• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
Jiang-long HOU, Deng-hong WANG, Cheng-hui WANG, Fan HUANG, Jian-kang LI, Zhen-yu CHEN. Study on the Types, and Metallogenic and Diagenetic Environment of Tourmaline from the Zhongzuo Pegmatite Veins in Quyang County, Hebei Province[J]. Rock and Mineral Analysis, 2017, 36(5): 529-537. DOI: 10.15898/j.cnki.11-2131/td.201704130056
Citation: Jiang-long HOU, Deng-hong WANG, Cheng-hui WANG, Fan HUANG, Jian-kang LI, Zhen-yu CHEN. Study on the Types, and Metallogenic and Diagenetic Environment of Tourmaline from the Zhongzuo Pegmatite Veins in Quyang County, Hebei Province[J]. Rock and Mineral Analysis, 2017, 36(5): 529-537. DOI: 10.15898/j.cnki.11-2131/td.201704130056

Study on the Types, and Metallogenic and Diagenetic Environment of Tourmaline from the Zhongzuo Pegmatite Veins in Quyang County, Hebei Province

More Information
  • Received Date: April 12, 2017
  • Revised Date: July 30, 2017
  • Accepted Date: August 13, 2017
  • Published Date: August 31, 2017
  • Highlights
    · The type of tourmaline from Zhongzuo pegmatite veins of Hebei Province is dravite (but close to schorl) identified by Electron Probe and X-ray Powder Diffraction analyses.
    · The rock-forming environment of tourmaline in pegmatite veins is poor Ca metamorphic pelite, metamorphic arenite and quartz-tourmaline rock.
    · The dravite in pegmatite veins was formed in the process of assimilation blending between magmatic melt with surrounding rock at temperature of 700-600℃, where Mg, Fe and other components in surrounding rock provide the necessary sources for the formation of tourmaline.
    Tourmaline is an efficient tracer during diagenesis and metallogenesis. Chemical composition of tourmaline can not only be used to give information about environment of diagenesis and metallogenesis, but can also be useful in prospecting. Prospecting work of pegmatite-type rare metal deposits in Southern and Western China has seen a big breakthrough, however, there has been no obvious advance in prospecting in Northern China. Therefore, it is necessary to carry out systematical and detailed prospecting work. There are a lot of grey black idiomorphic tourmalines in pegmatite veins in Quyang County, Hebei Province, which makes it suitable for carrying out systematical mineralogy research. Samples based on detailed field work were systematically collected and are described in this paper. Microscopic identification, Powder X-ray Diffraction and Electron Microprobe were used to determine the chemical composition of tourmaline, in order to investigate the types, and diagenetic and metallogenic environment of tourmaline. Electronic Probe and Powder X-ray Diffraction show that tourmaline in Zhongzuo pegmatite belongs to dravite but is close to that of schorl. The Ca-Fe-Mg ternary diagram indicates that the diagenetic environment is poor Ca metamorphic pelite, metamorphic arenite and quartz-tourmaline rock. The chemical composition of tourmaline is closely related to the types of surrounding rock. The dravite in pegmatite veins was formed by assimilation blending between magmatic melt and surrounding rock at a temperature of 700-600℃ where Mg and Fe in surrounding rock provide the necessary sources for the formation of tourmaline. The systematical study of chemical composition of tourmaline in Zhongzuo pegmatite veins provides fundamental geological data and a prospecting direction for pegmatite-type deposits.
  • Van Hinsberg V J, Henry D J, Dutrow B L.Tourmaline as a petrologic forensic mineral:A unique recorder of its geologic past[J].Elements, 2011, 7(5):327-332. doi: 10.2113/gselements.7.5.327
    毛景文, 王平安, 王登红, 等.电气石对成岩成矿环境的示踪性及应用条件[J].地质论评, 1993, 39(6):498-507. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199306003.htm

    Mao J W, Wang P A, Wang D H, et al.The tracer of tourmaline for rock-forming and metallogenic environments and its applied conditions[J].Geological Review, 1993, 39(6):498-507. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199306003.htm
    蒋少涌, 于际民, 倪培, 等.电气石——成岩成矿作用的灵敏示踪剂[J].地质论评, 2000, 16(6):595-604. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200006006.htm

    Jiang S Y, Yu J M, Ni P, et al.Tourmaline-A sensitive tracer for petrogenesis and minerogenesis[J].Geological Review, 2000, 16(6):595-604. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200006006.htm
    王进军, 赵枫.电气石的化学特征与相关矿床的关系[J].地质找矿论丛, 2002, 17(3):162-163. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015

    Wang J J, Zhao F.Relation between tourmaline chemical feature and related deposit[J].Geologic Prospecting Analects, 2002, 17(3):162-163. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015
    黄雪飞, 张宝林, 李晓利, 等.电气石研究进展及其找矿意义[J].黄金科学技术, 2012, 20(3):56-65. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201203018.htm

    Huang X F, Zhang B L, Li X L, et al.Research progress of tourmaline and its prospecting significance[J].Gold Science & Technology, 2012, 20(3):56-65. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201203018.htm
    Roda E, Pesquera A, Velasco F.Tourmaline in granitic pegmatites and their country rocks, Fregeneda area, Salamanca, Spain[J].The Canadian Mineralogist, 1999, 33:835-848. doi: 10.1007/s12517-015-1900-x
    卢宗柳.我国电气石矿床类型及其地质特征[J].矿产与地质, 2008, 22(2):174-177. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015

    Lu Z L.Chinese tourmaline deposits type with their geological characteristics[J].Mineral Resources and Geology, 2008, 22(2):174-177. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015
    熊欣, 徐文艺, 吕庆田, 等.安徽庐枞盆地砖桥深部钻孔内电气石对铀钍成矿流体在高温阶段的指示意义[J].岩石矿物学杂志, 2014, 33(2):263-272. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201402005.htm

    Xiong X, Xu W Y, Lü Q T, et al.Tourmaline as an early stage indicator of uranium mineralization in the deep drilling, Luzong Basin, Anhui Province[J].Acta Petrologica et Mineralogica, 2014, 33(2):263-272. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201402005.htm
    伍守荣, 赵景宇, 张新, 等.新疆阿尔泰可可托海3号伟晶岩脉岩浆-热液过程:来自电气石化学组成演化的证据[J].矿物学报, 2015, 35(3):300-308. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201503004.htm

    Wu S R, Zhao J Y, Zhang X, et al.Magmatic-hydrothermal evolution of the Koktokay No.3 pegmatite, Altay, NW China:Evidence from compositional variation of tourmaline[J].Acta Mineralogica Sinica, 2015, 35(3):300-308. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201503004.htm
    张洁, 李林庆.岩矿鉴定实用手册[M].北京:地质出版社, 2016:1-69.

    Zhang J, Li L Q.Mineral and Rock Identification Guide[M].Beijing:Geological Publishing House, 2016:1-69.
    Henry D J, Guidotti C V.Tourmaline as a petrogenetic indicator mineral-An example from the staurolite-grade metapelites of NW Maine[J].American Mineralogist, 1985, 70(1-2):1-15. https://core.ac.uk/display/10385204
    Hawthorne F C, Henry D J.Classification of the minerals of the tourmaline group[J].European Journal of Mineralogy, 1999, 11(2):201-215. doi: 10.1127/ejm/11/2/0201
    Henry D J, Nov M, Hawthorne F C, et al.Nomenclature of the tourmaline-supergroup minerals[J].American Mineralogist, 2011, 96(5-6):895-913. doi: 10.2138/am.2011.3636
    杨岳清, 王勇, 吕庆田, 等.福建南平花岗伟晶岩中的电气石研究[J].岩石矿物学杂志, 2010, 29(3):235-242. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015

    Yang Y Q, Wang Y, Lü Q T, et al.Characteristics of tourmalines from Nanping granitic pegmatites in Fujian Province[J].Acta Petrologica et Mineralogica, 2010, 29(3):235-242. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015
    邹天人, 杨岳清.中国电气石(碧玺)的颜色与成分[J].矿床地质, 1996, 15(增刊):65-68. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ1996S1025.htm

    Zou T R, Yang Y Q.The color and composition of tourmaline of China[J].Mineral Deposits, 1996, 15(Supplement):65-68. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ1996S1025.htm
    Slack J F, Trumbull R B.Tourmaline as a recorder of ore-forming processes[J].Elements, 2011, 7(5):321-326. doi: 10.2113/gselements.7.5.321
    于淼, 丰成友, 刘洪川, 等.青海尕林格铁矿床电气石矿物学、元素地球化学及成因研究[J].矿床地质, 2016, 35(1):69-84. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201601005.htm

    Yu M, Feng C Y, Liu H C, et al.Mineralogy, element geochemistry and genesis of tourmaline from Galingge skarn deposit, Qinghai Province[J].Mineral Deposits, 2016, 35(1):69-84. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201601005.htm
    Yu M, Feng C Y, Mao J W, et al.Multistage skarn-related tourmaline from the Galinge deposit, Qiman Tagh, Western China:A fluid evolution perspective[J].The Canadian Mineralogist, 2017, 55:3-19. doi: 10.3749/canmin.1600043
    Henry D J, Brodtkorb M K D.Mineral chemistry and chemical zoning in tourmalines, Pampadel Tamboreo, San Luis, Argentina[J].Journal of South American Earth Sciences, 2009, 28(2):132-141. doi: 10.1016/j.jsames.2009.03.001
    Henry D J, Dutrow B L.Metammorphic tourmaline and its petrologic applications[J].Reviews in Mineralogy and Geochemistry, 1996, 33(1):503-557. http://rimg.geoscienceworld.org/content/33/1/503.abstract
    冀志江, 梁金生, 金宗哲, 等.热处理电气石的物相转变[J].矿物学报, 2002, 22(3):281-284. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200203015.htm

    Ji Z J, Liang J S, Jin Z Z, et al.Structure change of dravite-schorl after heat treatment[J].Acta Mineralogica Sinica, 2002, 22(3):281-284. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200203015.htm
    汤云晖, 马喆生, 吴瑞华, 等.Mg-Fe电气石的热膨胀与相变[J].矿物学报, 2002, 22(4):384-386. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200204016.htm

    Tang Y H, Ma Z S, Wu R H, et al.Research on thermal deformation and phase transformation of Mg-Fe tourmaline[J].Acta Mineralogica Sinica, 2002, 22(4):384-386. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200204016.htm
    王敏, 张尚坤, 张增奇, 等.鲁西柳家电气石矿物学特征及成矿机理探讨[J].山东地质, 2001, 17(1):36-39. http://www.cnki.com.cn/Article/CJFDTOTAL-SDDI200101006.htm

    Wang M, Zhang S K, Zhang Z Q, et al.Study on mineralogical characteristics and ore-forming mechanism of tourmalinite in Liujia of West Shangdong[J].Shandong Geology, 2001, 17(1):36-39. http://www.cnki.com.cn/Article/CJFDTOTAL-SDDI200101006.htm
  • Cited by

    Periodical cited type(17)

    1. 蒋航,郭娜,张柯凡,罗海洋. 花岗伟晶岩型稀有金属矿床蚀变系统与矿物光谱-地球化学特征耦合性研究——以川西打枪沟矿区为例. 岩石学报. 2024(01): 197-214 .
    2. 褚志远,温殿刚,吕青,耿新霞,姚佛军,杨建民. 山东蒙阴地区金刚石遥感找矿模型的构建与应用. 地球科学与环境学报. 2024(02): 240-251 .
    3. 吕毓东,王世明,王代强,李磊,裴秋明. 基于全波段反射光谱的花岗岩及其主要矿物自动识别研究——以康定某隧道为例. 矿产勘查. 2024(04): 634-643 .
    4. 高齐云,周丽,易泽邦,陈正山. 颗粒度对喀斯特型铝土矿可见光-近红外光谱特征的影响. 岩矿测试. 2024(02): 234-246 . 本站查看
    5. 田祥雨,王瑞,刘思宇,孙海微,陈寿波,席斌斌. 云母对伟晶岩型关键金属矿床的成因和勘查指示:以东天山镜儿泉伟晶岩型Li-Be-Nb-Ta矿床为例. 岩石学报. 2024(09): 2944-2962 .
    6. 王猛,刘新星,李建康,周芳春,李鹏,张娟,成嘉伟,邱佳炜. 湘北仁里花岗伟晶岩型稀有金属矿床红外光谱特征研究及勘查应用. 岩石学报. 2023(07): 2101-2116 .
    7. 王珊珊,周可法,白泳,鲁雪晨,蒋果. 新疆镜儿泉伟晶岩型锂矿岩矿光谱特征分析. 地学前缘. 2023(05): 205-215 .
    8. 蒋果,周可法,王金林,白泳,孙国庆,汪玮. 基于深度学习的花岗伟晶岩型锂铍矿物识别研究. 地学前缘. 2023(05): 185-196 .
    9. 杜晓川,娄德波,徐林刚,范莹琳,张琳,李婉悦. 基于GF-2影像和随机森林算法的花岗伟晶岩提取. 自然资源遥感. 2023(04): 53-60 .
    10. 任广利,孔会磊,赵凯东,杨敏,李侃,赵晓健,金谋顺,李文渊. 新疆喀喇昆仑大红柳滩一带锂矿光谱特征及其找矿指示意义. 西北地质. 2022(04): 103-114 .
    11. 回广骥,高卿楠,宋利强,孙东询. 新疆可可托海稀有金属矿床矿物和岩石热红外光谱特征. 岩矿测试. 2021(01): 134-144 . 本站查看
    12. 张弘,高卿楠,郭东旭. 花岗伟晶岩型锂矿热红外反射光谱特征及锂元素定量反演研究. 矿物岩石. 2021(01): 25-31 .
    13. 张忠利,郭旭吉,屈有恒,张彦亮. 地物化综合找矿方法在新疆阿尔泰卡鲁安锂辉石矿床中的应用. 地质与勘探. 2021(02): 325-338 .
    14. 郭东旭,刘晓,张海兰,张志国. 基于红外光谱技术研究云南普朗斑岩铜矿的蚀变和矿化特征. 岩矿测试. 2021(05): 698-709 . 本站查看
    15. 姚佛军,徐兴旺,杨建民,吴林楠,耿新霞. 戈壁浅覆盖区花岗岩中锂铍伟晶岩的ASTER遥感识别技术——以新疆镜儿泉地区为例. 矿床地质. 2020(04): 686-696 .
    16. 代晶晶,王登红,王海宇. 我国三稀矿产资源遥感调查综述. 地质学报. 2019(06): 1270-1278 .
    17. 金谋顺,高永宝,李侃,宋忠宝,燕洲泉. 伟晶岩型稀有金属矿的遥感找矿方法——以西昆仑大红柳滩地区为例. 西北地质. 2019(04): 222-231 .

    Other cited types(11)

Catalog

    Article views (2176) PDF downloads (29) Cited by(28)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return