• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Ying-ying XING, Li-jian QI, Hai-tao WANG. Mineralogical Characteristics and Colouration Mechanism of Blue Opals from Peru[J]. Rock and Mineral Analysis, 2017, 36(6): 608-613. DOI: 10.15898/j.cnki.11-2131/td.201707250121
Citation: Ying-ying XING, Li-jian QI, Hai-tao WANG. Mineralogical Characteristics and Colouration Mechanism of Blue Opals from Peru[J]. Rock and Mineral Analysis, 2017, 36(6): 608-613. DOI: 10.15898/j.cnki.11-2131/td.201707250121

Mineralogical Characteristics and Colouration Mechanism of Blue Opals from Peru

More Information
  • Received Date: July 24, 2017
  • Revised Date: October 17, 2017
  • Accepted Date: October 23, 2017
  • Published Date: October 31, 2017
  • Highlights
    · The main mineral composition of blue opal is amorphous opal, square quartz and scaly quartz.
    · The result of blue color of the opal is the typical planar square structure of [Cu2+(H2O)4]2+.
    · The results show that the blue color is more rich and gaudy with the increase of Cu content.
    In recent years, the study of blue opal has been limited to the mineral composition and coloration mechanism. However, the chemical composition, infrared spectrum, and Raman spectrum of the blue opal have not been studied in details. Combined with previous research, Fourier Transform Infrared Spectroscopy (FTIS), X-ray Diffraction (XRD), Electron Microprobe Analyzer (EMPA), and UV Vis Absorption Spectroscopy (Uv-Vis) and Raman Spectroscopy were used to investigate vibration spectra, functional group characterization, mineral composition, and coloring mechanism of blue opal samples. Results show that the main mineral composition of blue opal is amorphous opal and the vibrational spectra show some peak frequency shifts relative to natural opal. EMPA shows that the main elements of blue opals are Si and Cu, whereas the Uv-Vis spectrum shows a broad band with higher absorption intensity near 742 nm. Combined EMPA and Uv-Vis spectrum results further indicate that the coloration element for the blue color of the opal is Cu, with the typical planar square structure of[Cu2+(H2O)4]2+. Moreover, the blue color and the Cu content are positively correlated, and with the increasing Cu content the blue color is more intense.

  • Hyršl Dr J.Gemstones of Peru[J].The Journal of Ge-mmology, 2001, 27(6):328-334. doi: 10.15506/JoG.2001.27.6
    Gaillou E, Fritsch E, Aguilar-Reyes B, et al.Common gem opal:An investigation of micro-to nano-structure[J].American Mineralogist, 2008, 93(11-12):1865-1873. doi: 10.2138/am.2008.2518
    戴稚璇. 澳大利亚蓝色调欧泊的变彩效应与二氧化硅球粒间隙的关系[D]. 北京: 中国地质大学(北京), 2009: 1-10. http://d.wanfangdata.com.cn/Thesis_Y1783472.aspx

    Dai Z X.The Correlation between Play-of-Color Effect and SiO2 Cavities Size of Australia Blue Opal[D].Beijing:China University of Geosciences(Beijing), 2009:1-10. http://d.wanfangdata.com.cn/Thesis_Y1783472.aspx
    Franca C, Luigi M, Alberto L, et al.New physical, geo-chemical and gemological data of opals from Acari Mine (Arequipa Department, Peru)[J].Journal of Mineralogy and Geochemistry, 2015, 192(1):73-84. https://www.researchgate.net/publication/273906152_Opal_a_beautiful_gem_between_myth_and_reality
    亓利剑, 杨梅珍, 胡永兵, 等.秘鲁蓝欧泊[J].宝石和宝石学杂志, 2001, 3(3):13-16. http://mall.cnki.net/magazine/Article/BSHB200103002.htm

    Qi L J, Yang M Z, Hu Y B, et al.Blue opal from Peru[J].Journal of Gems and Gemmology, 2001, 3(3):13-16. http://mall.cnki.net/magazine/Article/BSHB200103002.htm
    Fritsch E, Gaillou E, Ostroumov M, et al.Relationship be-tween nanostructure and optical absorption in fibrous pink opals from Mexico and Peru[J].European Journal of Mineralogy, 2004, 16(5):743-751. doi: 10.1127/0935-1221/2004/0016-0743
    赵海平, 张雪梅, 何雪梅, 等.坦桑尼亚绿色蛋白石[J].宝石和宝石学杂志, 2014, 16(4):14-21. http://d.wanfangdata.com.cn/Periodical/bshbsxzz201404002

    Zhao H P, Zhang X M, He X M, et al.Prase opal from Tanzania[J].Journal of Gems and Gemmology, 2014, 16(4):14-21. http://d.wanfangdata.com.cn/Periodical/bshbsxzz201404002
    Jia Y, Wang B M.Mineralogy and thermal analysis of natural Pozzolana opal shale with nano-pores[J].Journal of Wuhan University of Technology, 2017, 32(3):532-537. doi: 10.1007/s11595-017-1629-3
    严俊, 胡丹静, 黄雪冰, 等.应用FTIR-SEM研究一类合成欧珀的微结构及其变彩成因机制[J].岩矿测试, 2017, 36(1):59-65. doi: 10.15898/j.cnki.11-2131/td.2017.01.009

    Yan J, Hu D J, Huang X B, et al.Investigation of the microstructure and play of color mechanism of a synthetic opal by FTIR-SEM[J].Rock and Mineral Analysis, 2017, 36(1):59-65. doi: 10.15898/j.cnki.11-2131/td.2017.01.009
    严俊, 胡仙超, 方飚, 等.应用XRF-SEM-XRD-FTIR等分析测试技术研究丽水蓝色类欧泊(蛋白石)的矿物学与光学特征[J].岩矿测试, 2014, 33(6):795-801. doi: 10.15898/j.cnki.11-2131/td.2014.06.006

    Yan J, Hu X C, Fang B, et al.Study on the mineralogical and optical characteristics of blue opal from Lishui investigated by XRF-SEM-XRD-FTIR[J].Rock and Mineral Analysis, 2014, 33(6):795-801. doi: 10.15898/j.cnki.11-2131/td.2014.06.006
    Smallwood A G, Thomas P S, Ray A S.Characterisation of sedimentary opals by Fourier transform Raman spectroscopy[J].Spectrochimica Acta:Part A, 1997, 53:2341-2345. doi: 10.1016/S1386-1425(97)00174-1
    Sodo A, Municchia C A, Barucca S, et al.Raman, FT-IR and XRD investigation of natural opals[J].Journal of Raman Spectroscopy, 2016, 47(12):1444-1451. doi: 10.1002/jrs.v47.12
    Nikbakht T, Kakuee O, Lamehi-Rachti M.Study of the ionoluminescence behavior of the gemstones:Beryl (aquamarinevariety), opal, and topaz[J].Journal of Luminescence, 2016, 171:154-158. doi: 10.1016/j.jlumin.2015.11.020
    邹妤, 孙婉洁, 赵旭刚, 等.云南麻栗坡祖母绿生长环带特征[J].硅酸盐通报, 2017, 36(2):419-424. http://d.wanfangdata.com.cn/Periodical/gsytb201702001

    Zou S, Sun W J, Zhao X G, et al.Characteristics of growth zone of emerald from Malipo, Yunnan Province[J].Bulletin of The Chinese Ceramic Society, 2017, 36(2):419-424. http://d.wanfangdata.com.cn/Periodical/gsytb201702001
  • Cited by

    Periodical cited type(7)

    1. 高森,李仪琳,孙瑞雪,马迎雪,丁梓峻,殷文静. 滹沱河流域石家庄段河流表层水体中酰胺类除草剂污染特征及生态风险. 环境污染与防治. 2024(07): 1009-1015 .
    2. 王继华,于福荣,田鹏州,潘登,李涛,孙淼. 南太行山前冲积平原潜水水化学特征及控制因素分析. 干旱区资源与环境. 2023(05): 130-138 .
    3. 温馨,谭淑铧,林庆昶,林小贞,黎小鹏,贾晓菲. 液液萃取-气相色谱质谱联用测定水中49种农药及代谢物残留. 绿色科技. 2023(10): 139-145+156 .
    4. 姜忠峰,刘艳伟,崔弼峰,吴丽. 区域地下水污染物运移风险特征仿真研究. 计算机仿真. 2022(10): 289-293 .
    5. 张敏,王婷,杨超,倪晋仁. 唐河地下水有机氯农药(OCPs)的分布特征及风险评估. 北京大学学报(自然科学版). 2021(02): 283-290 .
    6. 赵诣. 有机磷灭蚊剂投放浓度和时间对水体总磷的影响. 水资源保护. 2021(04): 117-120+126 .
    7. 徐明,裴国霞,张琦,石峰,李亚芳. 内蒙古某灌域表层土壤六氯环己烷空间分布特征及影响因素. 中国环境监测. 2021(06): 156-163 .

    Other cited types(4)

Catalog

    Article views (2353) PDF downloads (24) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return