• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
AN Caixiu, LIU Shuhong, SHI Huiqing, YANG Lijuan, HE Yantao, CHEN Yang. An Infrared Standard Curve Method for Calculating the Total Amount of Petroleum in Environmental Samples[J]. Rock and Mineral Analysis, 2022, 41(5): 849-856. DOI: 10.15898/j.cnki.11-2131/td.202111040162
Citation: AN Caixiu, LIU Shuhong, SHI Huiqing, YANG Lijuan, HE Yantao, CHEN Yang. An Infrared Standard Curve Method for Calculating the Total Amount of Petroleum in Environmental Samples[J]. Rock and Mineral Analysis, 2022, 41(5): 849-856. DOI: 10.15898/j.cnki.11-2131/td.202111040162

An Infrared Standard Curve Method for Calculating the Total Amount of Petroleum in Environmental Samples

More Information
  • Received Date: November 03, 2021
  • Revised Date: March 17, 2022
  • Accepted Date: April 29, 2022
  • Available Online: November 10, 2022
  • HIGHLIGHTS
    (1) The sum of the three-wave numbers absorbance standard curve method expands the application scope of calculating the total amount of petroleum.
    (2) Five standard curve methods are established through the absorbance of three-wave numbers, and the best calculation method is established by calculating five formulated oil products.
    (3) The sum of the three-wave numbers absorbance standard curve method is easy to understand and operate, the minimum detectable mass concentration is 1mg/L.
    BACKGROUND

    Petroleum oil is one of the necessary indicators for environmental monitoring, which mainly exists in the form of hydrocarbons. Therefore, infrared spectrophotometry is one of the most reliable methods to determine the total amount of petroleum oil. At present, there are two methods for the determination of petroleum by infrared spectrophotometry, which are the three-wave number correction coefficient method and the non-dispersive single wave number standard curve method. The correction coefficient method has many calculation steps and a heavy workload; the single wave number standard curve method does not specify which wave number to use for calculation or is abandoned due to the limited scope of application.

    OBJECTIVES

    To establish a simple standard curve method for calculating the total amount of petroleum.

    METHODS

    Five kinds of oils were scanned by Fourier transform infrared (FTIR) spectroscopy. The absorbance of the three scanning wavenumbers was arranged and combined to obtain five standard curve methods. After comparing the calculated concentration with the prepared concentration, the standard curve method of the sum of three-wave number absorbance was established.

    RESULTS

    When the proportion of aromatic hydrocarbons was less than 50%, the calculation results of this method were consistent with those of the correction coefficient method. The precision of this method was 5.9%-8.0%, and the recovery rate of standard addition was 76.4%-98.2%, which meets the requirements of China's petroleum pollution determination and environmental standards.

    CONCLUSIONS

    This method expands the application scope of the standard curve method. It is simple and easy to understand and has strong operability. It is a useful supplement to the correction coefficient method.

  • [1]
    李国欣, 雷征东, 董伟宏, 等. 中国石油非常规油气开发进展、挑战与展望[J]. 中国石油勘探, 2022, 27(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202201001.htm

    Li G X, Lei Z D, Dong W H, et al. China's oil reserves progress, challenges and prospects of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2022, 27(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202201001.htm
    [2]
    Ahmed O E, Mahmoud S A, Mousa A E M. Aliphatic and poly-aromatic hydrocarbons pollution at the Drainage Basin of Suez Oil Refinery Company[J]. Current Science International, 2015, 4(1): 27-44.
    [3]
    李照, 许玉玉, 张世凯, 等. 海洋溢油污染及修复技术研究进展[J]. 山东建筑大学学报, 2020, 35(6): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJG202006011.htm

    Li Z, Xu Y Y, Zhang S K, et al. Research progress of marine petroleum pollution and remediation technology[J]. Journal of Shandong Jianzhu University, 2020, 35(6): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJG202006011.htm
    [4]
    魏样. 土壤石油污染的危害及现状分析[J]. 中国资源综合利用, 2020, 38(4): 120-122. doi: 10.3969/j.issn.1008-9500.2020.04.033

    Wei Y. The harm and present situation of soil oil pollution[J]. China Resources Comprehensive Utilization, 2020, 38(4): 120-122. doi: 10.3969/j.issn.1008-9500.2020.04.033
    [5]
    张道来, 刘娜, 朱志刚, 等. 山东半岛典型海岸带多环芳烃分布特征、来源解析及风险评价[J]. 岩矿测试, 2016, 35(5): 521-529. doi: 10.15898/j.cnki.11-2131/td.2016.05.011

    Zhang D L, Liu N, Zhu Z G, et al. Distribution, sources and risk assessment of polycyclic aromatic hydrocarbons in surface sediments from typical coast of Shandong Peninsulia[J]. Rock and Mineral Analysis, 2016, 35(5): 521-529. doi: 10.15898/j.cnki.11-2131/td.2016.05.011
    [6]
    曹小聪, 吴晓晨, 徐文帅, 等. 水和沉积物中石油烃的分析方法及污染特征研究进展[J]. 环境工程技术学报, 2020, 10(5): 871-882. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ202005028.htm

    Cao X C, Wu X C, Xu W S, et al. Research progress of analytical methods and pollution characteristics of petroleum hydrocarbons in water and sediment[J]. Journal of Environmental Engineering Technology, 2020, 10(5): 871-882. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ202005028.htm
    [7]
    刘丹青. 我国污染场地土壤石油烃环境质量标准体系的现状与趋势[J]. 中国环境监测, 2020, 36(1): 138-146. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202001025.htm

    Liu D Q. Current situation and trend of petroleum hydrocarbon related standard system in contaminated site soils of China[J]. Environmental Monitoring in China, 2020, 36(1): 138-146. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202001025.htm
    [8]
    黄勇, 王安婷, 袁国礼, 等. 北京市表层土壤中PAHs含量特征及来源分析[J]. 岩矿测试, 2022, 41(1): 54-65. doi: 10.15898/j.cnki.11-2131/td.202104270056

    Huang Y, Wang A T, Yuan G L, et al. The content characteristics and source analysis of polycyclic aromatic hydrocarbons in the topsoil of Beijing City[J]. Rock and Mineral Analysis, 2022, 41(1): 54-65. doi: 10.15898/j.cnki.11-2131/td.202104270056
    [9]
    张厚福. 石油地质学[M]. 北京: 石油工业出版社, 1999: 20.

    Zhang H F. Petroleum geology[M]. Beijing: Petroleum Industry Press, 1999: 20.
    [10]
    Adeniji A O, Okoh O O, Okoh A I. Analytical methods for the determination of the distribution of total petroleum hydrocarbons in the water and sediment of aquatic systems: A review[J]. Journal of Chemistry, 2017: 1-13.
    [11]
    吴嘉鹏, 楼振纲, 胡笑妍, 等. 紫外法与红外法测定石油类的比对研究[J]. 中国无机分析化学, 2019, 9(6): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201906017.htm

    Wu J P, Lou Z G, Hu X Y, et al. Comparison of ultraviolet and infrared spectrophotometry in the determination of petroleum[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(6): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201906017.htm
    [12]
    段小燕, 管雪丽, 吐拉别克·吐逊江. 测定地表水中石油类的方法比较[J]. 干旱环境监测, 2021, 35(4): 167-170. https://www.cnki.com.cn/Article/CJFDTOTAL-GHJC202104005.htm

    Duan X Y, Guan X L, Tulabieke T X J. Comparison of methods for determining petroleum oils in surface water[J]. Arid Environmental Monitoring, 2021, 35(4): 167-170. https://www.cnki.com.cn/Article/CJFDTOTAL-GHJC202104005.htm
    [13]
    赵昌平, 冯小康, 朱强. 快速溶剂萃取-气相色谱法测定土壤中石油烃(C10~C40)[J]. 理化检验(化学分册), 2020, 56(7): 827-831. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202007020.htm

    Zhao C P, Feng X K, Zhu Q. GC determination of petroleum hydrocarbons (C10-C40) in soil with rapid solvent extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(7): 827-831. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202007020.htm
    [14]
    曹攽, 胡祖国, 郑存江, 等. 超声萃取-气相色谱法测定土壤中石油烃[J]. 理化检验(化学分册), 2018, 54(3): 275-279. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201803008.htm

    Cao B, Hu Z G, Zheng C J, et al. Determination of petroleum hydrocarbons in soil by GC combined with ultrasonic extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(3): 275-279. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201803008.htm
    [15]
    刘玉龙, 黄燕高, 刘菲. 气相色谱法测试土壤中分段石油烃的标准化定量方法初探[J]. 岩矿测试, 2019, 38(1): 102-111. doi: 10.15898/j.cnki.11-2131/td.201709040139

    Liu Y L, Huang Y G, Liu F. Analysis of total petroleum hydrocarbon fractions in soils by gas chromatography: Standardized calibration and quantitation method[J]. Rock and Mineral Analysis, 2019, 38(1): 102-111. doi: 10.15898/j.cnki.11-2131/td.201709040139
    [16]
    段旭, 李慧慧, 杨柳晨, 等. 土壤中总石油烃测定——3种前处理方法的对比[J]. 福建分析测试, 2019, 28(3): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-FJFC201903016.htm

    Duan X, Li H H, Yang L C, et al. Three pretreatment methods of determination of total petroleum hydrocarbon in soil[J]. Fujian Analysis & Testing, 2019, 28(3): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-FJFC201903016.htm
    [17]
    韩彬, 林法祥, 丁宇, 等. 海州湾近岸海域水质状况调查与风险评价[J]. 岩矿测试, 2019, 38(4): 429-437. doi: 10.15898/j.cnki.11-2131/td.201806190073

    Han B, Lin F X, Ding Y, et al. Quality survey and risk assessment of the coastal waters of Haizhou Bay[J]. Rock and Mineral Analysis, 2019, 38(4): 429-437. doi: 10.15898/j.cnki.11-2131/td.201806190073
    [18]
    赵江华, 王鹏, 黎卫亮, 等. 复垦土地样品中石油类物质加速溶剂萃取-荧光分光光度法分析方法研究[J]. 岩矿测试, 2021, 40(3): 375-383. doi: 10.15898/j.cnki.11-2131/td.202011200150

    Zhao J H, Wang P, Li W L, et al. Determination of the petroleum substances in samples of reclaimed land by fluorescence spectrophotometry with accelerated solvent extraction[J]. Rock and Mineral Analysis, 2021, 40(3): 375-383. doi: 10.15898/j.cnki.11-2131/td.202011200150
    [19]
    薛广海, 李强, 刘庆, 等. 当前国内外含油污泥处理标准及石油烃检测方法的深度剖析和对比[J]. 石油化工应用, 2019, 38(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201901001.htm

    Xue G H, Li Q, Liu Q, et al. In-depth analysis and comparison on the standards and testing methods for oil contaminated soil of domestic and international[J]. Petrochemical Industry Application, 2019, 38(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201901001.htm
    [20]
    韩文靖, 王小书. 表面活性剂淋洗技术在含油土壤污染治理中的应用[J]. 当代化工, 2021, 50(3): 558-561, 566. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH202103025.htm

    Han W J, Wang X S. Research on the application of surfactant leaching technology in the treatment of oily soil pollution[J]. Contemporary Chemical Industry, 2021, 50(3): 558-561, 566. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH202103025.htm
    [21]
    苏丽娜, 马晓利, 陈平. 低含量油污染土壤中总石油烃测定萃取方法研究[J]. 应用化工, 2017, 46(8): 1635-1639. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201708046.htm

    Su L N, Ma X L, Chen P. Study on extraction and determination of total petroleum hydrocarbons in low oil-contaminated soil[J]. Applied Chemical Industry, 2017, 46(8): 1635-1639. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201708046.htm
    [22]
    马晓利, 苏丽娜, 庞林, 等. 快速溶剂萃取-红外分光光度法测定低含量油污染土壤中总石油烃的含量[J]. 理化检验(化学分册), 2018, 54(4): 388-392. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201804004.htm

    Ma X L, Su L N, Pang L, et al. Determination of total petroleum hydrocarbons in low oil-contaminated soil by infrared spectrophotometry with accelerated solvent extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(4): 388-392. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201804004.htm
    [23]
    王玉纯, 林大泉. 用红外分光光度法测定水体中石油烃含量的研究[J]. 石油化工环境保护, 1988(2): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHB198802015.htm

    Wang Y C, Lin D Q. Determination of petroleum hydrocarbon content in water by infrared spectrophotometry[J]. Petrochemical Environmental Protection, 1988(2): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHB198802015.htm
    [24]
    刘廷良, 刘京, 齐文启, 等. 水中石油类分析方法的现状[J]. 环境科学研究, 2000, 13(5): 58-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200005021.htm

    Liu T L, Liu J, Qi W Q, et al. Introduction of oil analysis methods for water and wastewater[J]. Research of Environmental Sciences, 2000, 13(5): 58-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200005021.htm
    [25]
    杨斌, 刘景龙, 郭艳. 红外分光光度法测定石油类中标准溶液稳定性的探讨[J]. 广州化学, 2020, 45(5): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHX202005011.htm

    Yang B, Liu J L, Guo Y. Determination of mercury in water by atomic fluorescence spectrometry under the different working temperature[J]. Guangzhou Chemistry, 2020, 45(5): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHX202005011.htm
    [26]
    梁庆勋, 叶洋宏. 红外分光光度法测定水中石油类手工分析方式与全自动分析方式比对研究[J]. 广东化工, 2021, 48(6): 127-128. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG202106063.htm

    Liang Q X, Ye Y H. Comparison of manually and automatic mode for determination of petroleum pollutants in water by infrared spectrophotometry[J]. Guangdong Chemical Industry, 2021, 48(6): 127-128. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG202106063.htm
    [27]
    马宏伟. 红外分光光度法测定水中石油类探讨[J]. 环境科学导刊, 2011, 30(1): 87-88. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK201101024.htm

    Ma H W. Study on the determination of petroleum oil in the water[J]. Environmental Science Survey, 2011, 30(1): 87-88. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK201101024.htm
    [28]
    杨丹丹, 姚亮, 雷世勇. 《水质石油类和动植物油的测定》新旧标准比较[J]. 环境科学与管理, 2013, 38(4): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ201304026.htm

    Yang D D, Yao L, Lei S Y. Comparison between the new and old version of "Water Quality-Determination of petroleum oils and animal and vegetable oils"[J]. Environmental Science and Management, 2013, 38(4): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ201304026.htm
  • Cited by

    Periodical cited type(6)

    1. 卢碧翠,张修华,王智青,张红进,刘丽立,潘晓瑜,杨明生,黄中伟,陈奇志. 提高电解二氧化锰中间控制磨粉样铁含量检测效率的研究. 中国锰业. 2024(03): 60-63 .
    2. 杨精存,丁杭冰,施亚菁. 磁性固相萃取-电感耦合等离子体质谱(ICP-MS)法同时检测制革废水多种重金属元素. 皮革与化工. 2024(05): 20-25 .
    3. 冯先进,杨斐. 电感耦合等离子体串联质谱技术特点及国内应用现状. 冶金分析. 2023(09): 1-13 .
    4. 严煜,韩乃旭,卢水淼,夏晓峰,林黎,张秀丽. 工业在线-电感耦合等离子体发射光谱法分析湿法冶炼硫酸锌溶液中铜镉钴铁. 岩矿测试. 2022(01): 153-159 . 本站查看
    5. 王干珍,彭君,李力,秦毅,曹健,田宗平. 锰矿石成分分析标准物质研制. 岩矿测试. 2022(02): 314-323 . 本站查看
    6. 王凯凯. 等离子质谱在水环境重金属检测中的应用. 冶金管理. 2021(11): 163-164 .

    Other cited types(0)

Catalog

    Article views (137) PDF downloads (16) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return