Core Journal of China

DOAJ

Scopus

Chinese Scientific and Technical Papers and Citations (CSTPC)

Chinese Science Citation Database (CSCD)

Chong QIN, Chang SHI, Qiu-yue WAN, Lei WANG, Ai-qin LIU, Cai-xiu AN. Speciation Analysis of Inorganic Selenium in Soil by High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 664-670. DOI: 10.15898/j.cnki.11-2131/td.201803200024
Citation: Chong QIN, Chang SHI, Qiu-yue WAN, Lei WANG, Ai-qin LIU, Cai-xiu AN. Speciation Analysis of Inorganic Selenium in Soil by High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 664-670. DOI: 10.15898/j.cnki.11-2131/td.201803200024

Speciation Analysis of Inorganic Selenium in Soil by High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry

  • BACKGROUNDIn the speciation analysis of selenite Se (Ⅳ) and selenite Se (Ⅵ) in soil samples, the key problem is to select the extraction agents and detection methods. In the past, extraction agents may lead to Se species redistribution or cannot extract both Se (Ⅳ) and Se (Ⅵ). Selenium speciation has been routinely determined by Hydride Generation-Atomic Absorption Spectrometry (HG-AAS). However, Se (Ⅵ) cannot be directly measured and its concentration is calculated by the difference between analyzed total Se and Se (Ⅳ) concentrations.OBJECTIVESIn order to establish an analysis method for the determination of Se (Ⅳ) and Se (Ⅵ) in soil samples by selecting the appropriate extraction agent and determination technique.METHODSThe extraction capacity of different extraction agents was compared and 0.1 mol/L sodium hydroxide was selected for the experiment. Selenium species were quantitatively extracted in a ultrasonic field at 55℃ for 30 min. An analytical method for determination of Se (Ⅳ) and Se (Ⅵ) by High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry (HPLC-ICP-MS) was established.RESULTSThe results show that Se (Ⅳ) and Se (Ⅵ) can be separated within 8 min by using a Hamilton PRP X-100 reversed-phase anion exchange column with 6 mol/L citric acid as mobile phase under pH of 5.5. The detection limits of Se (Ⅳ) and Se (Ⅵ) are 0.15 μg/L and 0.16 μg/L, respectively. Linear correlation coefficient (r2) is more than 0.999, the recoveries are 84.2%-95.8%, and the relative standard deviations are 1.4%-5.3% (n=6).CONCLUSIONSThe proposed method is simple and fast and has good accuracy and high precision, which meets the requirements for analyzing inorganic selenium in soil.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return