and grazing land Soils project (GEMAS)—Evaluation of quality control results of particle size estimation by MIR prediction, Pb-isotope and MMI® extraction analyses and results of the GEMAS ring test for the standards Ap and Gr.NGU Report 2012, 051, 136 pp., http://www.ngu.no/upload/Publikasjoner/Rapporter/2012/2012_051.pdf (last access 5 March 2014).
    Reimann C, Birke M, Demetriades A, et al.Chemistry of Europe's agricultural soils—Part A: Methodology and interpretation of the GEMAS data set.Geologisches Jahrbuch (Reihe B), Schweizerbarth, Hannover, 2014a, 528 pp.http://www.schweizerbart.de/publications/detail/isbn/9783510968466 (last access 5 March 2014).
    Reimann C, Birke M, Demetriades A, et al.Chemistry of Europe's agricultural soils—Part B: General background information and further analysis of the GEMAS data set.Geologisches Jahrbuch (Reihe B), Schweizerbarth, Hannover, 2014b, 352 pp.http://www.schweizerbart.de/publications/detail/isbn/9783510968473/Geolo-gisches_Jahrbuch_Reihe_B_Heft_B103_Chemistry_ (last access 5 March).
    Smith D B.Preface:Geochemical studies of North American soils:Results from the pilot study phase of the North American Soil Geochemical Landscapes Project[J].Applied Geochemistry, 2009, 24:1355-1356. doi: 10.1016/j.apgeochem.2009.04.006
    Smith D B, Cannon W F, Woodruff L G, et al.History and progress of the North American Soil Geochemical Landscapes Project, 2001—2010[J].Earth Science Frontiers, 2012, 19:19-32. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203004
    Smith D B, Cannon W F, Woodruff L G, et al.Geo-chemical and mineralogical data for soils of the conterminous United States.U.S.Geological Survey Data Series, 2013, 801, 19.http://pubs.usgs.gov/ds/801/ (last access 5 March 2014).
    Caritat P, de Cooper M.National Geochemical Survey of Australia: The Geochemical Atlas of Australia.Geoscience Australia, Record 2011/20 (2 Volumes), 557 pp.http://www.ga.gov.au/energy/projects/national-geochemical-survey/atlas.html (last access 5 March 2014).
    Caritat de P, Reimann C, Smith D B, et al.Chemical elements in the environment:Multi-element geochemical datasets from continental-to national-scale surveys on four continents[J].Applied Geochemistry, 2018, 89:150-159. doi: 10.1016/j.apgeochem.2017.11.010
    王学求.透视全球资源与环境, 实施"化学地球"国际大科学计划[J].中国地质, 2017, 44(1):201-202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201701020

    Wang X Q.The initiative for International Cooperation Project of Mapping Chemical Earth for sustaining global resources and environments[J].Geology in China, 2017, 44(1):201-202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201701020
    Xie X J.Analytical requirements in international geo-chemical mapping[J].Analyst, 1995, 120:1497-1504. doi: 10.1039/an9952001497
    Reimann C, Demetriades A, Eggen O A, et al.The EuroGeoSurveys Geochemical Mapping of Agricultural and Grazing Land Soils Project (GEMAS)—Evaluation of Quality Control Results of Aqua Regia Extraction Analysis.Norges Geologiske UndersØkelse Report, 2009.049, 94 pp., http://www.ngu.no/upload/Publikasjoner/Rapporter/2009/2009_049.pdf (last access 14 July 2013).
    Yao W S, Xie X J, Wang X Q.Comparison of results analyzed by Chinese and European laboratories for FOREGS geochemical baselines mapping samples[J].Geoscience Frontiers, 2012, 2(2):247-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy-e201102012
    Liu X M, Wang X Q, Patrice de Caritat, et al.Comparison of data sets obtained by global-scale geochemical sampling in Australia, China and Europe[J].Journal of Geochemical Exploration, 2015, 148:1-11. doi: 10.1016/j.gexplo.2013.11.005
    王学求, 谢学锦.金的勘查地球化学[M].济南:山东科学技术出版社, 2000.

    Wang X Q, Xue X J.Exploration Geochemistry of Gold[M].Jinan: Shandong Science and Technology Press, 2000.
    吕贻忠.土壤学[M].北京:中国农业出版社, 2006.

    Lü Y Z. Pedology[M].Beijing:China Agriculture Pres, 2006.
    方如康.环境学词典[M].北京:科学出版社, 2003.

    Fang R K.Dictionary of Environmental Science[M].Beijing:Science Press, 2003.
    张勤, 白金峰, 王烨.地壳全元素配套分析方案及分析质量监控系统[J].地学前缘, 2012, 19(3):33-42. http://d.old.wanfangdata.com.cn/Conference/7610888

    Zhang Q, Bai J F, Wang Y.Analytical scheme and quality monitoring system for China geochemical baselines[J].Earth Science Frontiers, 2012, 19(3): 33-42. http://d.old.wanfangdata.com.cn/Conference/7610888
    Xie X J, Yan M C, Li L Z, et al.Usable values for Chinese standard reference samples of stream sediment, soil and rocks GSD9-12, GSS1-8 and GSR1-6[J].Geostandards Newsletter, 1985, 9:227-280. doi: 10.1111/j.1751-908X.1985.tb00458.x
    刘妹, 顾铁新, 潘含江, 等.泛滥平原沉积物标准物质研制[J].岩矿测试, 2018, 37(5):558-571. doi: 10.15898/j.cnki.11-2131/td.201801080002

    Liu M, Gu T X, Pan H J, et al.Preparation of seven certified reference materials for floodplain sediments[J].Rock and Mineral Analysis, 2018, 37(5):558-571. doi: 10.15898/j.cnki.11-2131/td.201801080002
  • Cited by

    Periodical cited type(18)

    1. 赵芳芳,诸堃,文芳. 超级微波消解-电感耦合等离子体发射光谱测银矿石中的银. 四川地质学报. 2024(01): 167-170 .
    2. 赵凯,芦新根,肖千鹏,张晶晶,谭书宇. 镍锍试金法富集地质样品中铂、钯、铑、铱. 化学分析计量. 2024(05): 66-71 .
    3. 郭家凡,陈笑语,孙勇,仲伟路,朱少璇,王琳. 镍锍试金富集-电感耦合等离子体质谱法测定地质样品中超痕量铂族元素. 岩矿测试. 2024(05): 693-702 . 本站查看
    4. 王夺. 镍锍试金-微波消解法联合测定汽车三元催化剂中铑. 有色矿冶. 2023(02): 59-61+49 .
    5. 刘芳美,甘聪,廖彬玲,罗小兵,赖秋祥. 锍镍试金富集-电感耦合等离子体质谱法测定铜阳极泥中微量元素铱铑. 岩矿测试. 2023(02): 298-306 . 本站查看
    6. 周彧琛,曲少鹏,吴俊,贾正勋,马景治. 改性三聚氰胺泡塑富集-电感耦合等离子体质谱(ICP-MS)法测定矿样中的钯. 中国无机分析化学. 2023(07): 735-740 .
    7. 李杰阳. 复杂多金属铜硫矿物中金含量的测定. 云南冶金. 2022(01): 110-115 .
    8. 陈永红,韩冰冰,洪博,芦新根,孟宪伟. 2019—2020年中国银分析测定的进展. 黄金. 2022(02): 104-110 .
    9. 杨昆. 铜镍硫化物矿物中铂族元素的分析研究. 化工管理. 2022(08): 13-15 .
    10. 张广安,张福元. 火试金灰皿在乙酸-H_2O体系中铅的浸出动力学. 过程工程学报. 2022(06): 774-781 .
    11. 樊蕾,王甜甜,姚明星,孙启亮,郭晓瑞. 锑铜试金-石墨炉原子吸收光谱法测定地球化学样品中痕量钌. 冶金分析. 2022(08): 35-41 .
    12. 胡振隆. 金矿的样品制备与分析方法研究进展. 世界有色金属. 2022(11): 187-189 .
    13. 刘向磊,孙文军,文田耀,王腾飞,王凯凯,刘宗超. 地质样品中贵金属分析方法现状及展望. 冶金分析. 2022(12): 23-35 .
    14. 王楠,周宇,任士远,陈明丽,刘西. 分离富集技术在痕量贵金属分析中的应用与进展. 冶金分析. 2022(12): 12-22 .
    15. 郭家凡,来新泽,王琳,胡家祯,高志军,来佳仪. 火试金反应原理及熔渣影响因素探究. 冶金分析. 2022(12): 1-11 .
    16. 贾欣欣. 地质样品中金的测定研究. 世界有色金属. 2020(06): 164-165 .
    17. 张强. 地质矿石样品中金、银含量测定方法的探讨. 世界有色金属. 2020(10): 157-158 .
    18. 张明,杨生鸿,朱琳,安国荣,韩永辉. 铜镍硫化物矿物中铂族元素的分析研究. 化工矿产地质. 2020(04): 343-347 .

    Other cited types(1)

Catalog

    Article views (8423) PDF downloads (154) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return