• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LIU Sheng-hua, SHI Hui-xia, JIANG Ya-xin, XU Sheng, LIU Bing-bing. Research Progress on Graphite Target Preparation for Accelerator Mass Spectrometry 14C Analysis[J]. Rock and Mineral Analysis, 2019, 38(5): 583-597. DOI: 10.15898/j.cnki.11-2131/td.201807100082
Citation: LIU Sheng-hua, SHI Hui-xia, JIANG Ya-xin, XU Sheng, LIU Bing-bing. Research Progress on Graphite Target Preparation for Accelerator Mass Spectrometry 14C Analysis[J]. Rock and Mineral Analysis, 2019, 38(5): 583-597. DOI: 10.15898/j.cnki.11-2131/td.201807100082

Research Progress on Graphite Target Preparation for Accelerator Mass Spectrometry 14C Analysis

More Information
  • Received Date: July 09, 2018
  • Revised Date: April 27, 2019
  • Accepted Date: July 15, 2019
  • Published Date: August 31, 2019
  • HIGHLIGHTS
    (1) The effects of graphitization conditions on graphite performance were discussed and the optimum conditions were proposed.
    (2) The carbon contamination source was analyzed, and the method of reducing background was advocated.
    (3) The development of ultra-small sample preparation technology and its problems were reviewed.
    BACKGROUNDAccelerator mass spectrometry (AMS) is the most popular technique for radiocarbon analysis. However, yielding high precision and low background 14C data by AMS is hindered by sample preparation. Therefore, improving the stability of graphitization and reducing the carbon contamination in the background helps to produce high quality 14C data and break through the 14C dating upper limit (about 50000ya), further broadening the application range of 14C chronology and isotope tracer.
    OBJECTIVESTo provide basic reference for beginners or more experienced scientists who are going to set up a radiocarbon sample preparation vacuum line and methods.
    METHODSThe development of graphite preparation technology with respect to sample preparation vacuum line apparatus and the underlying principle of H2/Fe, Zn/Fe and Zn-TiH2/Fe methods were reviewed. The advantages and drawbacks of these methods were also discussed. Additionally, the optimization of experimental conditions from the perspective of reductant, catalyst and graphitization temperature, accompanied by the inner relationship with the graphite yield, isotope fractionation and beam performance were emphatically discussed. The sources of carbon contamination and suitable control technology were also argued.
    RESULTSThe optimized graphitization conditions by H2/Fe method was H2/CO2=2-2.5 (V/V), -325 meshes ion powder derived from hydrogen reduction with Fe/C=2-5 (m/m), and graphitization temperature of 500-550℃, while by Zn/Fe method it was Zn/C=50-80 (m/m), -325 meshes ion powder derived from hydrogen reduction with Fe/C=2-5 (m/m), and graphitization temperature of 400-450℃ for Zn reaction tube and 500-550℃ for Fe reaction tube. The carbon contamination originated from each step in the sample preparation procedure, which could be either reduced by high-temperature bake or calibrated by mathematical model, but it required more detailed study to strengthen our knowledge and eliminate the effects on results.
    CONCLUSIONSBoth of the sample preparation methods used and the optimum of graphitization conditions are critical for good performance of the graphite target and the final precision and accuracy of the measurement, especially for ultra-small size samples. However, these effects could be reduced or even eliminated by optimizing the experimental procedures and the graphitization conditions or subtracting by mathematical models.

  • Libby W F, Anderson E C, Arnold J R.Age determination by radiocarbon content:World-wide assay of natural radiocarbon[J]. Science, 1949, 109(2827):227-228. doi: 10.1126/science.109.2827.227
    Hellborg R, Skog G.Accelerator mass spectrometry[J]. Mass Spectrometry Reviews, 2008, 27(5):398-427. doi: 10.1002/mas.20172
    管永精, 王慧娟, 鞠志萍, 等.加速器质谱技术及其在地球科学中的应用[J].岩矿测试, 2005, 24(4):41-47. http://www.ykcs.ac.cn/article/id/ykcs_20050492

    Guan Y J, Wang H J, Ju Z P, et al.Acclerator mass spectrometry and its applications in geosciences[J]. Rock and Mineral Analysis, 2005, 24(4):41-47. http://www.ykcs.ac.cn/article/id/ykcs_20050492
    Kutschera W.Applications of accelerator mass spec-trometry[J]. International Journal of Mass Spectrometry, 2013, 349-350(1):203-218.
    Vogel J S, Southon J R, Nelson D E, et al.Performance of catalytically condensed carbon for use in accelerator mass spectrometry[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1984, 5(2):289-293. doi: 10.1016/0168-583X(84)90529-9
    Slota P, Jull A T, Linick T, et al.Preparation of small samples for 14C accelerator targets by catalytic reduction of CO[J]. Radiocarbon, 1987, 29(2):303-306. doi: 10.1017/S0033822200056988
    Ertunc T, Xu S, Bryant C L, et al.Progress in AMS target production of sub-milligram samples at the NERC radiocarbon laboratory[J]. Radiocarbon, 2005, 47(3):453-464. doi: 10.1017/S0033822200035232
    Xu X, Trumbore S E, Zheng S, et al.Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets:Reducing background and attaining high precision[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 259(1):320-329. doi: 10.1016/j.nimb.2007.01.175
    Polach H A.Radiocarbon targets for AMS:A review of perceptions, aims and achievements[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1984, 5(2):259-264. doi: 10.1016/0168-583X(84)90523-8
    Vogel J S, Nowikow I G, Southon J R, et al.Survey of simple carbon compounds for use in a negative ion sputter source[J]. Radiocarbon, 1983, 25(2):775-784. doi: 10.1017/S0033822200006135
    Ding P, Shen C D, Yi W X, et al.Small-mass graphite preparation for AMS 14C measurements performed at GIGCAS, China[J]. Radiocarbon, 2017, 59(3):705-711. doi: 10.1017/RDC.2017.38
    庞义俊, 何明, 杨旭冉, 等.基于小型单极加速器质谱测量14C的样品制备技术研究[J].原子能科学技术, 2017, 51(10):1866-1873. doi: 10.7538/yzk.2017.youxian.0012

    Pang Y J, He M, Yang X R, et al.14C sample preparation for compact single stage AMS[J]. Atomic Energy Science and Technology, 2017, 51(10):1866-1873. doi: 10.7538/yzk.2017.youxian.0012
    Zoppi U, Crye J, Song Q, et al.Performance evaluation of the New AMS system at Accium BioSciences[J]. Radiocarbon, 2016, 49(1):171-180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=RDC49_01-JATSRDCRDC49_01S0033822200041990h.xml
    Rinyu L, Orsovszki G, Futó I, et al.Application of zinc sealed tube graphitization on sub-milligram samples using EnvironMICADAS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2015, 361(1):406-413. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=26e4df013f0f2542a4b3ea703f423acf
    Orsovszki G, Rinyu L.Flame-sealed tube graphitization using zinc as the sole reduction agent:Precision improvement of EnvironMICADAS 14C measurements on graphite targets[J]. Radiocarbon, 2015, 57(5):979-990. doi: 10.2458/azu_rc.57.18193
    杨雪, 郑勇刚, 尹金辉, 等.加速器14C制靶系统的研制及性能检验[J].地震地质, 2013, 35(4):930-934. doi: 10.3969/j.issn.0253-4967.2013.04.021

    Yang X, Zheng Y G, Yin J H, et al.Developments and performance tests of the new AMS graphite target line[J]. Seismology and Geology, 2013, 35(4):930-934. doi: 10.3969/j.issn.0253-4967.2013.04.021
    Xu X, Gao P, Salamanca E G.Ultra small-mass graphi-tization by sealed tube zinc reduction method for AMS 14C measurements[J]. Radiocarbon, 2013, 55(2-3):608-616. http://journals.cambridge.org/article_S0033822200057751
    Piotrowska N.Status report of AMS sample preparation laboratory at GADAM Centre, Gliwice, Poland[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294:176-181. doi: 10.1016/j.nimb.2012.05.017
    Delqué-Količ E, Comby-Zerbino C, Ferkane S, et al.Preparing and measuring ultra-small radiocarbon samples with the ARTEMIS AMS facility in Saclay, France[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1):189-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=050c90b1efb20dac57b3afd0f9d2d3a7
    Marzaioli F, Borriello G, Passariello I, et al.Zinc redu-ction as an alternative method for AMS radiocarbon dating:Process optimization at CIRCE[J]. Radiocarbon, 2008, 50(1):139-149. doi: 10.1017/S0033822200043423
    Zhou W, Lu X, Wu Z, et al.New results on Xi'an-AMS and sample preparation systems at Xi'an-AMS center[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 262(1):135-142. doi: 10.1016/j.nimb.2007.04.221
    Uchida M, Shibata Y, Yoneda M, et al.Technical pro-gress in AMS microscale radiocarbon analysis[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2004, 223-224(1):313-317. http://onlinelibrary.wiley.com/resolve/reference/ADS?id=2004NIMPB.223..313U
    Hua Q, Zoppi U, Williams A A, et al.Small-mass AMS radiocarbon analysis at ANTARES[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2004, 223-224(1):284-292. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212720154/
    D'elia M, Calcagnile L, Quarta G, et al.Sample pre-paration and blank values at the AMS radiocarbon facility of the University of Lecce[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2004, 223-224(1):278-283. http://www.sciencedirect.com/science/article/pii/S0168583X04005816
    Kitagawa H, Masazawa T, Nakamura T, et al.A batch pre-paration method for graphite targets with low background for AMS 14C measurements[J]. Radiocarbon, 1993, 35(2):295-300. doi: 10.1017/S0033822200064973
    Verkouteren R M.Iron-manganese system for prepara-tion of radiocarbon AMS targets:Characterization of procedural chemical-isotopic blanks and fractionation[J]. Radiocarbon, 1997, 39(3):269-283. doi: 10.1017/S003382220005325X
    Vogel J S.Rapid production of graphite without conta-mination for biomedical AMS[J]. Radiocarbon, 1992, 34(3):344-350. doi: 10.1017/S0033822200063529
    Kim S H, Kelly P B, Clifford A J.Biological/biomedical accelerator mass spectrometry targets.1.Optimizing the CO2 reduction step using zinc dust[J]. Analytical Chemistry, 2008, 80(20):7651-7660. doi: 10.1021/ac801226g
    刘圣华, 杨育振, 徐胜, 等.加速器质谱14C制样真空系统及石墨制备方法研究[J].岩矿测试, 2019, 38(3):270-279. doi: 10.15898/j.cnki.11-2131/td.201807120084

    Liu S H, Yang Y Z, Xu S, et al.14C sample preparation vacuum line and graphite preparation method for 14C-AMS measurement[J]. Rock and Mineral Analysis, 2019, 38(3):270-279. doi: 10.15898/j.cnki.11-2131/td.201807120084
    McNichol A P, Gagnon A R, Jones G A, et al.Illumina-tion of a black box:Analysis of gas composition during graphite target preparation[J]. Radiocarbon, 1992, 34(3):321-329. doi: 10.1017/S0033822200063499
    Rinyu L, Futó I, Kiss A Z, et al.Performance test of a new graphite target production facility in ATOMKI[J]. Radiocarbon, 2007, 49(2):217-224. doi: 10.1017/S0033822200042144
    Hong W, Park J H, Kim K J, et al.Establishment of chemical preparation methods and development of an automated reduction system for AMS sample preparation at KIGAM[J]. Radiocarbon, 2010, 52(3):1277-1287. doi: 10.1017/S0033822200046361
    Macario K D, Alves E Q, Oliveira F M, et al.Graphiti-zation reaction via zinc reduction:How low can you go?[J]. International Journal of Mass Spectrometry, 2016, 410(1):47-51.
    Macario K D, Oliveira F M, Moreira V N, et al.Optimi-zation of the amount of zinc in the graphitization reaction for radiocarbon AMS measurements at LAC-UFF[J]. Radiocarbon, 2016, 59(3):1-7.
    Rinyu L, Molnár M, Major I, et al.Optimization of sealed tube graphitization method for environmental C-14 studies using MICADAS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1):270-275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fcad5316421d17da51660cce423bf050
    Khosh M S, Xu X, Trumbore S E.Small-mass graphite preparation by sealed tube zinc reduction method for AMS 14C measurements[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7-8):927-930. doi: 10.1016/j.nimb.2009.10.066
    Wild E, Golser R, Hille P, et al.First 14C results from archaeological and forensic studies at the Vienna Environmental Research Accelerator[J]. Radiocarbon, 1998, 40(1):273-282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=RDC40_01-JATSRDCRDC40_01S0033822200018142h.xml
    Vogel J S, Southon J R, Nelson D E.Catalyst and binder effects in the use of filamentous graphite for AMS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1987, 29(1):50-56. http://www.sciencedirect.com/science/article/pii/0168583X87902023
    Dee M, Bronk Ramsey C.Refinement of graphite target production at ORAU[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2000, 172(1-4):449-453. doi: 10.1016/S0168-583X(00)00337-2
    Kim S H, Kelly P B, Clifford A J.Biological/biomedical accelerator mass spectrometry targets.2.Physical, morphological, and structural characteristics[J]. Analytical Chemistry, 2008, 80(20):7661-7669. doi: 10.1021/ac801228t
    Kim S H, Kelly P B, Ortalan V, et al.Quality of graphite target for biological/biomedical/environmental applications of 14C-accelerator mass spectrometry[J]. Analytical Chemistry, 2010, 82(6):2243-2252. doi: 10.1021/ac9020769
    Santos G M, Southon J R, Griffin S, et al.Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 259(1):293-302. doi: 10.1016/j.nimb.2007.01.172
    Vogel J S, Nelson D, Southon J R.14C background levels in an accelerator mass spectrometry system[J]. Radiocarbon, 1987, 29(3):323-333. doi: 10.1017/S0033822200043733
    Aerts-Bijma A T, Meijer H A J, Plicht J V D.AMS sample handling in Groningen[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1997, 123(1-4):221-225. doi: 10.1016/S0168-583X(96)00672-6
    Gillespie R, Hedges R E M.Laboratory contamination in radiocarbon accelerator mass spectrometry[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1984, 5(2):294-296. doi: 10.1016/0168-583X(84)90530-5
    Steinhof A, Altenburg M, Machts H.Sample preparation at the Jena 14C Laboratory[J]. Radiocarbon, 2017, 59(3):815-830. doi: 10.1017/RDC.2017.50
    Verkouteren R M, Klouda G A, Currie L A, et al.Pre-paration of microgram samples on iron wool for radiocarbon analysis via accelerator mass spectrometry:A closed-system approach[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1987, 29(1-2):41-44. doi: 10.1016/0168-583X(87)90200-X
    Ertunc T, Xu S, Bryant C L, et al.Investigation into background levels of small organic samples at the NERC Radiocarbon Laboratory[J]. Radiocarbon, 2007, 49(2):271-280. doi: 10.1017/S0033822200042193
    Yokoyama Y, Miyairi Y, Matsuzaki H, et al.Relation be-tween acid dissolution time in the vacuum test tube and time required for graphitization for AMS target preparation[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 259(1):330-334. doi: 10.1016/j.nimb.2007.01.176
    Paul D, Been H A, Aerts-Bijma A T, et al.Conta-mination on AMS sample targets by modern carbon is inevitable[J]. Radiocarbon, 2016, 58(2):407-418. doi: 10.1017/RDC.2016.9
    De Rooij M, Van Der Plicht J, Meijer H A J.Porous iron pellets for AMS 14C analysis of small samples down to ultra-microscale size (10-25μg C)[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7-8):947-951. doi: 10.1016/j.nimb.2009.10.071
    Yokoyama Y, Koizumi M, Matsuzaki H, et al.Developing ultra small-scale radiocarbon sample measurement at the University of Tokyo[J]. Radiocarbon, 2010, 52(3):310-318. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=RDC52_02-JATSRDCRDC52_02S0033822200045355h.xml
    Walter S, Sunita R, Gagnon A R, et al.Ultra-small graphitization reactors for ultra-microscale 14C analysis at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) Facility[J]. Radiocarbon, 2015, 57(1):109-122. doi: 10.2458/azu_rc.57.18118
    Guaciara M, Santos X X.Bag of Tricks:A set of tech-niques and other resources to help 14C laboratory setup, sample processing, and beyond[J]. Radiocarbon, 2016, 59(3):785-801.
    Dunbar E, Cook G T, Naysmith P, et al.AMS 14C dating at the Scottish Universities Environmental Research Centre (SUERC) Radiocarbon Dating Laboratory[J]. Radiocarbon, 2016, 58(1):9-23. doi: 10.1017/RDC.2015.2
    Brown T A, Southon J R.Corrections for contamination background in AMS 14C measurements[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1997, 123(1):208-213. http://www.sciencedirect.com/science/article/pii/S0168583X96006763
    Donahue D J, Linick T W, Jull A J T.Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements[J]. Radiocarbon, 1990, 32(2):135-142. doi: 10.1017/S0033822200040121
    Aggarwal P K, Araguas-Araguas L, Choudhry M, et al.Lower groundwater 14C age by atmospheric CO2 uptake during sampling and analysis[J]. Groundwater, 2014, 52(1):20-24. doi: 10.1111/gwat.12110
    Yang B, Smith A M, Hua Q.A cold finger cooling system for the efficient graphitisation of microgram-sized carbon samples[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1):262-265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=68ee53bd7e547b58c75aa37e0fba8198
    Liebl J, Steier P, Golser R, et al.Carbon background and ionization yield of an AMS system during 14C measurements of microgram-size graphite samples[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1):335-339. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=92638b69d4f9f411fe72d8e43c9b2fb3
    Hajdas I, Bonani G, Thut J, et al.A report on sample preparation at the ETH/PSI AMS facility in Zurich[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2004, 223-224(1):267-271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4b14e45da646de3adf44180e7de7bddc
    Sakamoto M, Wakasa S, Matsuzaki H, et al.Design and performance tests of an efficient sample preparation system for AMS-14C dating[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7-8):935-939. doi: 10.1016/j.nimb.2009.10.068
    Wacker L, Němec M, Bourquin J.A revolutionary graphi-tisation system:Fully automated, compact and simple[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7):931-934. http://www.sciencedirect.com/science/article/pii/S0168583X09011161
    Nagasawa S, Kitagawa H, Nakanishi T, et al.An app-roach toward automatic graphitization of CO2 samples for AMS 14C measurements[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1):266-269. http://www.sciencedirect.com/science/article/pii/S0168583X12005769
    Solís C, Chávez E, Ortiz M E, et al.AMS-C14 analysis of graphite obtained with an Automated Graphitization Equipment (AGE Ⅲ) from aerosol collected on quartz filters[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2015, 361:419-422. doi: 10.1016/j.nimb.2015.05.027
    Yang B, Smith A M, Long S.Second generation laser-heated microfurnace for the preparation of microgram-sized graphite samples[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2015, 361(1):363-371. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d312e5fc58e8312b88219ca94e8838ac
    Mojmír N L W, Gäggeler H.Optimization of the graphiti-zation process at Age-1[J]. Radiocarbon, 2010, 52(2-3):1380-1393. http://journals.cambridge.org/abstract_S0033822200046464
    Wacker L, Fülöp R H, Hajdas I, et al.A novel approach to process carbonate samples for radiocarbon measurements with helium carrier gas[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294:214-217. doi: 10.1016/j.nimb.2012.08.030
    Mcintyre C P, Roberts M L, Burton J R, et al.Rapid radiocarbon (14C) analysis of coral and carbonate samples using a continuous-flow accelerator mass spectrometry (CFAMS) system[J]. Paleoceanography, 2011, 26(4):PA4212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=418fb4baa10e8cca6d861cf187e80e7c
    Longworth B E, Robinson L F, Roberts M L, et al.Car-bonate as sputter target material for rapid 14C AMS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1):328-334. http://www.sciencedirect.com/science/article/pii/S0168583X12002819
    Kitagawa H.CO2-laser decomposition method of car-bonate for AMS 14C measurements[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1):218-220. http://www.sciencedirect.com/science/article/pii/S0168583X12005782
    Wacker L, Münsterer C, Hattendorf B, et al.Direct coup-ling of a laser ablation cell to an AMS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1):287-290. http://www.sciencedirect.com/science/article/pii/S0168583X12001061
    Münsterer C, Wacker L, Hattendorf B, et al.Rapid reve-lation of radiocarbon records with laser ablation accelerator mass spectrometry[J]. Chimia, 2014, 68(4):215-216. doi: 10.2533/chimia.2014.215
    Welte C, Wacker L, Hattendorf B, et al.Optimizing the analyte introduction for 14C laser ablation-AMS[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(9):1813-1819. doi: 10.1039/C7JA00118E
    Welte C, Wacker L, Hattendorf B, et al.Laser ablation-accelerator mass spectrometry:An approach for rapid radiocarbon analyses of carbonate archives at high spatial resolution[J]. Analytical Chemistry, 2016, 88(17):8570-8576. doi: 10.1021/acs.analchem.6b01659
    Welte C, Wacker L, Hattendorf B, et al.Novel laser ablation sampling device for the rapid radiocarbon analysis of carbonate samples by accelerator mass spectrometry[J]. Radiocarbon, 2016, 58(2):419-435. doi: 10.1017/RDC.2016.6
    Kim S H, Kelly P B, Clifford A J.Accelerator mass spectrometry targets of submilligram carbonaceous samples using the high-throughput Zn reduction method[J]. Analytical Chemistry, 2009, 81(14):5949-5954. doi: 10.1021/ac900406r
  • Cited by

    Periodical cited type(3)

    1. 严慧,戴长文,叶明,王干珍,汤行,邓飞跃. 电感耦合等离子体原子发射光谱(ICP-AES)法测定石煤钒矿石中钒、铁、钛的含量. 中国无机分析化学. 2024(03): 324-329 .
    2. 安帅,陈鉴惠,王伟丹,马健生,赵恩好,周小帆. 电感耦合等离子体发射光谱法测定不同pH土壤的交换性盐. 地质与资源. 2024(05): 725-732 .
    3. 于汀汀,王蕾,郭琳,安子怡,臧慧媛,马生凤. 酸溶-电感耦合等离子体发射光谱测定不同类型铍矿中的主次量元素方法优化. 岩矿测试. 2023(05): 923-933 . 本站查看

    Other cited types(0)

Catalog

    Article views (2528) PDF downloads (46) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return