• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
SUN Chengyang, LU Taijin, SONG Zhonghua, HE Mingyue, DENG Yi. Analysis of Abnormal Birefringence and Graphite Inclusions in Zimbabwean Diamonds[J]. Rock and Mineral Analysis, 2022, 41(2): 199-210. DOI: 10.15898/j.cnki.11-2131/td.202111050165
Citation: SUN Chengyang, LU Taijin, SONG Zhonghua, HE Mingyue, DENG Yi. Analysis of Abnormal Birefringence and Graphite Inclusions in Zimbabwean Diamonds[J]. Rock and Mineral Analysis, 2022, 41(2): 199-210. DOI: 10.15898/j.cnki.11-2131/td.202111050165

Analysis of Abnormal Birefringence and Graphite Inclusions in Zimbabwean Diamonds

More Information
  • Received Date: November 04, 2021
  • Revised Date: December 10, 2021
  • Accepted Date: January 21, 2022
  • Published Date: March 27, 2022
  • HIGHLIGHTS
    (1) Inclusions in diamonds with mixed-habit from Zimbabwe were syngenetic-epigenetic graphite inclusions located in directional microcracks.
    (2) The infrared absorption related to elemental hydrogen was stronger in the cuboid sector of Zimbabwean diamonds, while the absorption related to elemental nitrogen was stronger in the octahedral sectors.
    (3) Mixed growth habit and cracks were the main causes of abnormal birefringence in Zimbabwean diamonds. Compared with octahedral sectors, cuboid sectors showed a larger shift range of the Raman peak and smaller FWHM (Full Width at Half Maximum), which corresponded to a stronger strain.
    BACKGROUNDThe Marange diamond deposit in Zimbabwe is characterized by producing mixed-habit (octahedral and cuboid) diamonds. Graphite inclusions in these diamonds only exist in cuboid sectors. The morphological and distributional characteristics of graphite inclusions and the abnormal birefringence and strain characteristics of diamonds can reflect the geological process experienced by diamonds from the beginning of crystallization to being transported to the Earth's surface. Therefore, the study of diamonds and graphite inclusions in Zimbabwe can provide comparative data for diamonds from other deposits. Besides, due to the peculiarity of growth habits, detailed analysis would be of great value to help understand the behavioral differences of diamonds with different growth habits in geological processes.
    OBJECTIVESTo determine if graphite inclusions in Zimbabwean diamonds are syngenetic or epigenetic, and to reveal the relationship between graphite inclusions and the infrared absorption spectrum, Raman scattering spectrum as well as birefringence and strain characteristics of diamonds.
    METHODSThe growth structure and growth sectors of Zimbabwean diamonds were observed by DiamondViewTM image system. The morphological and distributional characteristics of graphite inclusions and abnormal birefringence in diamonds were analyzed by scanning electron microscopy (SEM) and polarized light microscopy. Analysis of distribution and relative concentration of impurity elements in different growth sectors was conducted by infrared spectroscopy. Strain characteristics of diamonds in different growth sectors were analyzed by Raman spectroscopy and projection diagram of corresponding results.
    RESULTSGraphite inclusions in cuboid sectors of Zimbabwean diamonds were syngenetic-epigenetic inclusions located in directional elliptical cracks. According to infrared spectra of different growth sectors, cuboid sectors showed stronger infrared absorption related to elemental hydrogen, while octahedral sectors showed stronger absorption related to elemental nitrogen. This enrichment of different impurity elements leading to abnormal birefringence was mainly related to cracks and different growth sectors in diamond. The Raman shift of LO=TO band in octahedral sectors was 1332.05-1332.20cm-1, the FWHM was 4.21-4.37cm-1, which corresponded to stress of 0.06-0.27GPa. The Raman shift of LO=TO band in cuboid sectors was 1331.93-1332.47cm-1, the FWHM was 3.67-4.08cm-1, which corresponded to stress of 0.01-0.64GPa. In general, the residual stress and strain were greater in cuboid sectors.
    CONCLUSIONSThe determination of the orientation of graphite inclusions in mixed-habit diamonds in Zimbabwe, provides new evidence to prove their syngenetic-epigenetic nature, and reveal the difference in the strain characteristics of diamonds in the two growth regions. This research is helpful for understanding the formation environment of diamonds in Zimbabwe and of different diamonds. The differences in physicochemical properties are of great significance.

  • Zedgenizov D A, Kagi H, Shatsky V S, et al. Carbonatitic melts in cuboid diamonds from Udachnaya kimberlite pipe (Yakutia): Evidence from vibrational spectroscopy[J]. Mineralogical Magazine, 2004, 68(1): 61-73. doi: 10.1180/0026461046810171
    Skuzovatov S Yu, Zedgenizov D A, Shatsky V S, et al. Composition of cloudy microinclusions in octahedral diamonds from the Internatsional'naya kimberlite pipe (Yakutia)[J]. Russian Geology and Geophysics, 2011, 52(1): 85-96. doi: 10.1016/j.rgg.2010.12.007
    Lang A R. Causes of birefringence in diamond[J]. Nature, 1967, 213(5073): 248-251. doi: 10.1038/213248a0
    Barron L M, Mernagh T P, Barron B J. Using strain birefringence in diamond to estimate the remnant pressure on an inclusion[J]. Australian Journal of Earth Sciences, 2008, 55(2): 159-165. doi: 10.1080/08120090701689332
    Rosenfeld J L, Chase A B. Pressure and temperature of crystallization from elastic effects around solid inclusions in minerals?[J]. American Journal of Science, 1961, 259(7): 519-541. doi: 10.2475/ajs.259.7.519
    Howell D, Wood I G, Dobson D P, et al. Quantifying strain birefringence halos around inclusions in diamond[J]. Contributions to Mineralogy and Petrology, 2010, 160(5): 705-717. doi: 10.1007/s00410-010-0503-5
    陆太进, 陈华, 张健, 等. 津巴布韦金刚石独特的形态及其"指纹"特征的意义[J]. 地质通报, 2011, 31(10): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201110019.htm

    Lu T J, Chen H, Zhang J, et al. Unique morphology of Zimbabwe diamond and its 'fingerprint' characteristic significance[J]. Geological Bulletin of China, 2011, 30(10): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201110019.htm
    Rondeau B, Fritsch E, Guiraud M, et al. Three historical 'asteriated' hydrogen-rich diamonds: Growth history and sector-dependent impurity incorporation[J]. Diamond and Related Materials, 2004, 13(9): 1658-1673. doi: 10.1016/j.diamond.2004.02.002
    Howell D, Griffin W L, Piazolo S, et al. A spectroscopic and carbon-isotope study of mixed-habit diamonds: Impurity characteristics and growth environment[J]. American Mineralogist, 2013, 98(1): 66-77. doi: 10.2138/am.2013.4179
    Smit K V, Shirey S B, Stern R A, et al. Diamond growth from C-H-N-O recycled fluids in the lithosphere: Evidence from CH4 micro-inclusions and δ 13C- δ 15N-N content in Marange mixed-habit diamonds[J]. Lithos, 2016, 265: 68-81. doi: 10.1016/j.lithos.2016.03.015
    Smit K V, Myagkaya E, Persaud S, et al. Black diamonds from Marange (Zimbabwe): A result of natural irradiation and graphite inclusions[J]. Gems and Gemology, 2018, 54(2): 132-148. doi: 10.5741/GEMS.54.2.132
    Pal'Yanov Y N, Sokol A G, Sobolev N V. Experimental modeling of mantle diamond-forming processes[J]. Russian Geology and Geophisics, 2005, 46(12): 1290-1303.
    Sokol A G, Pal'Yanov Y N. Diamond formation in the system MgO-SiO2-H2O-C at 7.5GPa and 1600℃[J]. Contributions to Mineralogy and Petrology, 2008, 155(1): 33-43.
    Zedgenizov D A, Ragozin A L, Shatsky V S, et al. Fibrous diamonds from the placers of the northeastern Siberian Platform: Carbonate and silicate crystallization media[J]. Russian Geology and Geophysics, 2011, 52(11): 1298-1309. doi: 10.1016/j.rgg.2011.10.003
    Izraeli E S, Harris J W, Navon O. Brine inclusions in diamonds: A new upper mantle fluid[J]. Earth and Planetary Science Letters, 2001, 187(3-4): 323-332. doi: 10.1016/S0012-821X(01)00291-6
    Harris J W. Black material on mineral inclusions and in internal fracture planes in diamond[J]. Contributions to Mineralogy and Petrology, 1972, 35(1): 22-33. doi: 10.1007/BF00397374
    Nechaev D V, Khokhryakov A F. Formation of metastable graphite inclusions during diamond crystallization in model systems[J]. Geology of Ore Deposits, 2014, 56(2): 139-146. doi: 10.1134/S1075701514020044
    Khokhryakov A F, Nechaev D V, Sokol A G, et al. Formation of various types of graphite inclusions in diamond: Experimental data[J]. Lithos, 2009, 112: 683-689. doi: 10.1016/j.lithos.2009.05.010
    Nechaev D V, Khokhryakov A F. Formation of epigenetic graphite inclusions in diamond crystals: Experimental data[J]. Russian Geology and Geophysics, 2013, 54(4): 399-405. doi: 10.1016/j.rgg.2013.03.003
    唐诗, 苏隽, 陆太进, 等. 化学气相沉积法再生钻石的实验室检测特征研究[J]. 岩矿测试, 2019, 38(1): 62-70. doi: 10.15898/j.cnki.11-2131/td.201802070017

    Tang S, Su J, Lu T J, et al. Research on laboratory testing features of chemical vapor deposition in overgrowth diamonds[J]. Rock and Mineral Analysis, 2019, 38(1): 62-70. doi: 10.15898/j.cnki.11-2131/td.201802070017
    Rakovan J, Gaillou E, Post J E, et al. Optically sector-zoned (star) diamonds from Zimbabwe[J]. Rock and Minerals, 2014, 89(2): 173-178. doi: 10.1080/00357529.2014.842844
    Nasdala L, Brenker F E, Glinnemann J, et al. Spectroscopic 2D-tomography: Residual pressure and strain around mineral inclusions in diamonds[J]. European Journal of Mineralogy, 2003, 15(6): 931-935.
    Howell D. Strain-induced birefringence in natural diamond: A review[J]. European Journal of Mineralogy, 2012, 24(4): 575-585. doi: 10.1127/0935-1221/2012/0024-2205
    Gogotsi Y G, Kailer A, Nickel K G. Transformation of diamond to graphite[J]. Nature, 1999, 401(6754): 663-664. doi: 10.1038/44323
    Day H W. A revised diamond-graphite transition curve[J]. American Mineralogist, 2012, 97(1): 2-62.
    杨志军, 彭明生, 谢先德, 等. 金刚石的微区显微红外光谱分析及其意义[J]. 岩矿测试, 2002, 21(3): 161-165. doi: 10.3969/j.issn.0254-5357.2002.03.001

    Yang Z J, Peng M S, Xie X D, et al. Micro area analysis of diamond by micro-infrared spectrometry and its significance[J]. Rock and Mineral Analysis, 2002, 21(3): 161-165. doi: 10.3969/j.issn.0254-5357.2002.03.001
    Zaitsev A M. Optical properties of diamond: A data handbook[M]. Springer Science and Business Media, 2013: 52-57.
    Goss J P, Briddon P R, Hill V, et al. Identification of the structure of the 3107cm-1 H-related defect in diamond[J]. Journal of Physics: Condensed Matter, 2014, 26(14): 145801. doi: 10.1088/0953-8984/26/14/145801
    Salustro S, Gentile F S, D'Arco P, et al. Hydrogen atoms in the diamond vacancy defect. A quantum mechanical vibrational analysis[J]. Carbon, 2018, 129(1): 349-356.
    宋中华, 陆太进, 苏隽, 等. 利用吸收和发光光谱技术分析高温高压天然富氢钻石的鉴定特征[J]. 岩矿测试, 2018, 37(1): 64-69. doi: 10.15898/j.cnki.11-2131/td.201705040072

    Song Z H, Lu T J, Su J, et al. Identification of HPHT-treated hydrogen-rich diamonds by optical absorption and photo luminescence spectroscopy techniques[J]. Rock and Mineral Analysis, 2018, 37(1): 64-69. doi: 10.15898/j.cnki.11-2131/td.201705040072
    Davies G, Collins A T, Spear P. Sharp infra-red absorption lines in diamond[J]. Solid State Communications, 1984, 49(5): 433-436. doi: 10.1016/0038-1098(84)90657-4
    Benedetti L R, Nguyen J H, Caldwell W A, et al. Dissociation of CH4 at high pressures and temperatures: Diamond formation in giant planet interiors?[J]. Science, 1999, 286(5437): 100-102. doi: 10.1126/science.286.5437.100
    Peaker C V, Goss J P, Briddon P R, et al. Di-nitrogen-vacancy-hydrogen defects in diamond: A computational study[J]. Physica Status Solid A, 2015, 212(11): 2616-2620. doi: 10.1002/pssa.201532216
    Gu T, Wang W. Optical defects in milky type aB diamonds [J]. Diamond and Related Materials, 2018, 89: 322-329. doi: 10.1016/j.diamond.2018.09.010
    Clackson S G, Moore M, Walmsley J, et al. The relationship between platelet size and the frequency of the B'infrared absorption peak in type Ⅰa diamond[J]. Philosophical Magazine B, 1990, 62(2): 115-128. doi: 10.1080/13642819008226980
    Collinss A T, Kanda H, Burns R C. The segregation of nickel-related optical centres in the octahedral growth sectors of synthetic diamond[J]. Philosophical Magazine B, 1990, 61(5): 797-810. doi: 10.1080/13642819008207562
    Burns R C, Cvetkovic V, Dodge C N, et al. Growth-sector dependence of optical features in large synthetic diamonds[J]. Journal of Crystal Growth, 1990, 104(2): 257-279. doi: 10.1016/0022-0248(90)90126-6
    Boyd S R, Pillinger C T, Milledge H J, et al. Fractionation of nitrogen isotopes in a synthetic diamond of mixed crystal habit[J]. Nature, 1988, 331(6157): 604-607. doi: 10.1038/331604a0
    Boyd S R, Kiflawi I, Woods G S. The relationship between infrared absorption and the A defect concentration in diamond[J]. Philosophical Magazine B, 1994, 69(6): 1149-1153. doi: 10.1080/01418639408240185
    Boyd S R, Kiflawi I, Woods G S. Infrared absorption by the B nitrogen aggregate in diamond[J]. Philosophical Magazine B, 1995, 72(3): 351-361. doi: 10.1080/13642819508239089
    Kiflawi I, Kanda H, Fisher D, et al. The aggregation of nitrogen and the formation of A centres in diamonds[J]. Diamond and Related Materials, 1997, 6(11): 1643-1649. doi: 10.1016/S0925-9635(97)00207-0
    Fisher D, Lawson S C. The effect of nickel and cobalt on the aggregation of nitrogen in diamond[J]. Diamond and Related Materials, 1998, 7(2): 299-304.
    Lang A R, Bulanova G P, Fisher D, et al. Defects in a mixed-habit Yakutian diamond: Studies by optical and cathodoluminescence microscopy, infrared absorption, Raman scattering and photoluminescence spectroscopy[J]. Journal of Crystal Growth, 2007, 309(2): 170-180. doi: 10.1016/j.jcrysgro.2007.09.022
    Grimsditch M H, Anastassakis E, Cardona M. Piezo-birefringence in diamond[J]. Physical Review B, 1979, 19(6): 3240-3243. doi: 10.1103/PhysRevB.19.3240
    Higashida K, Tanaka M, Matsunaga E, et al. Crack tip stress fields revealed by infrared photoelasticity in silicon crystals[J]. Materials Science and Engineering A, 2004, 387: 377-380.
    Welbourn C M, Rooney M, Evans D. A study of dia-monds of cube and cube-related shape from the Jwaneng mine[J]. Journal of Crystal Growth, 1989, 94(1): 229-252. doi: 10.1016/0022-0248(89)90622-2
    Lawn B R, Komatsu H. The nature of deformation around pressure cracks on diamond[J]. Philosophical Magazine, 1966, 14(130): 689-699. doi: 10.1080/14786436608211965
    Nasdala L, Hofmeister W, Harris J W, et al. Growth zoning and strain patterns inside diamond crystals as revealed by Raman maps[J]. American Mineralogist, 2005, 90(4): 745-748. doi: 10.2138/am.2005.1690
    Nemanich R J, Solin S A. First-and second-order Raman scattering from finite-size crystals of graphite[J]. Physical Review B, 1979, 20(2): 392. doi: 10.1103/PhysRevB.20.392
    马瑛, 王琦, 丘志力, 等. 湖南砂矿金刚石中石墨包裹体拉曼光谱原位测定: 形成条件及成因指示[J]. 光谱学与光谱分析, 2018, 38(6): 1753-1757. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201806022.htm

    Ma Y, Wang Q, Qiu Z L, et al. In-situ Raman spectroscopy testing and genesis of graphite inclusions in alluvial diamonds from Hunan[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 1753-1757. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201806022.htm
    Zerda T W, Xu W, Zerda A, et al. High pressure Raman and neutron scattering study on structure of carbon black particles[J]. Carbon, 2000, 38(3): 355-361. doi: 10.1016/S0008-6223(99)00111-6
    Howell D, Wood I G, Nestola F, et al. Inclusions under remnant pressure in diamond: A multi-technique approach[J]. European Journal of Mineralogy, 2012, 24(4): 563-573. doi: 10.1127/0935-1221/2012/0024-2183
    Grimsditch M H, Anastassakis E, Cardona M. Effect of uniaxial stress on the zone-center optical phonon of diamond[J]. Physical Review B, 1978, 18(2): 901. doi: 10.1103/PhysRevB.18.901
    Nachal'Naya T A, Andreyev V D, Gabrusenok E V. Shift of the frequency and Stokes-anti-Stokes ratio of Raman spectra from diamond powders[J]. Diamond and Related Materials, 1994, 3(11-12): 1325-1328. doi: 10.1016/0925-9635(94)90146-5
    Surovtsev N V, Kupriyanov I N. Effect of nitrogen impur-ities on the Raman line width in diamond, revisited[J]. Crystals, 2017, 7(8): 239. doi: 10.3390/cryst7080239
    Harris J W, Vance E R. Induced graphitisation around crystalline inclusions in diamond[J]. Contributions to Mineralogy and Petrology, 1972, 35(3): 227-234. doi: 10.1007/BF00371217

Catalog

    Article views (525) PDF downloads (36) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return