Citation: | SUN Chengyang, LU Taijin, SONG Zhonghua, HE Mingyue, DENG Yi. Analysis of Abnormal Birefringence and Graphite Inclusions in Zimbabwean Diamonds[J]. Rock and Mineral Analysis, 2022, 41(2): 199-210. DOI: 10.15898/j.cnki.11-2131/td.202111050165 |
Zedgenizov D A, Kagi H, Shatsky V S, et al. Carbonatitic melts in cuboid diamonds from Udachnaya kimberlite pipe (Yakutia): Evidence from vibrational spectroscopy[J]. Mineralogical Magazine, 2004, 68(1): 61-73. doi: 10.1180/0026461046810171
|
Skuzovatov S Yu, Zedgenizov D A, Shatsky V S, et al. Composition of cloudy microinclusions in octahedral diamonds from the Internatsional'naya kimberlite pipe (Yakutia)[J]. Russian Geology and Geophysics, 2011, 52(1): 85-96. doi: 10.1016/j.rgg.2010.12.007
|
Lang A R. Causes of birefringence in diamond[J]. Nature, 1967, 213(5073): 248-251. doi: 10.1038/213248a0
|
Barron L M, Mernagh T P, Barron B J. Using strain birefringence in diamond to estimate the remnant pressure on an inclusion[J]. Australian Journal of Earth Sciences, 2008, 55(2): 159-165. doi: 10.1080/08120090701689332
|
Rosenfeld J L, Chase A B. Pressure and temperature of crystallization from elastic effects around solid inclusions in minerals?[J]. American Journal of Science, 1961, 259(7): 519-541. doi: 10.2475/ajs.259.7.519
|
Howell D, Wood I G, Dobson D P, et al. Quantifying strain birefringence halos around inclusions in diamond[J]. Contributions to Mineralogy and Petrology, 2010, 160(5): 705-717. doi: 10.1007/s00410-010-0503-5
|
陆太进, 陈华, 张健, 等. 津巴布韦金刚石独特的形态及其"指纹"特征的意义[J]. 地质通报, 2011, 31(10): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201110019.htm
Lu T J, Chen H, Zhang J, et al. Unique morphology of Zimbabwe diamond and its 'fingerprint' characteristic significance[J]. Geological Bulletin of China, 2011, 30(10): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201110019.htm
|
Rondeau B, Fritsch E, Guiraud M, et al. Three historical 'asteriated' hydrogen-rich diamonds: Growth history and sector-dependent impurity incorporation[J]. Diamond and Related Materials, 2004, 13(9): 1658-1673. doi: 10.1016/j.diamond.2004.02.002
|
Howell D, Griffin W L, Piazolo S, et al. A spectroscopic and carbon-isotope study of mixed-habit diamonds: Impurity characteristics and growth environment[J]. American Mineralogist, 2013, 98(1): 66-77. doi: 10.2138/am.2013.4179
|
Smit K V, Shirey S B, Stern R A, et al. Diamond growth from C-H-N-O recycled fluids in the lithosphere: Evidence from CH4 micro-inclusions and δ 13C- δ 15N-N content in Marange mixed-habit diamonds[J]. Lithos, 2016, 265: 68-81. doi: 10.1016/j.lithos.2016.03.015
|
Smit K V, Myagkaya E, Persaud S, et al. Black diamonds from Marange (Zimbabwe): A result of natural irradiation and graphite inclusions[J]. Gems and Gemology, 2018, 54(2): 132-148. doi: 10.5741/GEMS.54.2.132
|
Pal'Yanov Y N, Sokol A G, Sobolev N V. Experimental modeling of mantle diamond-forming processes[J]. Russian Geology and Geophisics, 2005, 46(12): 1290-1303.
|
Sokol A G, Pal'Yanov Y N. Diamond formation in the system MgO-SiO2-H2O-C at 7.5GPa and 1600℃[J]. Contributions to Mineralogy and Petrology, 2008, 155(1): 33-43.
|
Zedgenizov D A, Ragozin A L, Shatsky V S, et al. Fibrous diamonds from the placers of the northeastern Siberian Platform: Carbonate and silicate crystallization media[J]. Russian Geology and Geophysics, 2011, 52(11): 1298-1309. doi: 10.1016/j.rgg.2011.10.003
|
Izraeli E S, Harris J W, Navon O. Brine inclusions in diamonds: A new upper mantle fluid[J]. Earth and Planetary Science Letters, 2001, 187(3-4): 323-332. doi: 10.1016/S0012-821X(01)00291-6
|
Harris J W. Black material on mineral inclusions and in internal fracture planes in diamond[J]. Contributions to Mineralogy and Petrology, 1972, 35(1): 22-33. doi: 10.1007/BF00397374
|
Nechaev D V, Khokhryakov A F. Formation of metastable graphite inclusions during diamond crystallization in model systems[J]. Geology of Ore Deposits, 2014, 56(2): 139-146. doi: 10.1134/S1075701514020044
|
Khokhryakov A F, Nechaev D V, Sokol A G, et al. Formation of various types of graphite inclusions in diamond: Experimental data[J]. Lithos, 2009, 112: 683-689. doi: 10.1016/j.lithos.2009.05.010
|
Nechaev D V, Khokhryakov A F. Formation of epigenetic graphite inclusions in diamond crystals: Experimental data[J]. Russian Geology and Geophysics, 2013, 54(4): 399-405. doi: 10.1016/j.rgg.2013.03.003
|
唐诗, 苏隽, 陆太进, 等. 化学气相沉积法再生钻石的实验室检测特征研究[J]. 岩矿测试, 2019, 38(1): 62-70. doi: 10.15898/j.cnki.11-2131/td.201802070017
Tang S, Su J, Lu T J, et al. Research on laboratory testing features of chemical vapor deposition in overgrowth diamonds[J]. Rock and Mineral Analysis, 2019, 38(1): 62-70. doi: 10.15898/j.cnki.11-2131/td.201802070017
|
Rakovan J, Gaillou E, Post J E, et al. Optically sector-zoned (star) diamonds from Zimbabwe[J]. Rock and Minerals, 2014, 89(2): 173-178. doi: 10.1080/00357529.2014.842844
|
Nasdala L, Brenker F E, Glinnemann J, et al. Spectroscopic 2D-tomography: Residual pressure and strain around mineral inclusions in diamonds[J]. European Journal of Mineralogy, 2003, 15(6): 931-935.
|
Howell D. Strain-induced birefringence in natural diamond: A review[J]. European Journal of Mineralogy, 2012, 24(4): 575-585. doi: 10.1127/0935-1221/2012/0024-2205
|
Gogotsi Y G, Kailer A, Nickel K G. Transformation of diamond to graphite[J]. Nature, 1999, 401(6754): 663-664. doi: 10.1038/44323
|
Day H W. A revised diamond-graphite transition curve[J]. American Mineralogist, 2012, 97(1): 2-62.
|
杨志军, 彭明生, 谢先德, 等. 金刚石的微区显微红外光谱分析及其意义[J]. 岩矿测试, 2002, 21(3): 161-165. doi: 10.3969/j.issn.0254-5357.2002.03.001
Yang Z J, Peng M S, Xie X D, et al. Micro area analysis of diamond by micro-infrared spectrometry and its significance[J]. Rock and Mineral Analysis, 2002, 21(3): 161-165. doi: 10.3969/j.issn.0254-5357.2002.03.001
|
Zaitsev A M. Optical properties of diamond: A data handbook[M]. Springer Science and Business Media, 2013: 52-57.
|
Goss J P, Briddon P R, Hill V, et al. Identification of the structure of the 3107cm-1 H-related defect in diamond[J]. Journal of Physics: Condensed Matter, 2014, 26(14): 145801. doi: 10.1088/0953-8984/26/14/145801
|
Salustro S, Gentile F S, D'Arco P, et al. Hydrogen atoms in the diamond vacancy defect. A quantum mechanical vibrational analysis[J]. Carbon, 2018, 129(1): 349-356.
|
宋中华, 陆太进, 苏隽, 等. 利用吸收和发光光谱技术分析高温高压天然富氢钻石的鉴定特征[J]. 岩矿测试, 2018, 37(1): 64-69. doi: 10.15898/j.cnki.11-2131/td.201705040072
Song Z H, Lu T J, Su J, et al. Identification of HPHT-treated hydrogen-rich diamonds by optical absorption and photo luminescence spectroscopy techniques[J]. Rock and Mineral Analysis, 2018, 37(1): 64-69. doi: 10.15898/j.cnki.11-2131/td.201705040072
|
Davies G, Collins A T, Spear P. Sharp infra-red absorption lines in diamond[J]. Solid State Communications, 1984, 49(5): 433-436. doi: 10.1016/0038-1098(84)90657-4
|
Benedetti L R, Nguyen J H, Caldwell W A, et al. Dissociation of CH4 at high pressures and temperatures: Diamond formation in giant planet interiors?[J]. Science, 1999, 286(5437): 100-102. doi: 10.1126/science.286.5437.100
|
Peaker C V, Goss J P, Briddon P R, et al. Di-nitrogen-vacancy-hydrogen defects in diamond: A computational study[J]. Physica Status Solid A, 2015, 212(11): 2616-2620. doi: 10.1002/pssa.201532216
|
Gu T, Wang W. Optical defects in milky type aB diamonds [J]. Diamond and Related Materials, 2018, 89: 322-329. doi: 10.1016/j.diamond.2018.09.010
|
Clackson S G, Moore M, Walmsley J, et al. The relationship between platelet size and the frequency of the B'infrared absorption peak in type Ⅰa diamond[J]. Philosophical Magazine B, 1990, 62(2): 115-128. doi: 10.1080/13642819008226980
|
Collinss A T, Kanda H, Burns R C. The segregation of nickel-related optical centres in the octahedral growth sectors of synthetic diamond[J]. Philosophical Magazine B, 1990, 61(5): 797-810. doi: 10.1080/13642819008207562
|
Burns R C, Cvetkovic V, Dodge C N, et al. Growth-sector dependence of optical features in large synthetic diamonds[J]. Journal of Crystal Growth, 1990, 104(2): 257-279. doi: 10.1016/0022-0248(90)90126-6
|
Boyd S R, Pillinger C T, Milledge H J, et al. Fractionation of nitrogen isotopes in a synthetic diamond of mixed crystal habit[J]. Nature, 1988, 331(6157): 604-607. doi: 10.1038/331604a0
|
Boyd S R, Kiflawi I, Woods G S. The relationship between infrared absorption and the A defect concentration in diamond[J]. Philosophical Magazine B, 1994, 69(6): 1149-1153. doi: 10.1080/01418639408240185
|
Boyd S R, Kiflawi I, Woods G S. Infrared absorption by the B nitrogen aggregate in diamond[J]. Philosophical Magazine B, 1995, 72(3): 351-361. doi: 10.1080/13642819508239089
|
Kiflawi I, Kanda H, Fisher D, et al. The aggregation of nitrogen and the formation of A centres in diamonds[J]. Diamond and Related Materials, 1997, 6(11): 1643-1649. doi: 10.1016/S0925-9635(97)00207-0
|
Fisher D, Lawson S C. The effect of nickel and cobalt on the aggregation of nitrogen in diamond[J]. Diamond and Related Materials, 1998, 7(2): 299-304.
|
Lang A R, Bulanova G P, Fisher D, et al. Defects in a mixed-habit Yakutian diamond: Studies by optical and cathodoluminescence microscopy, infrared absorption, Raman scattering and photoluminescence spectroscopy[J]. Journal of Crystal Growth, 2007, 309(2): 170-180. doi: 10.1016/j.jcrysgro.2007.09.022
|
Grimsditch M H, Anastassakis E, Cardona M. Piezo-birefringence in diamond[J]. Physical Review B, 1979, 19(6): 3240-3243. doi: 10.1103/PhysRevB.19.3240
|
Higashida K, Tanaka M, Matsunaga E, et al. Crack tip stress fields revealed by infrared photoelasticity in silicon crystals[J]. Materials Science and Engineering A, 2004, 387: 377-380.
|
Welbourn C M, Rooney M, Evans D. A study of dia-monds of cube and cube-related shape from the Jwaneng mine[J]. Journal of Crystal Growth, 1989, 94(1): 229-252. doi: 10.1016/0022-0248(89)90622-2
|
Lawn B R, Komatsu H. The nature of deformation around pressure cracks on diamond[J]. Philosophical Magazine, 1966, 14(130): 689-699. doi: 10.1080/14786436608211965
|
Nasdala L, Hofmeister W, Harris J W, et al. Growth zoning and strain patterns inside diamond crystals as revealed by Raman maps[J]. American Mineralogist, 2005, 90(4): 745-748. doi: 10.2138/am.2005.1690
|
Nemanich R J, Solin S A. First-and second-order Raman scattering from finite-size crystals of graphite[J]. Physical Review B, 1979, 20(2): 392. doi: 10.1103/PhysRevB.20.392
|
马瑛, 王琦, 丘志力, 等. 湖南砂矿金刚石中石墨包裹体拉曼光谱原位测定: 形成条件及成因指示[J]. 光谱学与光谱分析, 2018, 38(6): 1753-1757. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201806022.htm
Ma Y, Wang Q, Qiu Z L, et al. In-situ Raman spectroscopy testing and genesis of graphite inclusions in alluvial diamonds from Hunan[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 1753-1757. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201806022.htm
|
Zerda T W, Xu W, Zerda A, et al. High pressure Raman and neutron scattering study on structure of carbon black particles[J]. Carbon, 2000, 38(3): 355-361. doi: 10.1016/S0008-6223(99)00111-6
|
Howell D, Wood I G, Nestola F, et al. Inclusions under remnant pressure in diamond: A multi-technique approach[J]. European Journal of Mineralogy, 2012, 24(4): 563-573. doi: 10.1127/0935-1221/2012/0024-2183
|
Grimsditch M H, Anastassakis E, Cardona M. Effect of uniaxial stress on the zone-center optical phonon of diamond[J]. Physical Review B, 1978, 18(2): 901. doi: 10.1103/PhysRevB.18.901
|
Nachal'Naya T A, Andreyev V D, Gabrusenok E V. Shift of the frequency and Stokes-anti-Stokes ratio of Raman spectra from diamond powders[J]. Diamond and Related Materials, 1994, 3(11-12): 1325-1328. doi: 10.1016/0925-9635(94)90146-5
|
Surovtsev N V, Kupriyanov I N. Effect of nitrogen impur-ities on the Raman line width in diamond, revisited[J]. Crystals, 2017, 7(8): 239. doi: 10.3390/cryst7080239
|
Harris J W, Vance E R. Induced graphitisation around crystalline inclusions in diamond[J]. Contributions to Mineralogy and Petrology, 1972, 35(3): 227-234. doi: 10.1007/BF00371217
|