• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Zong-sheng ZHAO, Xiao-xue ZHAO, Xiao-xu JIANG, Lin-lin ZHAO, Lin-lin ZHANG. Interference Sources and Elimination Methods for the Determination of Selenium in Soil and Water Sediment by Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(3): 333-340. DOI: 10.15898/j.cnki.11-2131/td.201809190106
Citation: Zong-sheng ZHAO, Xiao-xue ZHAO, Xiao-xu JIANG, Lin-lin ZHAO, Lin-lin ZHANG. Interference Sources and Elimination Methods for the Determination of Selenium in Soil and Water Sediment by Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(3): 333-340. DOI: 10.15898/j.cnki.11-2131/td.201809190106

Interference Sources and Elimination Methods for the Determination of Selenium in Soil and Water Sediment by Atomic Fluorescence Spectrometry

More Information
  • Received Date: September 18, 2018
  • Revised Date: March 13, 2019
  • Accepted Date: April 08, 2019
  • Published Date: April 30, 2019
  • HIGHLIGHTS
    (1) The interferences of Cu2+ and Pb4+ need to be controlled for the determination of Se in soil and sediment by AFS.
    (2) Theory and experiment indicate that Cu and Pb can result in negative and positive interference to Se determination by AFS, respectively.
    (3) Concentrated hydrochloric acid inhibited the chemical formation of Cu0 and PbH4, eliminating the interference of Se determination by AFS.
    BACKGROUNDAtomic Fluorescence Spectrometry (AFS) has advantages of high sensitivity, simple structure and easy operation, but the digestion process of the standard analysis method for determination of Se in soil is cumbersome and readily produces interference.
    OBJECTIVESTo evaluate the applicability of Se determination in soil and sediment by water bath digestion/AFS, and uncover the main interference and elimination methods.
    METHODSBased on the standard method of GB/T 22105-2008, boiling water bath of aqua regina was used to digest Se in soil and sediment. Four treatments, including Fe3+, concentrated hydrochloric acid, Fe3+with concentrated hydrochloric acid, and water bath solution, were used to eliminate the interference of Cu2+ and Pb4+.
    RESULTSThe detection limit of Se by this method was 0.008mg/kg, the relative standard deviation of the test reference materials was 0.5%-11%, and the relative error was -16.3%-9.5%, better than the detection limit (0.01mg/kg), precision (0.79%-23.1%) and accuracy of the industry standard HJ 680-2013.
    CONCLUSIONSAccording to the experiment, it is proposed to add concentrated hydrochloric acid to the water bath digestion solution without adding thiourea-ascorbic acid. By increasing the acidity and Cl- concentration of the solution and keeping the concentration of hydrochloric acid in the sample higher than 23%, the reduction of Cu2+ to Cu0 and Pb4+ to form PbH4 can be inhibited. The negative interference of Cu and the positive interference of Pb are effectively reduced, and the precision and accuracy of Se measured by AFS are improved.
  • 吕莉, 李源, 井美娇, 等.氢化物发生-原子荧光光谱法测定三种鸡蛋中硒含量的研究[J].光谱学与光谱分析, 2019, 39(2):607-611. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201902044

    Lü L, Li Y, Jing M J, et al.Determination of selenium in three kinds of eggs by hydride generation atomic fluorescence spectrometry[J].Spectroscopy and Spctral Analysis, 2019, 39(2):607-611. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201902044
    李杰, 刘久臣, 汤奇峰, 等.川西高原地区水体中硒含量及分布特征研究[J].岩矿测试, 2018, 37(2):183-192. doi: 10.15898/j.cnki.11-2131/td.201709250154

    Li J, Liu J C, Tang Q F, et al.Study of the contents and distribution of selenium in water samples from the Western Sichuan plateau and the incidence of Kaschin Beck disease[J].Rock and Mineral Analysis, 2018, 37(2):183-192. doi: 10.15898/j.cnki.11-2131/td.201709250154
    李刚, 胡斯宪, 陈琳玲.原子荧光光谱分析技术的创新与发展[J].岩矿测试, 2013, 32(3):358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003

    Li G, Hu S X, Chen L L.Innovation and development for AFS analysis[J].Rock and Mineral Analysis, 2013, 32(3):358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003
    钱薇, 唐昊冶, 王如海, 等.一次消解土壤样品测定汞、砷和硒[J].分析化学, 2017, 45(8):1215-1221. http://d.old.wanfangdata.com.cn/Periodical/fxhx201708020

    Qian W, Tang H Y, Wang R H, et al.Determination of mercury, arsenic and selenium in soils by one-time digestion[J].Chinese Journal of Analytical Chemistry, 2017, 45(8):1215-1221. http://d.old.wanfangdata.com.cn/Periodical/fxhx201708020
    李自强, 胡斯宪, 李小英, 等.水浴浸提-氢化物发生-原子荧光光谱法同时测定土壤污染普查样品中砷和汞[J].理化检验(化学分册), 2018, 54(4):480-483. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201804022

    Li Z Q, Hu S X, Li X Y, et al.Determination of As and Hg in survey samples of soil pollution by HG-AFS with water bath extraction[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2018, 54(4):480-483. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201804022
    杨常青, 张双双, 吴楠, 等.微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究[J].岩矿测试, 2016, 35(5):481-487. doi: 10.15898/j.cnki.11-2131/td.2016.05.006

    Yang C Q, Zhang S S, Wu N, et al.Feasibility study on content determination of mercury and arsenic in high organic anthracite by microwave digestion-HGAFS[J].Rock and Mineral Analysis, 2016, 35(5):481-487. doi: 10.15898/j.cnki.11-2131/td.2016.05.006
    刘阁, 李清昌.氢化物原子荧光法同时测定土壤样品中砷锑[J].有色矿冶, 2013, 29(5):62-64. doi: 10.3969/j.issn.1007-967X.2013.05.019

    Liu G, Li Q C.HG-AFS determination of arsenic and antimony in soil[J].Non-Ferrous Mining and Metallurgy, 2013, 29(5):62-64. doi: 10.3969/j.issn.1007-967X.2013.05.019
    徐国栋, 葛建华, 贾慧娴, 等.水浴浸提-氢化物发生-原子荧光光谱法同时测定地质样品中痕量砷和汞[J].岩矿测试, 2010, 29(4):391-394. doi: 10.3969/j.issn.0254-5357.2010.04.014

    Xu G D, Ge J H, Jia H X, et al.Simultaneous determination of trace arsenic and mercury in geological samples by HG-AFS with water bath soaking sample preparation[J].Rock and Mineral Analysis, 2010, 29(4):391-394. doi: 10.3969/j.issn.0254-5357.2010.04.014
    赵振平, 张怀成, 冷家峰, 等.王水消解蒸气发生-原子荧光光谱法测定土壤中的砷、锑和汞[J].中国环境监测, 2004, 20(1):44-46. doi: 10.3969/j.issn.1002-6002.2004.01.014

    Zhao Z P, Zhang H C, Leng J F, et al.The method of VG-AFS with clearing by aqua regia to determine As, Sb and Hg in the soil[J].Environmental Monitoring of China, 2004, 20(1):44-46. doi: 10.3969/j.issn.1002-6002.2004.01.014
    李彩虹, 杨春霞, 赵银宝.氢化物发生-原子荧光法测定土壤中砷、汞的方法[J].西北农业学报, 2013, 22(7):200-204. http://d.old.wanfangdata.com.cn/Periodical/xbnyxb201307034

    Li C H, Yang C X, Zhao Y B.Determination of As and Hg in soil by HG-AFS[J].Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(7):200-204. http://d.old.wanfangdata.com.cn/Periodical/xbnyxb201307034
    李艳, 程永毅, 陈可雅, 等.王水加辅助酸微波消解-原子荧光法测定土壤砷、硒[J].西南大学学报(自然科学版), 2016, 38(11):155-160. http://www.cnki.com.cn/Article/CJFDTotal-XNND201611024.htm

    Li Y, Cheng Y Y, Chen K Y, et al.Determination of soil arsenic and selenium by atomic fluorescence under microwave digestion with aqua regia plus assisted acid[J].Journal of Southwest University(Natural Science Edition), 2016, 38(11):155-160. http://www.cnki.com.cn/Article/CJFDTotal-XNND201611024.htm
    苏文峰, 李刚.焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒[J].岩矿测试, 2008, 27(2):120-122. doi: 10.3969/j.issn.0254-5357.2008.02.010

    Su W F, Li G.Determination of trace selenium in soil samples by HG-AFS with baking separation[J].Rock and Mineral Analysis, 2008, 27(2):120-122. doi: 10.3969/j.issn.0254-5357.2008.02.010
    张锦茂, 范凡, 任萍.氢化物-原子荧光法测定岩石中痕量硒的干扰及消除[J].岩矿测试, 1993, 12(4):264-267. http://www.ykcs.ac.cn/article/id/ykcs_199304107

    Zhang J M, Fan F, Ren P.Elimination of interference in the determination of selenium in rocks by HG-AFS[J].Rock and Mineral Analysis, 1993, 12(4):264-267. http://www.ykcs.ac.cn/article/id/ykcs_199304107
    徐宝玲.氢化物-原子荧光法测定硒时元素的干扰及其消除[J].分析化学, 1985, 13(1):29-33. http://www.cnki.com.cn/Article/CJFDTotal-FXHX198501006.htm

    Xu B L.Interference of elements and its elimination in HG-AFS determination of selenium[J].Chinese Journal of Analytical Chemistry, 1985, 13(1):29-33. http://www.cnki.com.cn/Article/CJFDTotal-FXHX198501006.htm
    王丹君.原子荧光光谱法测定土壤中的硒[J].理化检验(化学分册), 2014, 50(7):914-915. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201407034

    Wang D J.Determination of selenium in soil with AFS[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2014, 50(7):914-915. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201407034
    陈志兵.碱性模式氢化物发生-原子荧光光谱法测定土壤中的痕量硒[J].岩矿测试, 2002, 21(4):311-314. doi: 10.3969/j.issn.0254-5357.2002.04.015

    Chen Z B.Determination of trace selenium in soils by HG-AFS in alkaline mode[J].Rock and Mineral Analysis, 2002, 21(4):311-314. doi: 10.3969/j.issn.0254-5357.2002.04.015
    邵建辉.原子荧光法测定土壤中痕量硒元素[J].现代化工, 2015, 35(5):177-178. http://www.cnki.com.cn/Article/CJFDTotal-XDHG201505046.htm

    Shao J H.Determination of trace selenium in soil by AFS[J].Modern Chemical Industry, 2015, 35(5):177-178. http://www.cnki.com.cn/Article/CJFDTotal-XDHG201505046.htm
    陶秋丽, 韩张雄, 熊英, 等.微波消解-氢化物发生原子荧光光谱法测定粉煤灰中的硒[J].岩矿测试, 2013, 32(3):445-448. doi: 10.3969/j.issn.0254-5357.2013.03.016

    Tao Q L, Han Z X, Xiong Y, et al.Determination of selenium in coal ash with microwave digestion and HG-AFS[J].Rock and Mineral Analysis, 2013, 32(3):445-448. doi: 10.3969/j.issn.0254-5357.2013.03.016
    郭小伟, 张文琴, 杨密云.氢化物-无色散原子荧光法测定地质样品中微量硒及碲[J].岩石矿物及测试, 1983, 2(4):288-292. http://www.cnki.com.cn/Article/CJFDTotal-YSKW198304006.htm

    Guo X W, Zhang W Q, Yang M Y.Determination of trace amount of selenium and tellurium in geological samples by HG-AFS[J].Acta Petrologica Mineralogica et Analytica, 1983, 2(4):288-292. http://www.cnki.com.cn/Article/CJFDTotal-YSKW198304006.htm
    薛超群, 郭敏.氢化物发生-原子荧光光谱法测定土壤样品中不同价态的硒[J].岩矿测试, 2012, 31(6):980-984. doi: 10.3969/j.issn.0254-5357.2012.06.012

    Xue C Q, Guo M.Analysis of different valence states of selenium in geological samples by HG-AFS[J].Rock and Mineral Analysis, 2012, 31(6):980-984. doi: 10.3969/j.issn.0254-5357.2012.06.012
    张洁, 阳国运.树脂交换分离-电感耦合等离子体质谱法测定铅锌矿中钨钼锡锗硒碲[J].岩矿测试, 2018, 37(6):657-663. doi: 10.15898/j.cnki.11-2131/td.201803250028

    Zhang J, Yang G Y.Determination of tungsten, molybdenum, tin, germanium, selenium and tellurium in lead-zinc ore by ICP-MS with resin exchange separation[J].Rock and Mineral Analysis, 2018, 37(6):657-663. doi: 10.15898/j.cnki.11-2131/td.201803250028
    莫永涛, 王琦, 谢意南, 等.水浴消解-原子荧光法同时测定沉积物中锑与硒[J].广东化工, 2015, 42(7):167-169. doi: 10.3969/j.issn.1007-1865.2015.07.083

    Mo Y T, Wang Q, Xie Y N, et al.Simultaneous determination of antimony and selenium in the sediment by nitromurlatic acid water bath diggestion-AFS[J].Guangdong Chemical Industry, 2015, 42(7):167-169. doi: 10.3969/j.issn.1007-1865.2015.07.083
    刘明钟, 汤志勇, 刘霁欣, 等.原子荧光光谱分析[M].北京:化学工业出版社, 2007:229-233.

    Liu M Z, Tang Z Y, Liu J X, et al.Analysis by AFS[M].Beijing:Chemical Industry Press, 2007:229-233.
    张立新, 陈志勇, 周新青.氢化物发生原子荧光法在测定土壤中浸出硒、总硒的应用[J].中国环境监测, 2006, 22(2):29-31. doi: 10.3969/j.issn.1002-6002.2006.02.009

    Zhang L X, Chen Z Y, Zhou X Q.Determination of trace selenium in soil by HG-AFS[J].Environmental Monitoring of China, 2006, 22(2):29-31. doi: 10.3969/j.issn.1002-6002.2006.02.009
    陶琛, 李春生, 初威澄, 等.非色散原子荧光光谱法同时检测硒和铅的光源干扰校正方法研究[J].分析化学, 2019, 47(1):163-168. http://d.old.wanfangdata.com.cn/Periodical/fxhx201901021

    Tao C, Li C S, Chu W C, et al.Correction method of light source interference for simultaneous determination of selenium and lead by non-dispersive hydride generation-atomic fluorescence spectrometry[J].Chinese Journal of Analytical Chemistry, 2019, 47(1):163-168. http://d.old.wanfangdata.com.cn/Periodical/fxhx201901021
    陈曦, 赵伯燕, 陈艳梅, 等.不同介质对氢化物发生原子荧光光谱法测定硒的影响[J].微量元素与健康研究, 2012, 29(5):2. http://d.old.wanfangdata.com.cn/Periodical/wlysyjkyj201205034

    Chen X, Zhao B Y, Chen Y M, et al.Effect of different media on determination of selenium by HG-AFS[J].Studies of Trace Elements and Health, 2012, 29(5):2. http://d.old.wanfangdata.com.cn/Periodical/wlysyjkyj201205034
    戴亚明.铅的氢化物发生机理研究及钢铁中痕量铅的测定[J].理化检验(化学分册), 2005, 41(10):712-717.

    Dai Y M.HG-AFS determination of trace amounts of lead in iron and steel[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2005, 41(10):712-717.
    李俊义, 徐书绅, 张渔夫, 等.分析化学[M].北京:高等教育出版社, 1984:602-605, 629-646.

    Li J Y, Xu S S, Zhang Y F, et al.Analytical Chemistry[M].Beijing:Higher Education Press, 1984:602-605, 629-646.
    李倩, 张宝, 申文前, 等.硒酸泥制备粗硒新工艺[J].中南大学学报(自然科学版), 2011, 42(8):2209-2214. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201108008

    Li Q, Zhang B, Shen W Q, et al.Novel technology for preparation of crude Se from selenium acid mud[J].Journal of Central South University (Science and Technology), 2011, 42(8):2209-2214. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201108008
    李小芳, 冯小强, 章志典, 等.羧甲基壳聚糖软模板法制备纳米硒[J].材料科学与工程学报, 2013, 31(6):886-890. doi: 10.3969/j.issn.1673-2812.2013.06.023

    Li X F, Feng X Q, Zhang Z D, et al.Preparation of nano-selenium using carboxymethyl chitosan as template[J].Journal of Materials Science and Engineering, 2013, 31(6):886-890. doi: 10.3969/j.issn.1673-2812.2013.06.023
  • Cited by

    Periodical cited type(25)

    1. 牛俊龙,吴石头,杨岳衡,张超,王浩,龚庆杰. 石英和锆石Ti温度计在地学中的应用及其Ti含量的微区分析技术进展. 岩石学报. 2024(01): 323-337 .
    2. 范晨子,孙冬阳,赵令浩,袁继海,胡明月,赵明. 激光剥蚀电感耦合等离子体质谱法微区原位定量分析锂铍矿物化学成分. 岩矿测试. 2024(01): 87-100 . 本站查看
    3. 周伟,张嘉升,祁晓鹏,徐磊,杨杰. X射线衍射和TIMA研究陕南镇巴地区富锂黏土岩的矿物组成及锂的赋存状态. 岩矿测试. 2024(01): 76-86 . 本站查看
    4. 陈静雅,汪方跃,王建,周涛发,李全忠. LA-ICP-MS多脉冲短时间剥蚀法锆石超薄增生边定年研究. 岩石矿物学杂志. 2024(04): 1052-1065 .
    5. 高天恒,任同祥. 不同聚合物基质的LA-ICP-MS剥蚀行为探究. 计量科学与技术. 2023(04): 63-69 .
    6. 李会来,李凡,张鼎文,郭伟,靳兰兰,胡圣虹. 低温剥蚀LA-ICP-MS准确测定硫化物矿物多元素分析研究. 岩矿测试. 2023(05): 970-982 . 本站查看
    7. Shitou WU,Yueheng YANG,Nick M.W.ROBERTS,Ming YANG,Hao WANG,Zhongwu LAN,Bohang XIE,Tianyi LI,Lei XU,Chao HUANG,Liewen XIE,Jinhui YANG,Fuyuan WU. In situ calcite U-Pb geochronology by high-sensitivity single-collector LA-SF-ICP-MS. Science China(Earth Sciences). 2022(06): 1146-1160 .
    8. 吴石头,杨岳衡,Nick M.W.ROBERTS,杨明,王浩,兰中伍,谢博航,李天义,许蕾,黄超,谢烈文,杨进辉,吴福元. 高灵敏度-单接收杯LA-SF-ICP-MS原位方解石U-Pb定年. 中国科学:地球科学. 2022(07): 1375-1390 .
    9. 胡欢,王汝成,车旭东,靳文楷,汤志敏,谢磊,陶湘媛. 关键金属元素铍的原位分析技术研究进展. 岩石学报. 2022(07): 1890-1900 .
    10. 胡志中,晏雄,杜谷,王冠,徐国栋,何佳乐,金鹭,兰明国,何袖辉. 方解石811N:一种可能的微区碳氧锶同位素分析标准. 沉积与特提斯地质. 2022(04): 542-555 .
    11. 张红雨,赵青青,赵刚,洪晶欣,刘家军,翟德高. 黄铁矿微量元素LA-ICP-MS原位微区分析方法及其在金矿床研究中的应用. 矿床地质. 2022(06): 1182-1199 .
    12. 张亮亮,朱弟成,谢锦程,王青,鲁瑶,徐若炎,齐宁远. 碳酸盐矿物激光原位U-Pb定年:进展与展望. 矿物岩石地球化学通报. 2022(06): 1120-1134 .
    13. 周帆,李明,柴辛娜,胡兆初,罗涛,胡圣虹. 非破坏性开放式激光剥蚀电感耦合等离子体质谱法原位测定大尺寸陶瓷样品主微量元素组成. 岩矿测试. 2021(01): 33-41 . 本站查看
    14. 李阳,邹灏,刘行,蒋修未,李蝶. SILLS软件在单个萤石流体包裹体LA-ICP-MS微量元素分析数据处理中的应用. 岩矿测试. 2020(02): 300-310 . 本站查看
    15. 胡志中,杨波,晏雄,杜谷. 硅酸盐矿物LA-ICP-MS元素分析研究. 矿产综合利用. 2020(04): 130-136 .
    16. 胡志中,李佩,蒋璐蔓,王通洋,杜谷,杨波. 古代玻璃材料LA-ICP-MS组分分析及产源研究. 岩矿测试. 2020(04): 505-514 . 本站查看
    17. 胡志中,杨波,杜谷,王坤阳. LA-ICP-MS在地质研究中的样品前处理方法与进展. 矿产综合利用. 2020(05): 52-57 .
    18. 胡志中,王坤阳,晏雄,杨波,杜谷. 锆石环氧树脂靶表面形貌特征及对LA-ICP-MS分析影响研究. 岩矿测试. 2020(06): 804-815 . 本站查看
    19. 张迪,陈意,毛骞,苏斌,贾丽辉,郭顺. 电子探针分析技术进展及面临的挑战. 岩石学报. 2019(01): 261-274 .
    20. 王辉,汪方跃,盛兆秋. LA-ICP-MS分析中不同莫氏硬度矿物激光剥蚀行为及剥蚀速率研究. 岩石矿物学杂志. 2019(01): 113-120 .
    21. 胡志中,杨波,杜谷. LA-ICP-MS在地质全岩样品元素分析中的应用. 四川地质学报. 2019(01): 164-168 .
    22. 竺成林,王华建,叶云涛,王晓梅,黄家旋,朱玉梅,杨瑞东. 基于原位多元素成像分析龙马溪组笔石成因及地质意义. 岩矿测试. 2019(03): 245-259 . 本站查看
    23. 吴石头,许春雪,陈宗定,王亚平,白金峰. LA-ICP-M S结合超高压粉末压片技术快速分析碳酸盐岩中Mg, Ca, Sr, Ba和轻稀土元素. 分析试验室. 2019(09): 1089-1094 .
    24. 王辉,汪方跃,关炳庭,盛兆秋. 激光能量密度对LA-ICP-MS分析数据质量的影响研究. 岩矿测试. 2019(06): 609-619 . 本站查看
    25. 肖益林,余成龙,王洋洋,陆一敢. 变质作用与流体包裹体:进展与展望. 矿物岩石地球化学通报. 2018(03): 424-440+561 .

    Other cited types(6)

Catalog

    Article views (1821) PDF downloads (128) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return