• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
Li-wu LI, Yan LIU, Xian-bin WANG, Ming-jie ZHANG, Chun-hui CAO, Lan-tian XING, Zhong-ping LI. Development of a Combined Device with High Vacuum and Pulsed Discharge Gas Chromatography and Its Application in Chemical Analysis of Gases from Rock Samples[J]. Rock and Mineral Analysis, 2017, 36(3): 222-230. DOI: 10.15898/j.cnki.11-2131/td.201609080137
Citation: Li-wu LI, Yan LIU, Xian-bin WANG, Ming-jie ZHANG, Chun-hui CAO, Lan-tian XING, Zhong-ping LI. Development of a Combined Device with High Vacuum and Pulsed Discharge Gas Chromatography and Its Application in Chemical Analysis of Gases from Rock Samples[J]. Rock and Mineral Analysis, 2017, 36(3): 222-230. DOI: 10.15898/j.cnki.11-2131/td.201609080137

Development of a Combined Device with High Vacuum and Pulsed Discharge Gas Chromatography and Its Application in Chemical Analysis of Gases from Rock Samples

More Information
  • Received Date: September 07, 2016
  • Revised Date: February 17, 2017
  • Accepted Date: May 28, 2017
  • Published Date: May 31, 2017
  • Highlights
    · Gas from trace rock samples were extracted by crushing and thermal decrepitation.
    · Determination of the total amount of gas was perfromed in high vacuum.
    · High vacuum device was combined with gas chromatograph on line.
    · The composition of trace gas in vacuum was analyzed by the Pulsed Discharge Gas Chromatography.
    It is important to determine the chemical composition of gases trapped in rocks. The technique of using carrier gas and chemical analysis to release and collect gases is very time-consuming. There is little reported about Gas Chromatography analysis of rock degassing under high vacuum, and the total amount of gases are not commonly measured. It is difficult to analyze gases with similar molecular weights by Mass Spectrometer and because of these problems, a high vacuum rock sample degassing device has been developed. The vacuum of the device is < 10-4 Pa. The blank sample pressure is < 0.1 Pa, the accuracy for N2 in the air is 0.63%, and the minimum measurable quantity is < 1 mm3 at standard temperature and pressure. The high vacuum device is coupled with a Gas Chromatography with a pulsed discharge detector, which gives a high sensitive gas chromatographic analysis of the chemical composition of gases in rocks. The gas released from Wudalianchi volcanic rocks in the Songliao Basin reservoirs and shale samples from the Sichuan basin have been analyzed using this system. The results show that the total amount of gas released from the rock can be directly measured. Less sample weight is needed during stage heating, and gas composition analysis is more sensitive compared with the previous experimental device and method. The analyzed main component targeted is the common component in gas-released rock.
  • Zelenski M E, Taran Y A, Dubinina E O, et al.Sources of volatiles for a subduction zone volcano:Mutnovsky volcano, Kamchatka[J].Geochemistry International, 2012, 50(6):502-521. doi: 10.1134/S001670291204009X
    Zhang M L, Guo Z F, Sano Y J, et al.Stagnant subducted Pacific slab-derived CO2 emissions:Insights into magma degassing at Changbaishan volcano, NE China[J].Journal of Asian Earth Sciences, 2015, 106:49-63. doi: 10.1016/j.jseaes.2015.01.029
    Benavente O, Tassi F, Reich M, et al.Chemical and isotopic features of cold and thermal fluids discharged in the southern volcanic zone between 32.5°S and 36°S:Insights into the physical and chemical processes controlling fluid geochemistry in geothermal systems of central Chile[J].Chemical Geology, 2016, 420:97-113. doi: 10.1016/j.chemgeo.2015.11.010
    Kuritani T, Ohtani E, Kimura J I.Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation[J].Nature Geoscience, 2011, 4:713-716. doi: 10.1038/ngeo1250
    GoncharovA G, Ionov D A, Doucet L S, et al.Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle:New data on peridotite xenoliths from the Udachnaya kimberlite, Siberia[J].Earth and Planetary Science Letters, 2012, 357-358:99-110. doi: 10.1016/j.epsl.2012.09.016
    Frezzotti M L, Ferrando S, Tecce F, et al.Water content and nature of solutes in shallow-mantle fluids from fluid inclusions[J].Earth and Planetary Science Letters, 2012, 351-352:70-83. doi: 10.1016/j.epsl.2012.07.023
    Colin A, Burnard P, Marty B.Mechanisms of magma degassing at mid-oceanic ridges and the local volatile composition (4He-40Ar*-CO2) of the mantle by laser ablation analysis of individual MORB vesicles[J].Earth and Planetary Science Letters, 2013, 361:183-194. doi: 10.1016/j.epsl.2012.10.022
    张凤奇, 钟红利, 张凤博, 等.鄂尔多斯盆地X地区延长组长7油层组致密油藏流体包裹体特征及成藏期次[J].兰州大学学报(自然科学版), 2016, 52(6):722-727. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201606002.htm

    Zhang F Q, Zhong H L, Zhang F B, et al.Hydrocarbon accumulation dating by fluid inclusion characteristics in Chang 7 tight oil reservoirs of Yanchang Formation of X area, Ordos basin[J].Journal of Lanzhou University (Natural Sciences), 2016, 52(6):722-734. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201606002.htm
    杨丹, 徐文艺.激光拉曼光谱测定流体包裹体成分研究进展[J].光谱学与光谱分析, 2014, 34(4):874-878. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201504001.htm

    Yang D, Xu W Y.Development of Raman spectroscopy study of fluid inclusion[J].Spectroscopy and Spectral Analysis, 2014, 34(4):874-878. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201504001.htm
    Frezzotti M L, Tecce F, Casagli A.Raman spectroscopy for fluid inclusion analysis[J].Journal of Geochemical Exploration, 2012, 112:1-20. doi: 10.1016/j.gexplo.2011.09.009
    倪培, 范宏瑞, 丁俊英.流体包裹体研究进展[J].矿物岩石地球化学通报, 2014, 33(1):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201401001.htm

    Ni P, Fan H R, Ding J Y.Progress in fluid inclusions[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201401001.htm
    Clay P L, Busemann H, Sherlock S C, et al.40Ar/39Ar ages and residual volatile contents in degassed subaerial and subglacial glassy volcanic rocks from Iceland[J].Chemical Geology, 2015, 403:99-110. doi: 10.1016/j.chemgeo.2015.02.041
    Armstrong L S, Hirschmann M M, Stanley B D, et al.Speciation and solubility of reduced C-O-H-N volatiles in mafic melt:Implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets[J].Geochimica et Cosmochimica Acta, 2015, 171:283-302. doi: 10.1016/j.gca.2015.07.007
    米敬奎, 王晓梅, 朱光有, 等.利用包裹体中气体地球化学特征与源岩生气模拟实验探讨鄂尔多斯盆地靖边气田天然气来源[J].岩石学报, 2012, 28(3):859-869. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203015.htm

    Mi J Q, Wang X M, Zhu G Y, et al.Origin determination of gas from Jingbian gas field in Ordos basin collective through the geochemistry of gas from inclusions and source rock pyrolysis[J].Acta Petrologica Sinica, 2012, 28(3):859-869. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203015.htm
    李洪伟, 冯连君, 陈健, 等.密封石英管法快速分析包裹体中氢同位素[J].质谱学报, 2015, 36(1):40-44. doi: 10.7538/zpxb.youxian.2014.0050

    Li H W, Feng L J, Chen J, et al.A rapid method for determination of the hydrogen isotope of inclusions by sealed quartz tube[J].Journal of Chinese Mass Spectrometry Society, 2015, 36(1):40-44. doi: 10.7538/zpxb.youxian.2014.0050
    王健, 王毓, 胡永华, 等.热裂解-在线真空紫外光电离质谱法研究固体物热裂解[J].质谱学报, 2015, 36(6):513-520. doi: 10.7538/zpxb.youxian.2015.0035

    Wang J, Wang Y, Hu Y H, et al.Study on the pyrolysis of solid materials with pyrolysis-online vacuum ultraviolet photoionization mass spectrometry[J].Journal of Chinese Mass Spectrometry Society, 2015, 36(6):513-520. doi: 10.7538/zpxb.youxian.2015.0035
    史宝光, 王晓锋, 徐永昌, 等.烃源岩解析气获取新方法研究[J].沉积学报, 2012, 30(6):1180-1184. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201206021.htm

    Shi B G, Wang X F, Xu Y C, et al.New experimental methodology research for adsorbed gases on hydrocarbon-source rocks[J].Acta Sedimentologica Sinica, 2012, 30(6):1180-1184. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201206021.htm
    Shi B G, Shen P, Wang X F, et al.Groundbreaking gas source rock correlation research based on the application of a new experimental approach for adsorbed gas[J].Chinese Science Bulletin, 2012, 57:4746-4752. doi: 10.1007/s11434-012-5504-5
    Zhang T W, Yang R S, Milliken K L, et al.Chemical and isotopic composition of gases released by crush methods from organic rich mudrocks[J].Organic Geochemistry, 2014, 73:16-28. doi: 10.1016/j.orggeochem.2014.05.003
    Liu G, Wang X B, Li L W.Chemical composition of gas from mantle xenoliths in alkali-basalt from Damaping, Hebei[J].Chinese Science Bulletin, 1997, 42(6):470-472. doi: 10.1007/BF02882594
    OklandI, Huang S, Thorseth I H.Formation of H2, CH4 and N-species during low-temperature experimental alteration of ultramafic rocks[J].Chemical Geology, 2014, 387:22-34. doi: 10.1016/j.chemgeo.2014.08.003
    杨华敏, 王杰, 陶成, 等.储层岩石中稀有气体组分和同位素分析技术[J].天然气地球科学, 2016, 27(4):681-687. doi: 10.11764/j.issn.1672-1926.2016.04.0681

    Yang H M, Wang J, Tao C, et al.Measurement technology for content and isotopic compositions of noble gases in reservoir rocks[J].Natural Gas Geoscience, 2016, 27(4):681-687. doi: 10.11764/j.issn.1672-1926.2016.04.0681
    Xing C M, Wang C Y, Zhang M J.Volatile and C-H-O isotopic compositions of giant Fe-Ti-V oxide deposits in the Panxi region and their implications for the sources of volatiles and the origin of Fe-Ti oxide ores[J].Science China Earth Science, 2012, 55:1782-1795. doi: 10.1007/s11430-012-4468-2
    Fu P E, Tang Q Y, Zhang M J, et al.Ore genesis of the Kalatongke Cu-Ni sulfide deposits, Western China:Constraints from volatile chemical and carbon isotopic compositions[J].Acta Geologica Sinica, 2012, 86(3):568-578. doi: 10.1111/acgs.2012.86.issue-3
    余明, 汤庆艳, 张铭杰, 等.腾冲新生代火山作用流体组成及其来源——火山岩流体化学组成和碳同位素制约[J].岩石学报, 2014, 30(12):3635-3644. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412013.htm

    Yu M, Tang Q Y, Zhang M J, et al.Compositions and origin of volatiles in Tengchong cenozoic volcanism from SE margin of the Tibetan Plateau:Constraints from chemical and carbon isotopic compositions of volatiles in volcanic rocks[J].Acta Petrologica Sinica, 2014, 30(12):3635-3644. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412013.htm
    Li L W, Guo L J, Xia Y Q, et al.A High Vacuum Automatic Inlet System for Microliter Gas Mass Spectrometry[C]//The Abstract of the 13th International Conference on Gas Geochemistry.2015:149-150.
    Plessen B, Luders V.Simultaneous measurements of gas isotopic compositions of fluid inclusion gases (N2, CH4, CO2) using continuous-flow isotope ratio mass spectrometry[J].Rapid Communications Mass Spectrometry, 2012, 26:1157-1161. doi: 10.1002/rcm.6201
    Klein F, Bach W, McCollom T M.Compositional controls on hydrogen generation during serpentinization of ultramafic rocks[J].Lithos, 2013, 178:55-69. doi: 10.1016/j.lithos.2013.03.008
    Wang X B, Ouyang Z Y, Zhuo S G, et al.Serpentini-zation, abiogenic organic compounds, and deep life[J].Science China (Earth Sciences), 2014, 57(5):878-887. doi: 10.1007/s11430-014-4821-8
    Tang Q Y, Zhang M J, Li C S, et al.The chemical compositions and abundances of volatiles in the Siberian large igneous province:Constraints on magmatic CO2 and SO2 emissions into the atmosphere[J].Chemical Geology, 2013, 339:84-91. doi: 10.1016/j.chemgeo.2012.08.031
    Pearson D G, Brenker F E, Nestola F, et al.Hydrous mantle transition zone indicated by ringwoodite included within diamond[J].Nature, 2014, 507:221-224. doi: 10.1038/nature13080
    李传亮, 朱苏阳.页岩气其实是自由气[J].岩性油气藏, 2013, 25(1):1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-YANX201301004.htm

    Li C L, Zhu S Y.Shale gas is free gas underground[J].Lithologic Reservoir, 2013, 25(1):1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-YANX201301004.htm
    Bali E, Audétat A, Keppler H.Water and hydrogen are immiscible in Earth's mantle[J].Nature, 2013, 495:220-222. doi: 10.1038/nature11908
    Doucet L S, Peslier A H, Ionov D A, et al.High water contents in the Siberian Cratonic mantle linked to metasomatism:An FTIR study of Udachnaya peridotite xenoliths[J].Geochimica et Cosmochimica Acta, 2014, 137:159-187. doi: 10.1016/j.gca.2014.04.011
    尚慧. 页岩中气体组成实验测定方法及实例分析[D]. 兰州: 兰州大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10730-1014304182.htm

    Shang H.Experimental Method for the Gas Composition Measurement in the Shale and a Primary Application[D].Lanzhou:Lanzhou University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10730-1014304182.htm
    Dublyansky Y V.Design of two crushing devices for release of the fluid inclusion volatiles[J].Central European Journal of Geosciences, 2012, 4(2):219-224. http://www.academia.edu/2050879/Design_of_two_crushing_devices_for_release_of_the_fluid_inclusion_volatiles
  • Cited by

    Periodical cited type(5)

    1. 孟康,邵德勇,张六六,李立武,张瑜,罗欢,宋辉,张同伟. 鄂西宜昌地区寒武系水井沱组页岩破碎气地球化学特征及其对页岩含气性的指示意义. 地学前缘. 2023(03): 14-27 .
    2. 蒙炳坤,李靖,周世新,淡永,张庆玉,聂国权. 黔南坳陷震旦系—寒武系页岩解析气中氦气成因及来源. 天然气地球科学. 2023(04): 647-655 .
    3. 朱志勇,朱祥坤,杨涛. 自动分离提纯系统的研制及其在同位素分析测试中的应用. 岩矿测试. 2020(03): 384-390 . 本站查看
    4. 高梓涵,李立武,王玉慧,曹春辉,贺坚. 双真空炉管的研制及其在岩石加热脱气气体组分测试中的应用. 岩矿测试. 2019(05): 469-478 . 本站查看
    5. 尚慧. 页岩脱气实验下含气性变化特征研究. 宁波职业技术学院学报. 2018(05): 105-108 .

    Other cited types(2)

Catalog

    Article views (1814) PDF downloads (21) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return