• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LI Xuanbo, WANG Ruimin, HUANG Tianzheng, SHUAI Gewei, SHEN Bing. Sulfur Isotopic Analysis and Sulfur Source Study of Phosphorite-associated Sulfate from the Ediacaran Doushantuo Formation in Guizhou Province[J]. Rock and Mineral Analysis, 2022, 41(4): 531-540. DOI: 10.15898/j.cnki.11-2131/td.202202210026
Citation: LI Xuanbo, WANG Ruimin, HUANG Tianzheng, SHUAI Gewei, SHEN Bing. Sulfur Isotopic Analysis and Sulfur Source Study of Phosphorite-associated Sulfate from the Ediacaran Doushantuo Formation in Guizhou Province[J]. Rock and Mineral Analysis, 2022, 41(4): 531-540. DOI: 10.15898/j.cnki.11-2131/td.202202210026

Sulfur Isotopic Analysis and Sulfur Source Study of Phosphorite-associated Sulfate from the Ediacaran Doushantuo Formation in Guizhou Province

More Information
  • Received Date: February 20, 2022
  • Revised Date: April 07, 2022
  • Accepted Date: April 28, 2022
  • Available Online: September 08, 2022
  • HIGHLIGHTS
    (1) The sulfur isotopic composition of phosphorite-associated sulfate of the Doushantuo Formation ranged from 32.7‰ to 36.9‰ by elemental analyzer-isotope ratio mass spectrometry. Compared with the sulfur composition of seawater in the same period, it shows that the sulfur in the phosphate rock does not all come from the surface seawater.
    (2) The early oceans (>520Ma) chemical zonation model indicated that sulfur of phosphorite came from the H2S zone.
    (3) The sulfur isotopic composition of phosphorite-associated sulfate was lower than that of the contemporaneous seawater, representing a mixed signal of upwelling and surface seawater, which can be a new indicator of sulfur isotope of sulfate in seawater.
    BACKGROUND

    Phosphate deposit of the Ediacaran Doushantuo Formation in Guizhou province is a typical representative of the global phosphorite formation event in the late Neoproterozoic, which is closely related to climate change and evolution of life. However, the current research on the deposition of phosphorus deposits is limited to the mechanism of phosphorus formation and the source of phosphorus, and research on the phosphorus formation process of this deposit and its correlation with the paleo-ocean environment of the same period by isotopic geochemical indicators is relatively weak.

    OBJECTIVES

    In order to determine the sulfur source of phosphorite-associated sulfate.

    METHODS

    Based on the field section observation and the study of petrological characteristics under the microscope, elemental analyzer-isotope ratio mass spectrometry (EA-IRMS) was used to measure the sulfur isotopic composition of phosphorite-associated sulfate from the Ediacaran Doushantuo Formation. RESULTS: The sulfur isotopic composition of phosphorite-associated sulfate ranged from 32.7‰ to 36.9‰ (n=32, mean=34.1‰), which was 11‰ lower than that of the seawater of the same period, indicating that the phosphorite-associated sulfate was not all from the surface seawater.

    CONCLUSIONS

    The idealized early ocean (>520Ma) chemical zoning model indicates that there is a relatively 34S-depleted H2S zone in the seawater at the same time. Combined with the understanding that the source of phosphorus in the phosphorite is closely related to the upwelling, it can be considered that the sulfur isotopic composition of phosphorite-associated sulfate of the Doushantuo Formation represents the mixed signal of surface seawater and upwelling.

  • [1]
    张亚冠, 杜远生, 刘建中, 等. 贵州震旦系陡山沱组磷块岩成磷作用及与新元古代末期氧化事件(NOE)的耦合[J]. 古地理学报, 2020, 22(5): 893-912. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202005007.htm

    Zhang Y G, Du Y S, Liu J Z, et al. Phosphogenesis of phosphorite from the Sinian Doushantuo Formation in Guizhou Province and its coupling relation with the Neoproterozoic Oxygenation Event (NOE)[J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(5): 893-912. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202005007.htm
    [2]
    Filippelli G M. Phosphate rock formation and marine phosphorus geochemistry: The deep time perspective[J]. Chemosphere, 2011, 84(6): 759-766. doi: 10.1016/j.chemosphere.2011.02.019
    [3]
    Anderson R P, Macdonald F A, Jones D S, et al. Doushantuo-type microfossils from latest Ediacaran phosphorites of northern Mongolia[J]. Geology, 2017, 45(12): 1079-1082. doi: 10.1130/G39576.1
    [4]
    Pufahl P K, Hiatt E E. Oxygenation of the Earth's atmosphere-ocean system; a review of physical and chemical sedimentologic responses[J]. Marine and Petroleum Geology, 2012, 32(1): 1-20. doi: 10.1016/j.marpetgeo.2011.12.002
    [5]
    Pufahl P K, Groat L A. Sedimentary and igneous phosphate deposits; formation and exploration; an invited paper[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2017, 112(3): 483-516. doi: 10.2113/econgeo.112.3.483
    [6]
    Hiatt E E, Pufahl P K, Edwards C T. Sedimentary phosphate and associated fossil bacteria in a Paleoproterozoic tidal flat in the 1.85Ga Michigamme Formation, Michigan, USA[J]. Sedimentary Geology, 2015, 319: 24-39. doi: 10.1016/j.sedgeo.2015.01.006
    [7]
    Caird R A, Pufahl P K, Hiatt E E, et al. Ediacaran stromatolites and intertidal phosphorite of the Salitre Formation, Brazil; phosphogenesis during the Neoproterozoic Oxygenation Event[J]. Sedimentary Geology, 2017, 350: 55-71. doi: 10.1016/j.sedgeo.2017.01.005
    [8]
    王志罡, 谢宏, 杨旭, 等. 贵州铜仁坝黄磷矿中铀赋存状态的逐级化学提取研究[J]. 岩矿测试, 2018, 37(3): 256-265. doi: 10.15898/j.cnki.11-2131/td.201710310172

    Wang Z G, Xie H, Yang X, et al. Stepwise extraction study on the occurrence of uranium in Tongren Bahuang Phosphorite, Guizhou[J]. Rock and Mineral Analysis, 2018, 37(3): 256-265. doi: 10.15898/j.cnki.11-2131/td.201710310172
    [9]
    Baturin G N. The origin of marine phosphorites[J]. International Geology Review, 1989, 31(4): 327-342. doi: 10.1080/00206818909465885
    [10]
    张亚冠, 杜远生, 陈国勇, 等. 富磷矿三阶段动态成矿模式: 黔中开阳式高品位磷矿成矿机制[J]. 古地理学报, 2019, 21(2): 351-368. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902011.htm

    Zhang Y G, Du Y S, Chen G Y, et al. Three stages dynamic mineralization model of the phosphate-rich deposits: Mineralization mechanism of the Kaiyang-type high-grade phosphorite in central Guizhou Province[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(2): 351-368. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902011.htm
    [11]
    Goldberg T, Poulton S W, Strauss H. Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: Diagenetic constraints and seawater evolution[J]. Precambrian Research, 2005, 137(3-4): 223-241. doi: 10.1016/j.precamres.2005.03.003
    [12]
    Qiao W L, Lang X G, Peng Y B, et al. Sulfur and oxygen isotopes of sulfate extracted from early Cambrian phosphorite nodules: Implications for marine redox evolution in the Yangtze Platform[J]. Journal of Earth Science (Wuhan, China), 2016, 27(2): 170-179.
    [13]
    Zhu M Y, Zhang J M, Yang A H. Integrated Ediacaran (Sinian) chronostratigraphy of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1-2): 7-61. doi: 10.1016/j.palaeo.2007.03.025
    [14]
    刘静江, 李伟, 张宝民, 等. 上扬子地区震旦纪沉积古地理[J]. 古地理学报, 2015, 17(6): 735-753. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201506002.htm

    Liu J J, Li W, Zhang B M, et al. Sedimentary palaeo-geography of the Sinian in Upper Yangtze Region[J]. Journal of Palaeogeography (Chinese Edition), 2015, 17(6): 735-753. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201506002.htm
    [15]
    Jiang G Q, Shi X Y, Zhang S H, et al. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551Ma) in South China[J]. Gondwana Research, 2011, 19(4): 831-849. doi: 10.1016/j.gr.2011.01.006
    [16]
    杨爱华, 朱茂炎, 张俊明, 等. 扬子板块埃迪卡拉系(震旦系)陡山沱组层序地层划分与对比[J]. 古地理学报, 2015, 17(1): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201501001.htm

    Yang A H, Zhu M Y, Zhang J M, et al. Sequence stratigraphic subdivision and correlation of the Ediacaran (Sinian) Doushantuo Formation of Yangtze Plate, South China[J]. Journal of Palaeogeography (Chinese Edition), 2015, 17(1): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201501001.htm
    [17]
    徐丽, 邢蓝田, 王鑫, 等. 元素分析仪-同位素比值质谱测量碳氮同位素比值最佳反应温度和进样量的确定[J]. 岩矿测试, 2018, 37(1): 15-20. doi: 10.15898/j.cnki.11-2131/td.201701130005

    Xu L, Xing L T, Wang X, et al. Study on the optimal reaction temperature and sampling weight for measurement of carbon and nitrogen isotope ratio by elemental analyzer-isotope ratio mass spectrometer[J]. Rock and Mineral Analysis, 2018, 37(1): 15-20. doi: 10.15898/j.cnki.11-2131/td.201701130005
    [18]
    高建飞, 徐衍明, 范昌福, 等. 元素分析仪-气体同位素质谱法分析硫酸钙样品的硫同位素组成[J]. 岩矿测试, 2020, 39(1): 53-58. doi: 10.15898/j.cnki.11-2131/td.201908120128

    Gao J F, Xu Y M, Fan C F, et al. Analysis of sulfur isotope composition of gypsum samples by elemental analyzer-isotope mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 53-58. doi: 10.15898/j.cnki.11-2131/td.201908120128
    [19]
    Paytan A, Kastner M, Campbell D, et al. Sulfur isotopic composition of Cenozoic seawater sulfate[J]. Science, 1998, 282(5393): 1459-1462. doi: 10.1126/science.282.5393.1459
    [20]
    Gill B C, Lyons T W, Jenkyns H C. A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event[J]. Earth and Planetary Science Letters, 2011, 312(3-4): 484-496. doi: 10.1016/j.epsl.2011.10.030
    [21]
    Crockford P W, Kunzmann M, Bekker A, et al. Claypool continued: Extending the isotopic record of sedimentary sulfate[J]. Chemical Geology, 2019, 513: 200-225. doi: 10.1016/j.chemgeo.2019.02.030
    [22]
    Fike D A, Bradley A S, Rose C V. Rethinking the ancient sulfur cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 593-622. doi: 10.1146/annurev-earth-060313-054802
    [23]
    Gomes M L, Hurtgen M T. Sulfur isotope fractionation in modern euxinic systems: Implications for paleo-environmental reconstructions of paired sulfate-sulfide isotope records[J]. Geochimica et Cosmochimica Acta, 2015, 157: 39-55. doi: 10.1016/j.gca.2015.02.031
    [24]
    Wang W, Guan C, Zhou C, et al. Integrated carbon, sulfur, and nitrogen isotope chemostratigraphy of the Ediacaran Lantian Formation in South China: Spatial gradient, ocean redox oscillation, and fossil distribution[J]. Geobiology, 2017, 15(4): 552-571. doi: 10.1111/gbi.12226
    [25]
    Bristow T F, Grotzinger J P. Sulfate availability and the geological record of cold-seep deposits[J]. Geology, 2013, 41(7): 811-814. doi: 10.1130/G34265.1
    [26]
    Present T M, Gutierrez M, Paris G, et al. Diagenetic controls on the isotopic composition of carbonate-associated sulphate in the Permian Capitan Reef Complex, West Texas[J]. Sedimentology, 2019, 66(7): 2605-2626. doi: 10.1111/sed.12615
    [27]
    Horacek M, Brandner R, Richoz S, et al. Lower Triassic sulphur isotope curve of marine sulphates from the Dolomites, N-Italy[J]. Palaeogeography, Palaeocli-matology, Palaeoecology, 2010, 290(1-4): 65-70. doi: 10.1016/j.palaeo.2010.02.016
    [28]
    Prince J, Rainbird R H, Wing B A. Evaporite deposition in the mid-Neoproterozoic as a driver for changes in seawater chemistry and the biogeochemical cycle of sulfur[J]. Geology, 2019, 47(4): 375-379. doi: 10.1130/G45464.1
    [29]
    Horita J, Zimmermann H, Holland H D. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites[J]. Geochimica et Cosmochimica Acta, 2002, 66(21): 3733-3756. doi: 10.1016/S0016-7037(01)00884-5
    [30]
    Paytan A, Mearon S, Cobb K M, et al. Origin of marine barite deposits: Sr and S isotope characterization[J]. Geology, 2002, 30(8): 747-750. doi: 10.1130/0091-7613(2002)030<0747:OOMBDS>2.0.CO;2
    [31]
    Griffith E M, Paytan A. Barite in the ocean-occurrence, geochemistry and palaeoceanographic applications[J]. Sedimentology, 2012, 59(6): 1817-1835. doi: 10.1111/j.1365-3091.2012.01327.x
    [32]
    Paris G, Adkins J F, Sessions A L, et al. Neoarchean carbonate-associated sulfate records positive Δ33S anomalies[J]. Science, 2014, 346(6240): 739-741.
    [33]
    Tostevin R, He T C, Turchyn A V, et al. Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate[J]. Precambrian Research, 2017, 290: 113-125. doi: 10.1016/j.precamres.2017.01.004
    [34]
    Paris G, Fehrenbacher J S, Sessions A L, et al. Experimental determination of carbonate-associated sulfate δ34S in planktonic foraminifera shells[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1452-1561. doi: 10.1002/2014GC005295
    [35]
    Ma H R, Dong L, Shen B, et al. Sulfur and oxygen isotopic compositions of carbonate associated sulfate (CAS) of Cambrian ribbon rocks: Implications for the constraints on using CAS to reconstruct seawater sulfate sulfur isotopic compositions[J]. Chemical Geology, 2021, 580: 120369. doi: 10.1016/j.chemgeo.2021.120369
    [36]
    Wu N, Farquhar J, Fike D A. Ediacaran sulfur cycle: Insights from sulfur isotope measurements (Δ33S and δ34S) on paired sulfate-pyrite in the Huqf Supergroup of Oman[J]. Geochimica et Cosmochimica Acta, 2015, 164: 352-364. doi: 10.1016/j.gca.2015.05.031
    [37]
    Wang R M, Lang X G, Ding W M, et al. The coupling of Phanerozoic continental weathering and marine phosphorus cycle[J]. Scientific Reports, 2020, 10(1): 5794. doi: 10.1038/s41598-020-62816-z
    [38]
    Hawkings J, Wadham J, Tranter M, et al. The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic[J]. Global Biogeochemical Cycles, 2016, 30(2): 191-210. doi: 10.1002/2015GB005237
    [39]
    Compton J, Mallinson D, Glenn C R, et al. Variations in the global phosphorus cycle[J]. Special Publication-Society for Sedimentary Geology, 2000, 66: 21-33.
    [40]
    Zhenbing S, Strother P, Papineau D. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites Ⅱ: Microbial diversity and C isotopes[J]. Precambrian Research, 2014, 251: 62-79. doi: 10.1016/j.precamres.2014.06.004
    [41]
    Cui H, Xiao S, Chuanming Z, et al. Phosphogenesis asso-ciated with the Shuram Excursion; petrographic and geochemical observations from the Ediacaran Doushantuo Formation of South China[J]. Sedimentary Geology, 2016, 341: 134-146. doi: 10.1016/j.sedgeo.2016.05.008
    [42]
    Nelson G J, Pufahl P K, Hiatt E E. Paleoceanographic constraints on Precambrian phosphorite accumulation, Baraga Group, Michigan, USA[J]. Sedimentary Geology, 2010, 226(1-4): 9-21. doi: 10.1016/j.sedgeo.2010.02.001
    [43]
    Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952. doi: 10.1126/science.1154499
    [44]
    Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran Ocean[J]. Science, 2010, 328(5974): 80-83. doi: 10.1126/science.1182369
    [45]
    Johnston D T, Poulton S W, Dehler C, et al. An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA[J]. Earth and Planetary Science Letters, 2010, 290(1-2): 64-73. doi: 10.1016/j.epsl.2009.11.059
    [46]
    Li C, Cheng M, Algeo T J, et al. A theoretical prediction of chemical zonation in early oceans (>520Ma)[J]. Science China: Earth Sciences, 2015, 58(11): 1901-1909. doi: 10.1007/s11430-015-5190-7
    [47]
    Raiswell R, Canfield D E. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 2012, 1(1): 1-220. doi: 10.7185/geochempersp.1.1
  • Cited by

    Periodical cited type(4)

    1. 陈彪,金海龙,贾晓琪,孙庆,刘雁江,魏威. 白云鄂博矿床包头矿的矿物学特征研究. 稀土. 2025(01): 14-24 .
    2. 沈啟武,王大钊,冷成彪,余海军,张传昱,苏肖宇,毛金伟,梁丰. 云南普朗超大型斑岩铜金矿床中发现碲化物和硒化物. 岩矿测试. 2023(03): 643-646 . 本站查看
    3. 韦连军,陈燕清,雷满奇,黄庆柒. 广西桂西地区沉积型铝土矿矿物特征研究. 岩矿测试. 2023(06): 1220-1229 . 本站查看
    4. 涂家润,卢宜冠,孙凯,周红英,郭虎,崔玉荣,耿建珍,李国占. 应用微束分析技术研究铜钴矿床中钴的赋存状态. 岩矿测试. 2022(02): 226-238 . 本站查看

    Other cited types(2)

Catalog

    Article views (287) PDF downloads (33) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return