• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Yi-fei MA, Ni ZHANG, Zeng WEI, Wen-xu GAO, Kui WANG. Rapid Determination of Soil Cation Exchange Capacity by Automatic Kjeldahl Analyzer after Oscillating Exchange and Suction Filtration[J]. Rock and Mineral Analysis, 2019, 38(1): 129-135. DOI: 10.15898/j.cnki.11-2131/td.201712110191
Citation: Yi-fei MA, Ni ZHANG, Zeng WEI, Wen-xu GAO, Kui WANG. Rapid Determination of Soil Cation Exchange Capacity by Automatic Kjeldahl Analyzer after Oscillating Exchange and Suction Filtration[J]. Rock and Mineral Analysis, 2019, 38(1): 129-135. DOI: 10.15898/j.cnki.11-2131/td.201712110191

Rapid Determination of Soil Cation Exchange Capacity by Automatic Kjeldahl Analyzer after Oscillating Exchange and Suction Filtration

More Information
  • Received Date: December 11, 2017
  • Revised Date: April 25, 2018
  • Accepted Date: July 05, 2018
  • Published Date: December 31, 2018
  • HIGHLIGHTS
    (1) Sufficient cation exchange between the sample and ammonium acetate solution can be completed by oscillating for 25min.
    (2) Extra ammonium ions can be removed quickly by vacuum filtration.
    (3) The analysis of one batch sample (100 pieces) takes only 12 hours.
    BACKGROUNDThe industry criteria of determination of soil cation exchange capacity (CEC) (LY/T1243-1999)uses centrifugal separation combined with manual distillation and titration, which is complex and time consuming.
    OBJECTIVESDetermination of soil cation exchange capacity by automatic Kjeldahl analyzer after oscillating exchange and vacuum filtration.
    METHODSThe acidic and neutral soils were treated with ammonium acetate, the calcareous soil was treated with ammonium chloride-ammonium acetate, and the cations were quickly exchanged and cleaned by shaking and by using suction filtration equipment, and adsorbed by a fully automatic Kjeldahl analyzer. The ammonium ion was measured to calculate the CEC value.
    RESULTSThe experimental results show that, under the optimized oscillation and distillation, concentration of titration acid and ratio of indicator conditions, the analysis of one batch sample (100 pieces) only takes 12 hours. Compared with traditional methods, the detection time is shortened by nearly 80%. The results of national standard materials determined by the proposed method are in accordance with the certified values, the relative standard deviation is less than 1.5% (n=5).
    CONCLUSIONSThe method eliminates multiple centrifugation operations, solves the problem of low component loss and CEC measurement value deviations, and improves detection efficiency and accuracy. This method has a lower cost than the forestry standard method, and has high operability and is suitable for analysis of large-scale soil samples such as environmental quality assessment and regional soil sampling surveys.

  • 黄尚书, 叶川, 钟义军, 等.不同土地利用方式对红壤坡地土壤阳离子交换量及交换性盐基离子的影响[J].土壤与作物, 2016, 5(2):72-77. http://d.old.wanfangdata.com.cn/Periodical/tryzw201602002

    Huang S S, Ye C, Zhong Y J, et al.Soil cation exchange capacity and exchangeable base cations as affected by land use pattern in sloping farmland of red soil[J].Soils and Crops, 2016, 5(2):72-77. http://d.old.wanfangdata.com.cn/Periodical/tryzw201602002
    胡清菁, 张超兰, 靳振江, 等.铅锌矿尾砂重金属污染物对不同土地利用类型土壤性质影响的典范对应分析[J].岩矿测试, 2014, 33(5):714-722. doi: 10.3969/j.issn.0254-5357.2014.05.016

    Hu Q J, Zhang C L, Jin Z J, et al.Canonical correspondence analysis for soil properties and heavy metal pollution from Pb-Zn mine tailings in different land use types[J].Rock and Mineral Analysis, 2014, 33(5):714-722. doi: 10.3969/j.issn.0254-5357.2014.05.016
    Fang K, Kou D, Wang G Q, et al.Decreased soil cation exchange capacity across northern China's grasslands over the last three decade[J].Journal of Geophysical Research-Biogeosciences, 2017, 122(11):3088-3097. doi: 10.1002/jgrg.v122.11
    Aranda V, Oyonarte C.Characteristics of organic matter in soil surface horizons derived from calcareous and metamorphic rocks and different vegetation types from the mediterranean high-mountains in SE Spain[J].Soil Biology, 2006(42):247-258. https://www.sciencedirect.com/science/article/abs/pii/S1164556306000185
    Dawid J, Dorota K.A comparison of methods for the de-termination of cation exchange capacity of soils[J].Ecological Chemistry & Engineering S, 2014, 21(3):487-498.
    王文艳, 张丽萍, 刘俏.黄土高原小流域土壤阳离子交换量分布特征及影响因子[J].水土保持学报, 2012, 26(5):123-127. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201205025

    Wang W Y, Zhang L P, Liu Q.Distribution and affecting factors of soil cation exchange capacity in watershed of the loess plateau[J].Journal of Soil and Water Conservation, 2012, 26(5):123-127. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201205025
    沈纯怡, 邢伟银.快速检测土壤阳离子交换量的研究[J].中国土壤与肥料, 2016(5):144-147. http://d.old.wanfangdata.com.cn/Periodical/trfl201605029

    Shen C Y, Xing W Y.Research on the rapid determination of cation exchange capacity in soil[J].Soil and Fertilizer Sciences in China, 2016(5):144-147. http://d.old.wanfangdata.com.cn/Periodical/trfl201605029
    周圆, 卞世闻, 张宇.凯氏定氮仪测定土壤阳离子交换量的方法改进[J].环境科学导刊, 2015, 34(6):106-109. doi: 10.3969/j.issn.1673-9655.2015.06.027

    Zhou Y, Bian S W, Zhang Y.Method improvement of detecting soil CEC by Kieldahl's azotometer[J].Environmental Science Survey, 2015, 34(6):106-109. doi: 10.3969/j.issn.1673-9655.2015.06.027
    拉毛吉, 王玉功, 张榕.乙酸铵离心交换法和乙酸钙离心交换法测定土壤阳离子交换量[J].中国无机分析化学, 2017, 7(3):38-41. doi: 10.3969/j.issn.2095-1035.2017.03.010

    La M J, Wang Y G, Zhang R.Determination of cation exchange capacity of soil by centrifugal exchange of ammonium and calcium acetates[J].Chinese Journal of Inorganic Analytical Chenistry, 2017, 7(3):38-41. doi: 10.3969/j.issn.2095-1035.2017.03.010
    葛艳梅, 李亚.膨润土测定阳离子交换量缩合滴定和凯式蒸馏滴定方法的比对[J].当代化工, 2016, 45(7):1558-1559. doi: 10.3969/j.issn.1671-0460.2016.07.071

    Ge Y M, Li Y.Delemination of cation exchange capacity of bentonite condensation titration and Kjeldahl distillation titration method comparison[J].Contemporary Chemical Industry, 2016, 45(7):1558-1559. doi: 10.3969/j.issn.1671-0460.2016.07.071
    窦蓓蕾, 张沛, 田渭花.陕西地区土壤阳离子交换量(CEC)测定方法研究[J].安徽农学通报, 2015, 21(22):65-66. doi: 10.3969/j.issn.1007-7731.2015.22.029

    Dou B L, Zhang P, Tian W H.The determination method of soil cationic exchange capacity in Shaanxi area[J].Anhui Agricultural Science Bulletin, 2015, 21(22):65-66. doi: 10.3969/j.issn.1007-7731.2015.22.029
    张彦雄, 李丹, 张佐玉, 等.两种土壤阳离子交换量测定方法的比较[J].贵州林业科技, 2010, 38(2):45-49. http://d.old.wanfangdata.com.cn/Periodical/gzlykj201002011

    Zhang Y X, Li D, Zhang Z Y, et al.A comparison study of two methods for measurement of soil cation exchange capacity[J].Guizhou Forestry Science and Technology, 2010, 38(2):45-49. http://d.old.wanfangdata.com.cn/Periodical/gzlykj201002011
    Khorshidi M, Lu N.Determination of cation exchange capacity from soil water retention curve[J].Journal of Engineering Mechanics, 2017, 143(6):04017023. doi: 10.1061/(ASCE)EM.1943-7889.0001220
    魏昌龙, 赵玉国, 李德成, 等.基于相似光谱匹配预测土壤有机质和阳离子交换量[J].农业工程学报, 2014, 30(1):81-88. doi: 10.3969/j.issn.1002-6819.2014.01.011

    Wei C L, Zhao Y G, Li D C, et al.Prediction of soil organic matter and cation exchange capacity based on spectral similarity measuring[J].Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(1):81-88. doi: 10.3969/j.issn.1002-6819.2014.01.011
    方利民, 冯爱明, 林敏.可见/近红外光谱快速测定土壤中的有机碳含量和阳离子交换量[J].光谱学与光谱分析, 2010, 30(2):327-330. doi: 10.3964/j.issn.1000-0593(2010)02-0327-04

    Fang L M, Feng A M, Lin M.Rapid prediction of total organic carbon content and CEC in soil using visible/near infrared spectroscopy[J].Spectroscopy and Spectral Analysis, 2010, 30(2):327-330. doi: 10.3964/j.issn.1000-0593(2010)02-0327-04
    杨乐苏.ICP-AES直接测定土壤中多种交换性阳离子组成[J].广东林业科技, 2008, 24(6):20-23. doi: 10.3969/j.issn.1006-4427.2008.06.004

    Yang L S.Directly determining the exchangeable cations in soil by ICP-AES[J].Guangdong Forestry Science and Technology, 2008, 24(6):20-23. doi: 10.3969/j.issn.1006-4427.2008.06.004
    张玉革, 肖敏, 董怡华.乙酸铵浸提原子吸收光谱法同时测定土壤交换性盐基离子组成[J].光谱学与光谱分析, 2012, 32(8):2242-2245. doi: 10.3964/j.issn.1000-0593(2012)08-2242-04

    Zhang Y G, Xiao M, Dong Y H.Determination of soil exchangeable base cations by using atomic absorption spectrophotometer and extraction with ammonium acetate[J].Spectroscopy and Spectral Analysis, 2012, 32(8):2242-2245. doi: 10.3964/j.issn.1000-0593(2012)08-2242-04
    褚龙, 贺斌.土壤阳离子交换量的测定方法[J].黑龙江环境通报, 2009, 33(1):81-83. http://d.old.wanfangdata.com.cn/Periodical/hljhjtb200901034

    Chu L, He B.Determining method of soil cation exchange capacity[J].Heilongjiang Environmental Journal, 2009, 33(1):81-83. http://d.old.wanfangdata.com.cn/Periodical/hljhjtb200901034
    李荃.K9840自动凯氏定氮仪测定阳离子交换量[J].世界有色金属, 2017(17):284-285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017112900027125

    Li Q.K9840 automatic Kjeldahl apparatus used to determine the cation exchange capacity[J].World Nonferrous Metals, 2017(17):284-285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017112900027125
  • Related Articles

    [1]YUAN Jing, LI Yingchun, TAN Guili, HUANG Haibo, ZHANG Hua, LIU Jiao. Some Difficulties and Status in the Application of X-Ray Spectrometry in Geological Analysis: A Review[J]. Rock and Mineral Analysis, 2025, 44(2): 161-173. DOI: 10.15898/j.ykcs.202403150052
    [2]Jing CHEN, Zhi-jun GAO, Chong-ke CHEN, Yan-xia LIU, Ming-wei ZHANG. Application Skills on Determination of Geological Sample by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 91-98. DOI: 10.15898/j.cnki.11-2131/td.2015.01.012
    [3]Zhao-shui YU, Qin ZHANG, Xiao-li LI, Shou-zhong FAN, Yan-shan PAN, Guo-hui LI. Determination of 23 Elements in Biological Samples by Wavelength Dispersion X-ray Fluorescence Spectrometry with High Pressure Pressed Powder Pellet Preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 844-848.
    [4]MA Tian-fang, LI Xiao-li, CHEN Yong-jun, DENG Zhen-pin, LI Guo-hui. Interchangeable Analysis of Method on the X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4): 486-490.
    [5]CHEN Yongjun, WANG Yaping, XU Chunxue, ZHENG Miaozi, WANG Suming. Preparation of Synthetic Standard Reference Materials for X-ray Fluorescence Spectrometric Analysis[J]. Rock and Mineral Analysis, 2009, 28(5): 462-466.
    [6]Determination of Mo,Pb,Fe and Cu in Molybdenum Ores by Energy-dispersive X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(3): 235-236.
    [7]Determination of Multi-elements in Iron Ores by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(3): 229-231.
    [8]Simultaneous Determination of Major, Minor and Trace Components in Limestone Samples by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(2): 149-150.
    [9]Determination of Major and Minor Components in Sea Sediment Samples by Fused Bead-X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2008, 27(1): 74-76.
    [10]A Semi-quantitative Method Improved for Rare-earth Element Analysis by XRF without Standards[J]. Rock and Mineral Analysis, 2003, (1): 37-39.
  • Cited by

    Periodical cited type(31)

    1. 梁亚丽,吴领军,杨珍,孙银生,阿丽莉,贺攀红. 四酸消解-电感耦合等离子体质谱法测定砂岩型铀矿中铀钍及稀土元素. 冶金分析. 2025(01): 68-75 .
    2. 刘维一,熊正烨,郭竞渊,廖小婷,余果. 雷州半岛东部近岸水体溴质量浓度空间分布及其影响因素. 激光与光电子学进展. 2024(05): 89-97 .
    3. 李晓敬,胡艳巧,张金明,冉卓,赵良成,金倩. 微波消解-电感耦合等离子体质谱法测定石墨矿中16种稀土元素. 冶金分析. 2024(08): 18-26 .
    4. 黄平安,王夏青,唐湘玲,王玉堂,李玮,罗增,吕飞亚. X射线荧光光谱岩心扫描影响因素及校正方法的研究进展. 物探与化探. 2023(03): 726-738 .
    5. 李小莉,王毅民,邓赛文,王祎亚,李松,白金峰. 中国X射线荧光光谱分析的地学应用60年. 光谱学与光谱分析. 2023(10): 2989-2998 .
    6. 董龙腾,王生进,刘才云. 电感耦合等离子体质谱标准物质换算法测定地质样品中15种稀土元素. 化学分析计量. 2022(02): 53-57 .
    7. 王晨希. X射线荧光光谱法测定农田底泥中8种元素. 化学分析计量. 2022(02): 40-44 .
    8. 刘闫,姚明星,张丽萍,樊蕾,张宏丽,王甜甜. 电感耦合等离子体质谱法测定锆钛矿中16种稀土元素分量及其总量. 冶金分析. 2022(03): 19-25 .
    9. 胡瑶瑶,王浩铮,侯玉杨,宋皓然. 基于电子探针面扫描定量化的石英闪长岩微区成分分析. 岩矿测试. 2022(02): 260-271 . 本站查看
    10. 秦燕华,刘巍,刘姜瑾,练文柳,罗嘉,韩星,任建新. 基于EDXRF光谱法的滤棒中痕量砷和铅的快速检测. 烟草科技. 2022(07): 40-46 .
    11. 周凯红,张立锋,李佳. 电感耦合等离子体质谱法测定白云鄂博矿石中15种稀土元素总量及其分量. 冶金分析. 2022(08): 87-95 .
    12. 曾江萍,王家松,朱悦,张楠,王娜,吴良英,魏双. 敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素. 岩矿测试. 2022(05): 789-797 . 本站查看
    13. 王娜,王家松,曾江萍,李强,吴磊,陈枫. 重铬酸钾和高锰酸钾电位落差法测定砂岩型铀矿氧化还原电位的探讨. 岩矿测试. 2022(05): 806-814 . 本站查看
    14. 玉永珊. 稀土元素分析测试方法在地质学上的应用. 世界有色金属. 2022(15): 166-168 .
    15. 张玉芹,彭艳,韦时宏,朱健. 高压密闭消解-电感耦合等离子体质谱法测定地质样品中稀土元素. 实验室研究与探索. 2021(03): 29-32 .
    16. 李艳. 熔融制样X射线荧光光谱法测定矿石中五氧化二钒的含量. 福建分析测试. 2021(01): 54-58 .
    17. 刘春,高励珍,张翼明,刘晓杰. 电感耦合等离子体发射光谱法测定镨钕钆合金中稀土杂质量. 金属功能材料. 2021(04): 59-63 .
    18. 苗煦,王礼胜. 湖南临武黑色石英岩质玉矿物组成特征及成因初探. 岩矿测试. 2021(04): 522-531 . 本站查看
    19. 曾江萍,王家松,王娜,郑智慷,王力强,张楠. 敞开酸溶—电感耦合等离子体质谱法测定锑矿石中的稀土元素. 华北地质. 2021(04): 80-84 .
    20. 尹昌慧,袁永海,杨锋. 阳离子交换树脂富集-电感耦合等离子体质谱法测定铜精矿中14种稀土元素. 理化检验(化学分册). 2020(05): 532-535 .
    21. 王毅民,邓赛文,王祎亚,李松. X射线荧光光谱在矿石分析中的应用评介——总论. 冶金分析. 2020(10): 32-49 .
    22. 张绵绵,高晓哲. 塑胶跑道面层中铅、镉、铬、汞的测定X射线荧光光谱法. 中国石油和化工标准与质量. 2020(16): 71-72+76 .
    23. 王祎亚,高新华,王毅民,邓赛文,李松. 地质材料稀土元素的X射线荧光分析文献评介. 光谱学与光谱分析. 2020(11): 3341-3352 .
    24. 袁静,刘建坤,郑荣华,沈加林. 高能偏振能量色散X射线荧光光谱仪特性研究及地质样品中主微量元素分析. 岩矿测试. 2020(06): 816-827 . 本站查看
    25. 李迎春,张磊,周伟,尚文郁. 熔融制样-波长色散和能量色散X射线荧光光谱仪应用于硅酸盐类矿物及疑难样品分析. 岩矿测试. 2020(06): 828-838 . 本站查看
    26. 赵毅华. 熔融制样-X射线荧光光谱法测定镜铁矿中主次成分. 分析测试技术与仪器. 2019(01): 33-38 .
    27. 阿丽莉,张盼盼,贺攀红,杨珍,梁亚丽,杨有泽. X射线荧光光谱法测定地质样品中的硫和氟. 中国无机分析化学. 2019(02): 50-53 .
    28. 王啸,李田义,姜菲. ICP-MS测定高硅矿物中铌、钽及稀土. 稀土. 2019(03): 109-114 .
    29. 阿丽莉,贺攀红,张盼盼. 粉末压片-X射线荧光光谱法测定地质样品中镧铈镨钕钐. 冶金分析. 2019(09): 39-45 .
    30. 田衎,郭伟臣,杨永,岳亚萍,张覃,赵亚娴. 波长色散X射线荧光光谱法测定土壤和水系沉积物中13种重金属元素. 冶金分析. 2019(10): 30-36 .
    31. 董学林,何海洋,储溱,仇秀梅,唐兴敏. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素. 岩矿测试. 2019(06): 620-630 . 本站查看

    Other cited types(3)

Catalog

    Article views (11311) PDF downloads (71) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return