• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Xi-feng LIU, Yu-heng JIA, Yan LIU. Geochemical Characteristics and Genetic Types of Gobi Nephrite in Ruoqiang—Qiemo, Xinjiang[J]. Rock and Mineral Analysis, 2019, 38(3): 316-325. DOI: 10.15898/j.cnki.11-2131/td.201806180072
Citation: Xi-feng LIU, Yu-heng JIA, Yan LIU. Geochemical Characteristics and Genetic Types of Gobi Nephrite in Ruoqiang—Qiemo, Xinjiang[J]. Rock and Mineral Analysis, 2019, 38(3): 316-325. DOI: 10.15898/j.cnki.11-2131/td.201806180072

Geochemical Characteristics and Genetic Types of Gobi Nephrite in Ruoqiang—Qiemo, Xinjiang

More Information
  • Received Date: June 17, 2018
  • Revised Date: March 03, 2019
  • Accepted Date: April 08, 2019
  • Published Date: April 30, 2019
  • HIGHLIGHTS
    (1) Hydrogen isotope of ore-forming fluids in Gobi nephrite samples was composed mainly of magmatic and meteoric water.
    (2) Gobi nephrite displayed REE patterns with negative Eu anomalies, LREE enrichment, flat HREE and low REE concentration.
    (3) 400Ma U-Pb age of zircons in Gobi nephrite was dominant in the Hetian region.
    (4) Geochemical characteristics and ore-forming fluids of Gobi nephrite suggested an affinity with Mg-skarn deposits.
    BACKGROUNDThe Hetian nephrite belt is the longest nephrite belt in the world at 1300km. In addition to the traditional primary and placer nephrite, there is widespread Gobi nephrite in the Gobi desert of the Quoqiang district in Xinjiang.
    OBJECTIVESTo identify the origin, genesis, ages and types of Gobi nephrite.
    METHODSElectronic Microprobe, X-ray Fluorescence, Inductively Coupled Plasma-Mass Spectrometry and sensitive high-resolution Ion Microprobe were used to examine the mineral assemblages, chemical composition and ages of Gobi nephrite. Based on these analyses, the genesis of Gobi nephrite was constrained.
    RESULTSGobi nephrite was predominantly composed of tremolite (>95%) with minor apatite, diopside, epidote and chromite (< 5%). The color of Gobi nephrite was mainly dark green, green, yellow-green and white. The samples, with the exception of white, were related to the FeO content (0.48%-2.92%). The whole rock analysis suggested that both Gobi nephrite and tremolite had a similar chemical composition. All samples displayed LREE enrichment, flat HREE and negative Eu anomaly (δEu=0.09-0.66). Totally, all these samples had low content of REE (6.93-115.93μg/g), Cr (68.8-119μg/g), and Ni (16.4-38.8μg/g). δD (-24.94‰--56.83‰) of ore-forming fluids indicated that it was composed of magmatic water and meteoric water. SHRIMP U-Pb dating of zircons showed that there were four groups of ages:40-60Ma, 480Ma, 785Ma and 1450-2460Ma. These ages could be used to constrain the formation ages of Gobi nephrite.
    CONCLUSIONSThe geochemistry and ore-forming fluid composition of the Gobi nephrite is similar to the composition of nephrite in the typical Mg-skarn deposit previously reported. The ore-forming age of 400Ma is consistent with the mineralization age of most of the reported ages in the Hetian areas. The multiple age groups also indicate multi-stage mineralization of nephrite.

  • Simandl G J, Riveros C P, Schiarizza P.Nephrite (Jade) Deposits, Mount Ogden Area, Central British Columbia (NTS 093N 13W)[R].British Columbia Geology Survey, 1999: 339-347.
    Makepeace K, Simandl G J.Jade (Nephrite) in British Columbia, Canada[R].Program and Extended Abstracts for 37th Forum on the Geology of Indutrial Minerals, 2001: 209-210.
    Łapot W.Peculiar nephrite from the East Saian Mts (Siberia)[J].Mineralogia Polonica, 2004, 35:49-58. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_f0656765eb076f0764ab4b261290ef65
    Yui T F, Kwon S T.Origin of a dolomite-related jade deposit at Chuncheon, Korea[J].Economic Geology, 2002, 97:593-601. doi: 10.2113/gsecongeo.97.3.593
    Harlow G E, Sorensen S S.Jade (nephrite and jadeitite) and serpentinite:Metasomatic connections[J].International Geology Review, 2005, 47:113-146. doi: 10.2747/0020-6814.47.2.113
    Liu Y, Deng J, Shi G H, et al.Chemical zone of nephrite in Almas, Xinjiang, China[J].Resource Geology, 2010, 60:249-259. doi: 10.1111/rge.2010.60.issue-3
    Liu Y, Deng J, Shi G H, et al.Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China[J].Journal of Asian Earth Sciences, 2011, 42:440-451. doi: 10.1016/j.jseaes.2011.05.012
    Liu Y, Deng J, Shi G H, et al.Geochemistry and petrogenesis of placer nephrite from Hetian, Xinjiang[J].Ore Geology Reviews, 2011, 41:122-132. doi: 10.1016/j.oregeorev.2011.07.004
    于海燕, 阮青锋, 孙媛, 等.不同颜色青海软玉微观形貌和矿物组成特征[J].岩矿测试, 2018, 37(6):626-636. doi: 10.15898/j.cnki.11-2131/td.201704250066

    Yu H Y, Ruan Q F, Sun Y, et al.Micro-morphology and mineral composition of different color Qinghai nephrites[J].Rock and Mineral Analysis, 2018, 37(6):626-636. doi: 10.15898/j.cnki.11-2131/td.201704250066
    Ling X X, Schmädicke E, Li Q L, et al.Age determination of nephrite by in-situ SIMS U-Pb dating syngenetic titanite:A case study of the nephrite deposit from Luanchuan, Henan, China[J].Lithos, 2015, 220-223:289-299. doi: 10.1016/j.lithos.2015.02.019
    Middleton A.JADE-Geology and Mineralogy[M]//O'Donoghue M.Gems.Oxford: Elsevier, 2006: 332-354.
    张蓓莉.系统宝石学[M].北京:地质出版社, 2006:365-374.

    Zhang B L.Systematic Gemmology[M].Beijing:Geological Publishing House, 2006:365-374.
    买托乎提·阿不都瓦衣提.和田玉戈壁料与仿戈壁料鉴定方法探讨[C]//中国珠宝首饰学术交流会论文集.北京: 中国珠宝玉石首饰行业协会, 2009: 157-159.

    Abuduwayiti M.Hetian Nephrite Occurring In the Gobi Desert and Their Imitation[C]//Proceedings of China Gems and Jewelry Academic Conference.Beijing: China Jewelry and Jade Jewelry Industry Association, 2009: 157-159.
    Friedman I.Deuterium content of natural waters and other substances[J].Geochimica et Cosmochimica Acta, 1953, 4:89-103. doi: 10.1016/0016-7037(53)90066-0
    Black L P, Kamo S L, Allen C M, et al.TEMORA 1:A new zircon standard for Phanerozoic U-Pb geochronology[J].Chemical Geology, 2003, 200(1):155-170. https://www.researchgate.net/publication/222256326_TEMORA_1_A_new_zircon_standard_for_Phanerozoic_U-Pb_geochronology
    Nasdala L, Hofmeister W, Norberg N, et al.Zircon M257-A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J].Geostandards and Geoanalytical Research, 2008, 32(3):247-265. doi: 10.1111/ggr.2008.32.issue-3
    Compston W, Williams I S, Kirschvink J L, et al.Zircon U-Pb ages forthe Early Cambrian time-scale[J].Journal of the Geological Society, 1992, 149:171-184. doi: 10.1144/gsjgs.149.2.0171
    Stern R A.High-resolution SIMS Determination of Ra-diogenic Tracer-Isotope Ratios in Minerals[C]//Cabri L J, Vaughan D J.Modern Approaches to Ore and Environmental Mineralogy.Mineralogical Association of Canada, 1998: 241-268.
    Ludwig K R.Squid 1.02: A User's Manual[M].Berkeley Geochronology Center Special Publication, 2001: 1-21.
    Ludwig K R.User's Manual for Isoplot 3.00: A Geo-chronological Toolkit for Microsoft Excel[M].Berkeley: Berkeley Geochronology Center Special Publication, 2003.
    Liu Y, Zhang R Q, Zhang Z Y, et al.Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite:Implications for the genesis of a magnesian skarn deposit[J].Lithos, 2015, 212-215:128-144. doi: 10.1016/j.lithos.2014.11.002
    Liu Y, Zhang R Q, Abuduwayiti M, et al.SHRIMP U-Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, Northwest China:Implication for a magnesium skarn[J].Ore Geology Reviews, 2016, 72:699-727. doi: 10.1016/j.oregeorev.2015.08.023
    Douglas J G.The study of Chinese archaic jades using non-destructive X-ray fluorescence spectroscopy[J].Acta Geologica Taiwanica, 1996, 32:43-54.
    Douglas J G.Exploring Issues of Geological Source for Jade Worked by Ancient Chinese Cultures with the Aid of X-ray Fluorescence[C]//Jett P.Scientific Study in the Field of Asian Art.London: Archetype Publications Ltd, 2003: 192-199.
    刘喜锋, 刘琰, 李自静, 等.新疆皮山镁质矽卡岩矿床(含糖玉)成因及锆石SHRIMP U-Pb定年[J].岩石矿物学杂志, 2017, 36(2):259-273. doi: 10.3969/j.issn.1000-6524.2017.02.010

    Liu X F, Liu Y, Li Z J, et al.The genesis of Mg-skarn deposit (bearing brown nephrite) and its Ar-Ar dating of phlogopite and SHRIMP U-Pb dating of zircon, Pishan, Xinjiang[J].Acta Petrologica et Mineralogica, 2017, 36(2):259-273. doi: 10.3969/j.issn.1000-6524.2017.02.010
    Ohmoto H.Stable isotope geochemistry of ore deposits[J].Reviews in Mineralogy and Geochemistry, 1986, 16(1):491-559. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201801010
    张勇, 魏华, 陆太进, 等.新疆奥米夏和田玉矿床成因及锆石LA-ICP-MS定年研究[J].岩矿测试, 2018, 37(6):695-704. doi: 10.15898/j.cnki.11-2131/td.201801170007

    Zhang Y, Wei H, Lu T J, et al.The genesis and LA-ICP-MS zircon ages of Omixia nephrite deposit, Xinjiang, China[J].Rock and Mineral Analysis, 2018, 37(6):695-704. doi: 10.15898/j.cnki.11-2131/td.201801170007
    Siqin B, Qian R, Zhuo S, et al.Glow discharge mass spectrometry studies on nephrite minerals formed by different metallogenic mechanisms and geological environments[J].International Journal of Mass Spectrometry, 2012, 309:206-211. doi: 10.1016/j.ijms.2011.10.003
    Grapes R H, Yun S T.Geochemistry of a New Zealand nephrite weathering rind[J].New Zealand Journal of Geology and Geophysics, 2010, 53:413-426. doi: 10.1080/00288306.2010.514929
    Kostov R I, Protochristov C, Stoyanov C, et al.Micro-PIXE geochemical fingerprinting of nephrite neolithic artifacts from Southwest Bulgaria[J].Geoarchaeology, 2012, 27:457-469. doi: 10.1002/gea.21417
    Adamo I, Bocchio R.Nephrite jade from Val Malenco, Italy:Review and update[J].Gems and Gemology, 2013, 49:98-106. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230901229/
    Bhattacharya A, Raith M, Hoernes S, et al.Geochemical evolution of the massif-type anorthosite complex at Bolangir in the Eastern Ghats belt of India[J].Journal of Petrology, 1998, 39(6):1169-1195. doi: 10.1093/petroj/39.6.1169
    James O B, Floss C, McGee J J.Rare earth element variations resulting from inversion of pigeonite and subsolidus reequilibration in Lunar ferroan anorthosites[J].Geochimica et Cosmochimica Acta, 2002, 66(7):1269-1284. doi: 10.1016/S0016-7037(01)00772-4
    Charlier B, Auwera J V, Duchesne J C.Geochemistry of cumulates from the Bjerkreim-Sokndal layered intrusion (S.Norway):Part Ⅱ.REE and the trapped liquid fraction[J].Lithos, 2005, 83(3):255-276. https://www.researchgate.net/publication/222576088_Geochemistry_of_cumulates_from_the_Bjerkreim-Sokndal_layered_intrusion_S_Norway_Part_II_REE_and_the_trapped_liquid_fraction
    刘喜锋, 张红清, 刘琰, 等.世界范围内代表性碧玉的矿物特征和成因研究[J].岩矿测试, 2018, 37(5):479-489. doi: 10.15898/j.cnki.11-2131/td.201712010187

    Liu X F, Zhang H Q, Liu Y, et al.Mineralogical characteristics and genesis of green nephrite from the world[J].Rock and Mineral Analysis, 2018, 37(5):479-489. doi: 10.15898/j.cnki.11-2131/td.201712010187
  • Cited by

    Periodical cited type(9)

    1. 付玉蕾,史淼,曹沁元,马世玉. 黑青和田玉宝石矿物学及地球化学特征研究. 岩石矿物学杂志. 2024(03): 630-642 .
    2. 景云涛,刘琰,张勇,买托乎提·阿不都瓦衣提. 中国大理岩型和田玉矿床的成矿时代、形成过程及找矿方向. 岩石矿物学杂志. 2022(03): 651-667 .
    3. 蓝叶,于海燕,阮青锋,沙鑫,易泽邦,杨育富. 透闪石玉成矿研究现状与展望. 桂林理工大学学报. 2022(01): 55-62 .
    4. 张晓晖,冯玉欢,张勇,买托乎提·阿不都瓦衣提. 新疆且末—若羌地区黄绿色和田玉分析测试及特性表征. 岩矿测试. 2022(04): 586-597 . 本站查看
    5. 崔中良,黄怡祯,郭心雨. 闪石玉研究进展的文献计量学分析. 宝石和宝石学杂志(中英文). 2022(05): 155-169 .
    6. 闵红,刘倩,张金阳,周海明,严德天,邢彦军,李晨,刘曙. X射线荧光光谱-X射线粉晶衍射-偏光显微镜分析12种产地铜精矿矿物学特征. 岩矿测试. 2021(01): 74-84 . 本站查看
    7. 邹妤,李鹏,吴之瑛,康梦玲,王时麒. 辽宁岫岩县桑皮峪透闪石玉成矿年龄研究. 岩石矿物学杂志. 2021(04): 825-834 .
    8. 黄倩心,王时麒,梁国科,杨晓东,吴祥珂. 广西巴马玉的矿物学特征及其成因探讨. 岩石矿物学杂志. 2021(05): 977-990 .
    9. 林君峰,王刚,林枫,许冰,王成云,谢堂堂. 拉曼光谱鉴别天然与染色和田玉. 中国口岸科学技术. 2021(12): 51-57 .

    Other cited types(5)

Catalog

    Article views (1936) PDF downloads (74) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return