Citation: | LIU Sheng-hua, SHI Hui-xia, JIANG Ya-xin, XU Sheng, LIU Bing-bing. Research Progress on Graphite Target Preparation for Accelerator Mass Spectrometry 14C Analysis[J]. Rock and Mineral Analysis, 2019, 38(5): 583-597. DOI: 10.15898/j.cnki.11-2131/td.201807100082 |
Libby W F, Anderson E C, Arnold J R.Age determination by radiocarbon content:World-wide assay of natural radiocarbon[J]. Science, 1949, 109(2827):227-228. doi: 10.1126/science.109.2827.227
|
Hellborg R, Skog G.Accelerator mass spectrometry[J]. Mass Spectrometry Reviews, 2008, 27(5):398-427. doi: 10.1002/mas.20172
|
管永精, 王慧娟, 鞠志萍, 等.加速器质谱技术及其在地球科学中的应用[J].岩矿测试, 2005, 24(4):41-47. http://www.ykcs.ac.cn/article/id/ykcs_20050492
Guan Y J, Wang H J, Ju Z P, et al.Acclerator mass spectrometry and its applications in geosciences[J]. Rock and Mineral Analysis, 2005, 24(4):41-47. http://www.ykcs.ac.cn/article/id/ykcs_20050492
|
Kutschera W.Applications of accelerator mass spec-trometry[J]. International Journal of Mass Spectrometry, 2013, 349-350(1):203-218.
|
Vogel J S, Southon J R, Nelson D E, et al.Performance of catalytically condensed carbon for use in accelerator mass spectrometry[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1984, 5(2):289-293. doi: 10.1016/0168-583X(84)90529-9
|
Slota P, Jull A T, Linick T, et al.Preparation of small samples for 14C accelerator targets by catalytic reduction of CO[J]. Radiocarbon, 1987, 29(2):303-306. doi: 10.1017/S0033822200056988
|
Ertunc T, Xu S, Bryant C L, et al.Progress in AMS target production of sub-milligram samples at the NERC radiocarbon laboratory[J]. Radiocarbon, 2005, 47(3):453-464. doi: 10.1017/S0033822200035232
|
Xu X, Trumbore S E, Zheng S, et al.Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets:Reducing background and attaining high precision[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 259(1):320-329. doi: 10.1016/j.nimb.2007.01.175
|
Polach H A.Radiocarbon targets for AMS:A review of perceptions, aims and achievements[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1984, 5(2):259-264. doi: 10.1016/0168-583X(84)90523-8
|
Vogel J S, Nowikow I G, Southon J R, et al.Survey of simple carbon compounds for use in a negative ion sputter source[J]. Radiocarbon, 1983, 25(2):775-784. doi: 10.1017/S0033822200006135
|
Ding P, Shen C D, Yi W X, et al.Small-mass graphite preparation for AMS 14C measurements performed at GIGCAS, China[J]. Radiocarbon, 2017, 59(3):705-711. doi: 10.1017/RDC.2017.38
|
庞义俊, 何明, 杨旭冉, 等.基于小型单极加速器质谱测量14C的样品制备技术研究[J].原子能科学技术, 2017, 51(10):1866-1873. doi: 10.7538/yzk.2017.youxian.0012
Pang Y J, He M, Yang X R, et al.14C sample preparation for compact single stage AMS[J]. Atomic Energy Science and Technology, 2017, 51(10):1866-1873. doi: 10.7538/yzk.2017.youxian.0012
|
Zoppi U, Crye J, Song Q, et al.Performance evaluation of the New AMS system at Accium BioSciences[J]. Radiocarbon, 2016, 49(1):171-180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=RDC49_01-JATSRDCRDC49_01S0033822200041990h.xml
|
Rinyu L, Orsovszki G, Futó I, et al.Application of zinc sealed tube graphitization on sub-milligram samples using EnvironMICADAS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2015, 361(1):406-413. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=26e4df013f0f2542a4b3ea703f423acf
|
Orsovszki G, Rinyu L.Flame-sealed tube graphitization using zinc as the sole reduction agent:Precision improvement of EnvironMICADAS 14C measurements on graphite targets[J]. Radiocarbon, 2015, 57(5):979-990. doi: 10.2458/azu_rc.57.18193
|
杨雪, 郑勇刚, 尹金辉, 等.加速器14C制靶系统的研制及性能检验[J].地震地质, 2013, 35(4):930-934. doi: 10.3969/j.issn.0253-4967.2013.04.021
Yang X, Zheng Y G, Yin J H, et al.Developments and performance tests of the new AMS graphite target line[J]. Seismology and Geology, 2013, 35(4):930-934. doi: 10.3969/j.issn.0253-4967.2013.04.021
|
Xu X, Gao P, Salamanca E G.Ultra small-mass graphi-tization by sealed tube zinc reduction method for AMS 14C measurements[J]. Radiocarbon, 2013, 55(2-3):608-616. http://journals.cambridge.org/article_S0033822200057751
|
Piotrowska N.Status report of AMS sample preparation laboratory at GADAM Centre, Gliwice, Poland[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294:176-181. doi: 10.1016/j.nimb.2012.05.017
|
Delqué-Količ E, Comby-Zerbino C, Ferkane S, et al.Preparing and measuring ultra-small radiocarbon samples with the ARTEMIS AMS facility in Saclay, France[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1):189-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=050c90b1efb20dac57b3afd0f9d2d3a7
|
Marzaioli F, Borriello G, Passariello I, et al.Zinc redu-ction as an alternative method for AMS radiocarbon dating:Process optimization at CIRCE[J]. Radiocarbon, 2008, 50(1):139-149. doi: 10.1017/S0033822200043423
|
Zhou W, Lu X, Wu Z, et al.New results on Xi'an-AMS and sample preparation systems at Xi'an-AMS center[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 262(1):135-142. doi: 10.1016/j.nimb.2007.04.221
|
Uchida M, Shibata Y, Yoneda M, et al.Technical pro-gress in AMS microscale radiocarbon analysis[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2004, 223-224(1):313-317. http://onlinelibrary.wiley.com/resolve/reference/ADS?id=2004NIMPB.223..313U
|
Hua Q, Zoppi U, Williams A A, et al.Small-mass AMS radiocarbon analysis at ANTARES[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2004, 223-224(1):284-292. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212720154/
|
D'elia M, Calcagnile L, Quarta G, et al.Sample pre-paration and blank values at the AMS radiocarbon facility of the University of Lecce[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2004, 223-224(1):278-283. http://www.sciencedirect.com/science/article/pii/S0168583X04005816
|
Kitagawa H, Masazawa T, Nakamura T, et al.A batch pre-paration method for graphite targets with low background for AMS 14C measurements[J]. Radiocarbon, 1993, 35(2):295-300. doi: 10.1017/S0033822200064973
|
Verkouteren R M.Iron-manganese system for prepara-tion of radiocarbon AMS targets:Characterization of procedural chemical-isotopic blanks and fractionation[J]. Radiocarbon, 1997, 39(3):269-283. doi: 10.1017/S003382220005325X
|
Vogel J S.Rapid production of graphite without conta-mination for biomedical AMS[J]. Radiocarbon, 1992, 34(3):344-350. doi: 10.1017/S0033822200063529
|
Kim S H, Kelly P B, Clifford A J.Biological/biomedical accelerator mass spectrometry targets.1.Optimizing the CO2 reduction step using zinc dust[J]. Analytical Chemistry, 2008, 80(20):7651-7660. doi: 10.1021/ac801226g
|
刘圣华, 杨育振, 徐胜, 等.加速器质谱14C制样真空系统及石墨制备方法研究[J].岩矿测试, 2019, 38(3):270-279. doi: 10.15898/j.cnki.11-2131/td.201807120084
Liu S H, Yang Y Z, Xu S, et al.14C sample preparation vacuum line and graphite preparation method for 14C-AMS measurement[J]. Rock and Mineral Analysis, 2019, 38(3):270-279. doi: 10.15898/j.cnki.11-2131/td.201807120084
|
McNichol A P, Gagnon A R, Jones G A, et al.Illumina-tion of a black box:Analysis of gas composition during graphite target preparation[J]. Radiocarbon, 1992, 34(3):321-329. doi: 10.1017/S0033822200063499
|
Rinyu L, Futó I, Kiss A Z, et al.Performance test of a new graphite target production facility in ATOMKI[J]. Radiocarbon, 2007, 49(2):217-224. doi: 10.1017/S0033822200042144
|
Hong W, Park J H, Kim K J, et al.Establishment of chemical preparation methods and development of an automated reduction system for AMS sample preparation at KIGAM[J]. Radiocarbon, 2010, 52(3):1277-1287. doi: 10.1017/S0033822200046361
|
Macario K D, Alves E Q, Oliveira F M, et al.Graphiti-zation reaction via zinc reduction:How low can you go?[J]. International Journal of Mass Spectrometry, 2016, 410(1):47-51.
|
Macario K D, Oliveira F M, Moreira V N, et al.Optimi-zation of the amount of zinc in the graphitization reaction for radiocarbon AMS measurements at LAC-UFF[J]. Radiocarbon, 2016, 59(3):1-7.
|
Rinyu L, Molnár M, Major I, et al.Optimization of sealed tube graphitization method for environmental C-14 studies using MICADAS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1):270-275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fcad5316421d17da51660cce423bf050
|
Khosh M S, Xu X, Trumbore S E.Small-mass graphite preparation by sealed tube zinc reduction method for AMS 14C measurements[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7-8):927-930. doi: 10.1016/j.nimb.2009.10.066
|
Wild E, Golser R, Hille P, et al.First 14C results from archaeological and forensic studies at the Vienna Environmental Research Accelerator[J]. Radiocarbon, 1998, 40(1):273-282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=RDC40_01-JATSRDCRDC40_01S0033822200018142h.xml
|
Vogel J S, Southon J R, Nelson D E.Catalyst and binder effects in the use of filamentous graphite for AMS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1987, 29(1):50-56. http://www.sciencedirect.com/science/article/pii/0168583X87902023
|
Dee M, Bronk Ramsey C.Refinement of graphite target production at ORAU[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2000, 172(1-4):449-453. doi: 10.1016/S0168-583X(00)00337-2
|
Kim S H, Kelly P B, Clifford A J.Biological/biomedical accelerator mass spectrometry targets.2.Physical, morphological, and structural characteristics[J]. Analytical Chemistry, 2008, 80(20):7661-7669. doi: 10.1021/ac801228t
|
Kim S H, Kelly P B, Ortalan V, et al.Quality of graphite target for biological/biomedical/environmental applications of 14C-accelerator mass spectrometry[J]. Analytical Chemistry, 2010, 82(6):2243-2252. doi: 10.1021/ac9020769
|
Santos G M, Southon J R, Griffin S, et al.Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 259(1):293-302. doi: 10.1016/j.nimb.2007.01.172
|
Vogel J S, Nelson D, Southon J R.14C background levels in an accelerator mass spectrometry system[J]. Radiocarbon, 1987, 29(3):323-333. doi: 10.1017/S0033822200043733
|
Aerts-Bijma A T, Meijer H A J, Plicht J V D.AMS sample handling in Groningen[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1997, 123(1-4):221-225. doi: 10.1016/S0168-583X(96)00672-6
|
Gillespie R, Hedges R E M.Laboratory contamination in radiocarbon accelerator mass spectrometry[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1984, 5(2):294-296. doi: 10.1016/0168-583X(84)90530-5
|
Steinhof A, Altenburg M, Machts H.Sample preparation at the Jena 14C Laboratory[J]. Radiocarbon, 2017, 59(3):815-830. doi: 10.1017/RDC.2017.50
|
Verkouteren R M, Klouda G A, Currie L A, et al.Pre-paration of microgram samples on iron wool for radiocarbon analysis via accelerator mass spectrometry:A closed-system approach[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1987, 29(1-2):41-44. doi: 10.1016/0168-583X(87)90200-X
|
Ertunc T, Xu S, Bryant C L, et al.Investigation into background levels of small organic samples at the NERC Radiocarbon Laboratory[J]. Radiocarbon, 2007, 49(2):271-280. doi: 10.1017/S0033822200042193
|
Yokoyama Y, Miyairi Y, Matsuzaki H, et al.Relation be-tween acid dissolution time in the vacuum test tube and time required for graphitization for AMS target preparation[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 259(1):330-334. doi: 10.1016/j.nimb.2007.01.176
|
Paul D, Been H A, Aerts-Bijma A T, et al.Conta-mination on AMS sample targets by modern carbon is inevitable[J]. Radiocarbon, 2016, 58(2):407-418. doi: 10.1017/RDC.2016.9
|
De Rooij M, Van Der Plicht J, Meijer H A J.Porous iron pellets for AMS 14C analysis of small samples down to ultra-microscale size (10-25μg C)[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7-8):947-951. doi: 10.1016/j.nimb.2009.10.071
|
Yokoyama Y, Koizumi M, Matsuzaki H, et al.Developing ultra small-scale radiocarbon sample measurement at the University of Tokyo[J]. Radiocarbon, 2010, 52(3):310-318. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=RDC52_02-JATSRDCRDC52_02S0033822200045355h.xml
|
Walter S, Sunita R, Gagnon A R, et al.Ultra-small graphitization reactors for ultra-microscale 14C analysis at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) Facility[J]. Radiocarbon, 2015, 57(1):109-122. doi: 10.2458/azu_rc.57.18118
|
Guaciara M, Santos X X.Bag of Tricks:A set of tech-niques and other resources to help 14C laboratory setup, sample processing, and beyond[J]. Radiocarbon, 2016, 59(3):785-801.
|
Dunbar E, Cook G T, Naysmith P, et al.AMS 14C dating at the Scottish Universities Environmental Research Centre (SUERC) Radiocarbon Dating Laboratory[J]. Radiocarbon, 2016, 58(1):9-23. doi: 10.1017/RDC.2015.2
|
Brown T A, Southon J R.Corrections for contamination background in AMS 14C measurements[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1997, 123(1):208-213. http://www.sciencedirect.com/science/article/pii/S0168583X96006763
|
Donahue D J, Linick T W, Jull A J T.Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements[J]. Radiocarbon, 1990, 32(2):135-142. doi: 10.1017/S0033822200040121
|
Aggarwal P K, Araguas-Araguas L, Choudhry M, et al.Lower groundwater 14C age by atmospheric CO2 uptake during sampling and analysis[J]. Groundwater, 2014, 52(1):20-24. doi: 10.1111/gwat.12110
|
Yang B, Smith A M, Hua Q.A cold finger cooling system for the efficient graphitisation of microgram-sized carbon samples[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1):262-265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=68ee53bd7e547b58c75aa37e0fba8198
|
Liebl J, Steier P, Golser R, et al.Carbon background and ionization yield of an AMS system during 14C measurements of microgram-size graphite samples[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1):335-339. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=92638b69d4f9f411fe72d8e43c9b2fb3
|
Hajdas I, Bonani G, Thut J, et al.A report on sample preparation at the ETH/PSI AMS facility in Zurich[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2004, 223-224(1):267-271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4b14e45da646de3adf44180e7de7bddc
|
Sakamoto M, Wakasa S, Matsuzaki H, et al.Design and performance tests of an efficient sample preparation system for AMS-14C dating[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7-8):935-939. doi: 10.1016/j.nimb.2009.10.068
|
Wacker L, Němec M, Bourquin J.A revolutionary graphi-tisation system:Fully automated, compact and simple[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7):931-934. http://www.sciencedirect.com/science/article/pii/S0168583X09011161
|
Nagasawa S, Kitagawa H, Nakanishi T, et al.An app-roach toward automatic graphitization of CO2 samples for AMS 14C measurements[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1):266-269. http://www.sciencedirect.com/science/article/pii/S0168583X12005769
|
Solís C, Chávez E, Ortiz M E, et al.AMS-C14 analysis of graphite obtained with an Automated Graphitization Equipment (AGE Ⅲ) from aerosol collected on quartz filters[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2015, 361:419-422. doi: 10.1016/j.nimb.2015.05.027
|
Yang B, Smith A M, Long S.Second generation laser-heated microfurnace for the preparation of microgram-sized graphite samples[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2015, 361(1):363-371. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d312e5fc58e8312b88219ca94e8838ac
|
Mojmír N L W, Gäggeler H.Optimization of the graphiti-zation process at Age-1[J]. Radiocarbon, 2010, 52(2-3):1380-1393. http://journals.cambridge.org/abstract_S0033822200046464
|
Wacker L, Fülöp R H, Hajdas I, et al.A novel approach to process carbonate samples for radiocarbon measurements with helium carrier gas[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294:214-217. doi: 10.1016/j.nimb.2012.08.030
|
Mcintyre C P, Roberts M L, Burton J R, et al.Rapid radiocarbon (14C) analysis of coral and carbonate samples using a continuous-flow accelerator mass spectrometry (CFAMS) system[J]. Paleoceanography, 2011, 26(4):PA4212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=418fb4baa10e8cca6d861cf187e80e7c
|
Longworth B E, Robinson L F, Roberts M L, et al.Car-bonate as sputter target material for rapid 14C AMS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1):328-334. http://www.sciencedirect.com/science/article/pii/S0168583X12002819
|
Kitagawa H.CO2-laser decomposition method of car-bonate for AMS 14C measurements[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1):218-220. http://www.sciencedirect.com/science/article/pii/S0168583X12005782
|
Wacker L, Münsterer C, Hattendorf B, et al.Direct coup-ling of a laser ablation cell to an AMS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1):287-290. http://www.sciencedirect.com/science/article/pii/S0168583X12001061
|
Münsterer C, Wacker L, Hattendorf B, et al.Rapid reve-lation of radiocarbon records with laser ablation accelerator mass spectrometry[J]. Chimia, 2014, 68(4):215-216. doi: 10.2533/chimia.2014.215
|
Welte C, Wacker L, Hattendorf B, et al.Optimizing the analyte introduction for 14C laser ablation-AMS[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(9):1813-1819. doi: 10.1039/C7JA00118E
|
Welte C, Wacker L, Hattendorf B, et al.Laser ablation-accelerator mass spectrometry:An approach for rapid radiocarbon analyses of carbonate archives at high spatial resolution[J]. Analytical Chemistry, 2016, 88(17):8570-8576. doi: 10.1021/acs.analchem.6b01659
|
Welte C, Wacker L, Hattendorf B, et al.Novel laser ablation sampling device for the rapid radiocarbon analysis of carbonate samples by accelerator mass spectrometry[J]. Radiocarbon, 2016, 58(2):419-435. doi: 10.1017/RDC.2016.6
|
Kim S H, Kelly P B, Clifford A J.Accelerator mass spectrometry targets of submilligram carbonaceous samples using the high-throughput Zn reduction method[J]. Analytical Chemistry, 2009, 81(14):5949-5954. doi: 10.1021/ac900406r
|
1. |
严慧,戴长文,叶明,王干珍,汤行,邓飞跃. 电感耦合等离子体原子发射光谱(ICP-AES)法测定石煤钒矿石中钒、铁、钛的含量. 中国无机分析化学. 2024(03): 324-329 .
![]() | |
2. |
安帅,陈鉴惠,王伟丹,马健生,赵恩好,周小帆. 电感耦合等离子体发射光谱法测定不同pH土壤的交换性盐. 地质与资源. 2024(05): 725-732 .
![]() | |
3. |
于汀汀,王蕾,郭琳,安子怡,臧慧媛,马生凤. 酸溶-电感耦合等离子体发射光谱测定不同类型铍矿中的主次量元素方法优化. 岩矿测试. 2023(05): 923-933 .
![]() |