• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
Jing RAN, Gu DU, feng-yu WANG. Rapid Analysis of Feldspar by X-ray Diffractometry Rietveld Refinement Method[J]. Rock and Mineral Analysis, 2017, 36(5): 489-494. DOI: 10.15898/j.cnki.11-2131/td.201610110154
Citation: Jing RAN, Gu DU, feng-yu WANG. Rapid Analysis of Feldspar by X-ray Diffractometry Rietveld Refinement Method[J]. Rock and Mineral Analysis, 2017, 36(5): 489-494. DOI: 10.15898/j.cnki.11-2131/td.201610110154

Rapid Analysis of Feldspar by X-ray Diffractometry Rietveld Refinement Method

More Information
  • Received Date: November 20, 2016
  • Revised Date: July 25, 2017
  • Accepted Date: August 13, 2017
  • Published Date: August 31, 2017
  • Highlights
    · The more accurate results can be obtained by Rietveld refinement method due to the separation of overlap peak and the correction of preferred orientation.
    · The determination of potassium feldspar (the first grade standard materials) fulfills analytical quality requirements of DZ/T 0130—2006 with the absolute error < 1%.
    · The Rietveld refinement method can be used for measuring geological samples with the added advantages of simplicity, rapidity and and high efficiency.
    The content of minerals in feldspar can be calculated by chemical analytical results, but the analytical process is long and the calculation process is complex. Moreover, slice position could affect the result of feldspar content determined by optical microscopy. Feldspar samples were quantitatively analyzed using the Rietveld method in HighScore software. This method can effectively reduce the effect of diffraction peak overlap and correct the diffraction intensity error caused by the preferred orientation. The accuracy of the method is superior to the reference method (RIR method). The quantitative analysis results of the samples are close to the results of the adiabatic method, and the relative deviation is less than 1.69%. Compared to the mineral content by conversion from chemical composition, the absolute error is less than 5%, which meets the allowable error provided by DZ/T 0130-2006. As proved by first grade standard materials of potassium feldspar, the absolute error is less than 1%. The results of quantitative analysis of the feldspar show that the X-ray diffraction full-spectrum fitting method is simple and the analytical quality meets the quality requirements of the relevant standard for the diffraction analysis. It is feasible to analyze rock mineral content in geological samples using this method.

  • 袁珂, 廖立兵, 万红波, 等.膨润土中方石英和α-石英的定量相分析——X射线衍射外标法和K值法的对比[J].硅酸盐学报, 2011, 39(2):377-382. http://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201102039.htm

    Yuan K, Liao L B, Wan H B, et al.Quantitative analysis of cristobalite and α-quartz in bentonite by X-ray powder diffraction-Comparison between external standard and K-value method[J].Journal of Chinese Ceramic Society, 2011, 39(2):377-382. http://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201102039.htm
    唐梦奇, 黎香荣, 刘国文, 等.X射线衍射K值法测定氧化铁皮中游离α-SiO2的含量[J].岩矿测试, 2015, 34(5):565-569. doi: 10.15898/j.cnki.11-2131/td.2015.05.011

    Tang M Q, Li X R, Liu G W, et al.Determination of free α-SiO2 content in mill scale by X-ray diffraction K value method[J].Rock and Mineral Analysis, 2015, 34(5):565-569. doi: 10.15898/j.cnki.11-2131/td.2015.05.011
    郝原芳, 赵爱林.方解石、白云石定量分析——X射线衍射法快速分析[J].有色矿冶, 2005, 21(5):58-60. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKY200505019.htm

    Hao Y F, Zhao A L.A simple method of quantitative analysis for calcite and dolomite in rock by X-ray diffraction[J].Non-Ferrous Mining and Metallurgy, 2005, 21(5):58-60. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKY200505019.htm
    邱贤荣, 齐砚勇, 唐志强.全谱拟合定量分析石灰石[J].分析科学学报, 2013, 29(1):146-148. http://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201301036.htm

    Qiu X R, Qi Y Y, Tang Z Q.Rietveld quantitative analysis of limestone[J].Journal of Analytical Science, 2013, 29(1):146-148. http://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201301036.htm
    迟广成, 肖刚, 汪寅夫, 等.铁矿石矿物组分的X射线粉晶衍射半定量分析[J].冶金分析, 2015, 35(1):38-44. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201501007.htm

    Chi G C, Xiao G, Wang Y F, et al.Semi-quantitative analysis of the mineral components of iron ores by X-ray powder diffraction[J].Metallurgical Analysis, 2015, 35(1):38-44. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201501007.htm
    洪汉烈, 陈建军, 杨淑珍, 等.水泥熟料定定量分析的全谱拟合法[J].分析测试学报, 2001, 20(2):5-8. http://www.cnki.com.cn/Article/CJFDTOTAL-TEST200102001.htm

    Hong H L, Chen J J, Yang S Z, et al.Quantitative phase analysis of cement clinker by Rietveld full pattern fitting method[J].Journal of Instrumental Analysis, 2001, 20(2):5-8. http://www.cnki.com.cn/Article/CJFDTOTAL-TEST200102001.htm
    Gualtieri M L, Romagnoli M, Miselli P, et al.Full quan-titative phase analysis of hydrated lime using the Rietveld method[J].Cement & Concrete Research, 2012, 42(9):1273-1279. https://www.ijser.org/researchpaper/Study-of-phase-composition-of-Ordinary-Portland-Cement-Concrete-using-X-Ray-Diffraction.pdf
    Santini T C.Application of the Rietveld refinement method for quantification of mineral concentrations in bauxite residues (alumina refining tailings)[J].International Journal of Mineral Processing, 2015, 139:1-10. doi: 10.1016/j.minpro.2015.04.004
    Woodruff L, Cannon W F, Smith D B, et al.The distri-bution of selected elements and minerals in soil of the conterminous United States[J].Journal of Geochemical Exploration, 2015, 154:49-60. doi: 10.1016/j.gexplo.2015.01.006
    廖立兵, 李国武.X射线衍射方法与应用[M].北京:地质出版社, 2008:93-112.

    Liao L B, Li G W.X-ray Diffraction Methods and Their Application[M].Beijing:Geological Publishing House, 2008:93-112.
    曾令民, 汪万林, 陆美文.X射线全谱图拟合定量相分析铁矿石[J].广西科学院学报, 2010, 26(3):291-294. http://www.cnki.com.cn/Article/CJFDTOTAL-GXKX201003035.htm

    Zeng L M, Wang W L, Lu M W.X-ray quantitative analysis of iron ore using Rietveld refinement method[J].Journal of Guangxi Academy of Sciences, 2010, 26(3):291-294. http://www.cnki.com.cn/Article/CJFDTOTAL-GXKX201003035.htm
    万红波, 廖立兵.膨润土中蒙脱石物相的定量分析[J].硅酸盐学报, 2009, 37(12):2005-2060. http://cdmd.cnki.com.cn/Article/CDMD-11415-2009076248.htm

    Wan H B, Liao L B.Quantitative phase analysis of montmorillonite in bentonite[J].Journal of the Chinese Ceramic Society, 2009, 37(12):2005-2060. http://cdmd.cnki.com.cn/Article/CDMD-11415-2009076248.htm
    房俊卓, 张霞, 徐崇福.实验条件对X射线衍射物相定量分析结果的影响[J].岩矿测试, 2008, 27(1):60-62. http://www.ykcs.ac.cn/article/id/ykcs_20080120

    Fang J Z, Zhang X, Xu C F.Effect of experimental conditions on X-ray diffractometric quantitative phase analysis[J].Rock and Mineral Analysis, 2008, 27(1):60-62. http://www.ykcs.ac.cn/article/id/ykcs_20080120
    马礼敦.X射线粉末衍射的新起点——Rietveld全谱拟合[J].物理学进展, 1996, 16(2):251-271. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXJ602.004.htm

    Ma L D.The new starting point of X-ray powder diffraction-Rietveld whole pattern fitting[J].Progress in Physics, 1996, 16(2):251-271. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXJ602.004.htm
    曾超, 何维.赤泥物相的X射线粉末衍射Rietveld法定量分析研究[J].冶金分析, 2014, 34(8):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201408001.htm

    Zeng C, He W.Study on quantitative phase analyses of red mud by Rietveld method from X-ray powder diffraction[J].Metallurgical Analysis, 2014, 34(8):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201408001.htm
    房俊卓, 徐崇福.三种X射线物相定量分析方法对比研究[J].煤炭转化, 2010, 33(2):88-91. http://www.cnki.com.cn/Article/CJFDTOTAL-MTZH201002020.htm

    Fang J Z, Xu C F.Study on three kinds of XRD quantitative analysis methods[J].Coal Conversion, 2010, 33(2):88-91. http://www.cnki.com.cn/Article/CJFDTOTAL-MTZH201002020.htm
  • Cited by

    Periodical cited type(13)

    1. 郭东旭,史维鑫,回广骥,高卿楠,葛天助,刘晓,纪广轩,宋利强,刘军媛. 红外光谱技术在羌塘TK-1天然气水合物岩心录井中的应用. 矿产勘查. 2025(02): 337-349 .
    2. 刘中戎,张启燕,刘晓,何志勇,范志伟,吴浩,葛天助. 北羌塘盆地东部上三叠统矿物成分特征分析及其地质意义. 矿产勘查. 2024(01): 13-23 .
    3. 张忠雪,代晶晶,王先广,胡正华,万新,彭勃,傅明海,赵龙贤. 赣北石门寺超大型钨矿床白云母短波红外特征及其勘查指示意义. 矿床地质. 2023(01): 116-127 .
    4. 成嘉伟,刘新星,张娟,王瑛雪,卢克轩,王猛. 基于红外光谱技术的西藏多不杂斑岩型Cu-Au矿床蚀变及矿化特征研究——以钻孔ZK3112为例. 地质与勘探. 2023(02): 259-270 .
    5. 马驰,王守敬. 我国矿物含量定量测定的研究进展. 冶金分析. 2023(06): 47-54 .
    6. 王猛,刘新星,李建康,周芳春,李鹏,张娟,成嘉伟,邱佳炜. 湘北仁里花岗伟晶岩型稀有金属矿床红外光谱特征研究及勘查应用. 岩石学报. 2023(07): 2101-2116 .
    7. 葛天助,安仰生,宋利强,刘晓,罗林涛,郭东旭. 基于红外光谱技术的区域矿物格架及地层划分研究——以北羌塘盆地玛曲地区侏罗统雀莫错组为例. 地质论评. 2023(05): 1939-1951 .
    8. 郭东旭,张弘,高卿楠,朱有峰,纪广轩. 钻孔岩心红外光谱-便携式XRF-磁化率测试在攀西太和钒钛磁铁矿床勘查中的应用. 岩矿测试. 2022(01): 43-53 . 本站查看
    9. 张启燕,史维鑫,刘晓,回广骥,原春雨. 高光谱扫描在碳酸盐岩矿物组成分析中的应用. 岩矿测试. 2022(05): 815-825 . 本站查看
    10. 张博,司庆红,苗培森,赵华雷,朱强,陈印,陈路路. 基于近红外岩心光谱扫描技术研究鄂尔多斯盆地彭阳铀矿床矿物分布特征. 岩矿测试. 2022(05): 733-743 . 本站查看
    11. 郭东旭,刘晓,张海兰,张志国. 基于红外光谱技术研究云南普朗斑岩铜矿的蚀变和矿化特征. 岩矿测试. 2021(05): 698-709 . 本站查看
    12. 张弘,高鹏鑫,高卿楠. 热红外反射光谱技术在石英含量评价中的应用. 岩矿测试. 2021(05): 710-719 . 本站查看
    13. 冯晓曦,滕雪明. 豫西卢氏—内乡地区铜铀等战略性矿产成矿条件初探. 华北地质. 2021(04): 5-14 .

    Other cited types(4)

Catalog

    Article views (2873) PDF downloads (58) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return