• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
SHEN Yu-min, LUO Zhi-ding, GUO Xiao-biao, WU Gang, WANG Chen-rong, FU Ai-rui, GAO Shu-lin, XIAO Fan. Determination of Trace Gold in Geochemical Samples by Flame Atomic Fluorescence Spectrometry with PUFP Separation and Enrichment[J]. Rock and Mineral Analysis, 2020, 39(1): 127-134. DOI: 10.15898/j.cnki.11-2131/td.201809260108
Citation: SHEN Yu-min, LUO Zhi-ding, GUO Xiao-biao, WU Gang, WANG Chen-rong, FU Ai-rui, GAO Shu-lin, XIAO Fan. Determination of Trace Gold in Geochemical Samples by Flame Atomic Fluorescence Spectrometry with PUFP Separation and Enrichment[J]. Rock and Mineral Analysis, 2020, 39(1): 127-134. DOI: 10.15898/j.cnki.11-2131/td.201809260108

Determination of Trace Gold in Geochemical Samples by Flame Atomic Fluorescence Spectrometry with PUFP Separation and Enrichment

More Information
  • Received Date: September 25, 2018
  • Revised Date: June 09, 2019
  • Accepted Date: October 20, 2019
  • Published Date: December 31, 2019
  • HIGHLIGHTS
    (1) The matrix interference and its elimination method for the determination of trace Au by FAFS was studied.
    (2) Using 3.0g/L thiourea-1% hydrochloric acid as the extrication solution can effectively eliminate the memory effect.
    (3) Compared with ICP-MS, the accuracy of FAFS in the determination of trace Au was confirmed.
    BACKGROUNDThe detection sensitivity, stability, and linear range of Au using flame atomic fluorescence spectrometry (FAFS) is comparable to the method of inductivity coupled plasma-mass spectrometry (ICP-MS). When Au concentration is below 0.5ng/g, it is difficult to accurately determine Au if the interference elements in FAFS are not separated and eliminated.
    OBJECTIVESTo optimize the conditions during determination of trace Au by FAFS method.
    METHODSThe optimized conditions for trace Au detection using FAFS were provided based on the conventional Au separation and enrichment method of polyurethane foam plastics (PUFP). Using the thiourea (3.0g/L) and HCl (1%) as desorption solution can effectively eliminate the Au memory effect after separation by PUFP with low Au background value (≤ 0.25ng/g), and 5μg/mL of Fe3+ solution added into Au standard solutions was used to eliminate the interference during Au detection using FAFS.
    RESULTSThe method was used to analyze national standard materials GBW07805, GBW07242, GBW07244a, GBW07245a and GBW07247, which yielded the relative error (RE) and relative standard deviation (RSD) of less than 4.7% and 23.2%, respectively. The Au contents for 90 primary halo samples and 4 monitor samples were analyzed simultaneously using FAFS and ICP-MS. Results showed that no significant differences existed between the two methods with F=1.23 and the correlation coefficient of 1.01, which further proved the accuracy and reliability of FAFS.
    CONCLUSIONSFAFS is simple, convenient, fast and practical. Method detection limit of Au is as low as 0.08ng/g, and the linear range (0.08-500ng/g) is three orders of magnitude.

  • Winefordner J D, Vickers T J.Atomic fluorescence spectrometry as a means of chemical analysis[J].Analytical Chemistry, 1964, 36(1):161-165. doi: 10.1021/ac60207a052
    Demers D R, Allemand C D.Atomic fluorescence spectrometry with an inductively coupled plasma as atomization cell and pulsed hollow cathode lamps for excitation[J].Analytical Chemistry, 1981, 53(12):1915-1921. doi: 10.1021/ac00235a044
    Montaser A, Fassel V A.Inductively coupled plasmas as atomization cells for atomic fluorescence spectrometry[J].Analytical Chemistry, 1976, 48(11):1490-1499. doi: 10.1021/ac50005a021
    Weeks S J, Haraguchi H, Winefordner J D.Improvement of detection limits in laser-excited atomic fluorescence flame spectrometry[J].Analytical Chemistry, 1978, 50(2):360-368. doi: 10.1021/ac50024a047
    Bolshov M A, Zybin A V, Smmirenkina I I.Atomic fluorescence spectrometry with laser excitation[J].Spectrochimica Acta, 1981, 36B(12):1143-1152. http://cn.bing.com/academic/profile?id=b51e21ede682630b891b64061f22f376&encoded=0&v=paper_preview&mkt=zh-cn
    李刚, 胡斯宪, 陈琳玲.原子荧光光谱分析技术的创新与发展[J].岩矿测试, 2013, 32(3):358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003

    Li G, Hu S X, Chen L L.Innovation and development for atomic fluorescence spectrometry analysis[J].Rock and Mineral Analysis, 2013, 32(3):358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003
    《岩石矿物分析》编委会.岩石矿物分析(第四版第三分册)[M].北京:地质出版社, 2011:623-638.

    The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis(The Fourth Edition:Volume Ⅲ)[M].Beijing:Geological Press, 2011:623-638.
    刘向磊, 文田耀, 孙文军, 等.聚氨酯泡塑富集硫脲解脱-石墨炉原子吸收光谱法测定地质样品中金铂[J].岩矿测试, 2013, 32(4):576-580. doi: 10.3969/j.issn.0254-5357.2013.04.010

    Liu X L, Wen T Y, Sun W J, et al.Determination of Au and Pt in geological samples by graphite furnace atomic absorption spectrometry with concentrate and extraction by foam plastics and thiourea[J].Rock and Mineral Analysis, 2013, 32(4):576-580. doi: 10.3969/j.issn.0254-5357.2013.04.010
    邢夏, 徐进力, 陈海杰, 等.抗坏血酸为基体改进剂石墨炉原子吸收光谱法测定金矿区植物样品中的痕量金[J].岩矿测试, 2015, 34(3):319-324. doi: 10.15898/j.cnki.11-2131/td.2015.03.010

    Xing X, Xu L J, Chen H J, et al.Determination of trace gold in plant samples from a gold mining mrea by graphite furnace atomic absorption spectrometry with ascorbic acid as the matrix modifier[J].Rock and Mineral Analysis, 2015, 34(3):319-324. doi: 10.15898/j.cnki.11-2131/td.2015.03.010
    陈景伟, 李玉明, 宋双喜, 等.载炭泡塑吸附-电感耦合等离子体发射光谱测定金矿石的金量[J].岩矿测试, 2015, 34(3):314-318. doi: 10.15898/j.cnki.11-2131/td.2015.03.009

    Chen J W, Li Y M, Song S X, et al.Determination of gold in gold ores by inductively coupled plasma-optical emission spectrometry with carbon-loaded foam flastic adsorption[J].Rock and Mineral Analysis, 2015, 34(3):314-318. doi: 10.15898/j.cnki.11-2131/td.2015.03.009
    魏轶, 窦向丽, 巨力佩, 等.四酸溶解-电感耦合等离子体发射光谱法测定金锑矿和锑矿石中的锑[J].岩矿测试, 2013, 32(5):715-718. doi: 10.3969/j.issn.0254-5357.2013.05.007

    Wei Y, Dou X L, Ju L P, et al.Determination of antimony in gold-antimony ore and antimony ore by inductively coupled plasma-atomic emission spectrometry with four acids dissolution[J].Rock and Mineral Analysis, 2013, 32(5):715-718. doi: 10.3969/j.issn.0254-5357.2013.05.007
    张翼明, 张立锋, 周凯红.电感耦合等离子体质谱法测定硫化矿中金[J].冶金分析, 2014, 34(12):44-47. http://d.old.wanfangdata.com.cn/Periodical/yjfx201412009

    Zhang Y M, Zhang L F, Zhou K H.Determination of gold in sulphide ore by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2014, 34(12):44-47. http://d.old.wanfangdata.com.cn/Periodical/yjfx201412009
    刘军, 闫红岭, 连文莉, 等.封闭溶矿-电感耦合等离子体质谱法测定地质样品中金银铂钯[J].冶金分析, 2016, 36(7):25-33. http://d.old.wanfangdata.com.cn/Periodical/yjfx201607004

    Liu J, Yan H L, Lian W L, et al.Determination of gold, silver, platinum and palladium in geological samples by inductively coupled plasma mass spectrometry with sealed dissolution[J].Metallurgical Analysis, 2016, 36(7):25-33. http://d.old.wanfangdata.com.cn/Periodical/yjfx201607004
    蒋建华, 马重光, 陈方伦.化学光谱法测定超痕量的金[J].岩矿测试, 1982, 1(2):48-52. http://www.ykcs.ac.cn/article/id/ykcs_19820219

    Jiang J H, Ma C G, Chen F L.Determination of ultratrace of gold by chemical spectrographic method[J].Rock and Mineral Analysis, 1982, 1(2):48-52. http://www.ykcs.ac.cn/article/id/ykcs_19820219
    谷晓霞, 郎存棵, 夏爱利.SK-800型原子荧光测金仪在黄金矿山的应用[J].黄金, 2002, 23(9):45-48. doi: 10.3969/j.issn.1001-1277.2002.09.013

    Gu X X, Lang C K, Xia A L.Application of SK-800 atom fluorescence spectrometric gold analyzer in gold mine[J].Gold, 2002, 23(9):45-48. doi: 10.3969/j.issn.1001-1277.2002.09.013
    刘德林, 高树林, 黄炼.火焰-原子荧光光谱法测定微量金的研究[J].黄金, 2011, 32(6):53-56. doi: 10.3969/j.issn.1001-1277.2011.06.014

    Liu D L, Gao S L, Huang L.Study on detecting trace gold with flame atomic fluorescence spectrometry[J].Gold, 2011, 32(6):53-56. doi: 10.3969/j.issn.1001-1277.2011.06.014
    熊昭春.聚氨酯泡沫塑料离富集之应用与进展综述[J].岩石矿物及测试, 1985, 4(4):278-283. http://www.cnki.com.cn/Article/CJFDTotal-YSKW198503016.htm

    Xiong Z C.A summary of applications of polyurethane foam in separation and preconcentration techniques[J].Rock and Mineral Analysis, 1985, 4(4):278-283. http://www.cnki.com.cn/Article/CJFDTotal-YSKW198503016.htm
    任英, 张晶玉, 张佩勋.分光光度法测定矿石中痕量金的富集方法的研究Ⅰ.泡沫塑料静态吸附解脱金的研究[J].分析化学, 1991, 19(5):588-590. http://www.cqvip.com/Main/Detail.aspx?id=477100

    Ren Y, Zhang J Y, Zhang P X.Separation and preconcentration of trace gold in ores with polyurethane foam for spoctrophotometric determination Ⅰ.Studies on static adsorption and de-adsorption of gold[J].Chinese Journal of Analytical Chemistry, 1991, 19(5):588-590. http://www.cqvip.com/Main/Detail.aspx?id=477100
  • Cited by

    Periodical cited type(18)

    1. 赵芳芳,诸堃,文芳. 超级微波消解-电感耦合等离子体发射光谱测银矿石中的银. 四川地质学报. 2024(01): 167-170 .
    2. 赵凯,芦新根,肖千鹏,张晶晶,谭书宇. 镍锍试金法富集地质样品中铂、钯、铑、铱. 化学分析计量. 2024(05): 66-71 .
    3. 郭家凡,陈笑语,孙勇,仲伟路,朱少璇,王琳. 镍锍试金富集-电感耦合等离子体质谱法测定地质样品中超痕量铂族元素. 岩矿测试. 2024(05): 693-702 . 本站查看
    4. 王夺. 镍锍试金-微波消解法联合测定汽车三元催化剂中铑. 有色矿冶. 2023(02): 59-61+49 .
    5. 刘芳美,甘聪,廖彬玲,罗小兵,赖秋祥. 锍镍试金富集-电感耦合等离子体质谱法测定铜阳极泥中微量元素铱铑. 岩矿测试. 2023(02): 298-306 . 本站查看
    6. 周彧琛,曲少鹏,吴俊,贾正勋,马景治. 改性三聚氰胺泡塑富集-电感耦合等离子体质谱(ICP-MS)法测定矿样中的钯. 中国无机分析化学. 2023(07): 735-740 .
    7. 李杰阳. 复杂多金属铜硫矿物中金含量的测定. 云南冶金. 2022(01): 110-115 .
    8. 陈永红,韩冰冰,洪博,芦新根,孟宪伟. 2019—2020年中国银分析测定的进展. 黄金. 2022(02): 104-110 .
    9. 杨昆. 铜镍硫化物矿物中铂族元素的分析研究. 化工管理. 2022(08): 13-15 .
    10. 张广安,张福元. 火试金灰皿在乙酸-H_2O体系中铅的浸出动力学. 过程工程学报. 2022(06): 774-781 .
    11. 樊蕾,王甜甜,姚明星,孙启亮,郭晓瑞. 锑铜试金-石墨炉原子吸收光谱法测定地球化学样品中痕量钌. 冶金分析. 2022(08): 35-41 .
    12. 胡振隆. 金矿的样品制备与分析方法研究进展. 世界有色金属. 2022(11): 187-189 .
    13. 刘向磊,孙文军,文田耀,王腾飞,王凯凯,刘宗超. 地质样品中贵金属分析方法现状及展望. 冶金分析. 2022(12): 23-35 .
    14. 王楠,周宇,任士远,陈明丽,刘西. 分离富集技术在痕量贵金属分析中的应用与进展. 冶金分析. 2022(12): 12-22 .
    15. 郭家凡,来新泽,王琳,胡家祯,高志军,来佳仪. 火试金反应原理及熔渣影响因素探究. 冶金分析. 2022(12): 1-11 .
    16. 贾欣欣. 地质样品中金的测定研究. 世界有色金属. 2020(06): 164-165 .
    17. 张强. 地质矿石样品中金、银含量测定方法的探讨. 世界有色金属. 2020(10): 157-158 .
    18. 张明,杨生鸿,朱琳,安国荣,韩永辉. 铜镍硫化物矿物中铂族元素的分析研究. 化工矿产地质. 2020(04): 343-347 .

    Other cited types(1)

Catalog

    Article views (2731) PDF downloads (63) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return