Citation: | CHEN Ai-qing, HE Hong-ping, TAN Wei, YANG Yi-ping, TAO Qi. Composition and Content of Fluorophlogopite Polytypes by X-ray Diffraction with Rotation-spraying Method[J]. Rock and Mineral Analysis, 2021, 40(4): 504-511. DOI: 10.15898/j.cnki.11-2131/td.202101250014 |
徐扬群. 合成云母的制造、加工与应用[M]. 北京: 化学工业出版社, 2012: 1-5.
Xu Y Q. Manufacuring, processing and application of synthetic mica[M]. Beijing: Chemical Industry Press, 2012: 1-5.
|
Casasola R, Pérez J, Romero M. Crystal growth of F-phlogopite from glasses of the SiO2-Al2O3-MgO-K2O-F system[J]. Journal of the American Ceramic Society, 2016, 99(2): 484-491. doi: 10.1111/jace.13995
|
Ma L J, Sun Z C, Zhang L, et al. Study on mechanism and theoretical model of tool wear in fluorophlogopite glass-ceramics turning[J]. Journal of Materials Processing Technology, 2020, 275: 1-10. http://www.sciencedirect.com/science/article/pii/S0924013619302560
|
Fregola R A, Capitani G C, Scandale E, et al. Chemical control of 3T stacking order in a Li-poor biotite mica[J]. American Mineralogist, 2009, 94: 334-344. doi: 10.2138/am.2009.3004
|
Capitani G C, Schingaro E, Lacalamita M, et al. Structural anomalies in tobelite-2M2 explained by high resolution and analytical electron microscopy[J]. Mineralogical Magazine, 2016, 80(1): 143-156. doi: 10.1180/minmag.2015.079.7.14
|
Kuo C L, Huang Y H, Fan S J. X-ray topography study on imperfections in synthetic mica (fluorophlogopite) crystal[J]. Journal of Material Science, 1981, 16(4): 877-882. doi: 10.1007/BF00542730
|
Bloss F D, Gibbs G V, Cummings D. Polymorphism and twinning in synthetic fluorophlogopite[J]. Journal of Geology, 1963, 71(5): 537-548. doi: 10.1086/626931
|
Shell H R, Ivey K H. Fluorine micas[M]. Washington: U.S. Department of the Interior, Bureau of Mines, 1969: 152-154.
|
Sunagawa I, Endo Y, Daimon N, et al. Nucleation, growth and polytypism of flour-phlogopite from the vapour phase[J]. Journal of Crystal Growth, 1968, 3(4): 751. http://www.sciencedirect.com/science/article/pii/0022024868902595
|
Hammouda T, Pichavant M, Barbey P, et al. Synthesis of fluorphlogopite single crystals. Applications to experi-mental studies[J]. European Journal of Mineralogy, 1995, 7: 1381-1387. doi: 10.1127/ejm/7/6/1381
|
李中和, 秦关华, 翁臻培. 人造氟金云母的多型[J]. 人工晶体学报, 1982(增刊): 144. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT1982Z1196.htm
Li Z H, Qin G H, Weng Z P. Polytype of synthetic fluorophlogopite[J]. Journal of Synthetic Crystals, 1982(Supplement): 144. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT1982Z1196.htm
|
Hillier S. Use of an air brush to spray dry samples for X-ray powder diffraction[J]. Clay Minerals, 1999, 34: 127-135. doi: 10.1180/000985599545984
|
Moore D M, Reynolds R C J. X-ray diffraction and the identification and analysis of clay minerals[M]. New York: Oxford University Press, 1997: 204-225.
|
Grathoff G H, Moore D M. Illite polytype quantification using WILDFIRE® calculated X-ray diffraction patterns[J]. Clays and Clay Minerals, 1996, 44(6): 835-842. doi: 10.1346/CCMN.1996.0440615
|
Kleeberg R, Monecke T, Hillier S. Preferred orientation of mineral grains in sample mounts for quantitative XRD measurements: How random are powder samples?[J]. Clays and Clay Minerals, 2008, 56(4): 404-415. doi: 10.1346/CCMN.2008.0560402
|
马礼敦. X射线粉末衍射仪用试样的制作[J]. 上海计量测试, 2008(5): 2-6. doi: 10.3969/j.issn.1673-2235.2008.05.001
Ma L D. Preparation of the samples for X-ray powder diffractometers[J]. Shanghai Measurement and Testing, 2008(5): 2-6. doi: 10.3969/j.issn.1673-2235.2008.05.001
|
Zhou X, Liu D, Bu H, et al. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review[J]. Solid Earth Sciences, 2018, 3: 16-29. doi: 10.1016/j.sesci.2017.12.002
|
冉敬, 郭创锋, 杜谷, 等. X射线衍射全谱拟合法分析蓝晶石的矿物含量[J]. 岩矿测试, 2019, 38(6): 660-667. doi: 10.15898/j.cnki.11-2131/td.201902220025
Ran J, Guo C F, Du G, et al. Quantitative analysis of mineral composition of kyanite by X-ray diffraction with Rietveld refinement method[J]. Rock and Mineral Analysis, 2019, 38(6): 660-667. doi: 10.15898/j.cnki.11-2131/td.201902220025
|
Toby B H. EXPGUI, a graphical user interface for GSAS[J]. Journal of Applied Crystallography, 2001, 34: 210-213. doi: 10.1107/S0021889801002242
|
陈爱清, 薛雍, 徐洪柳, 等. Rietveld定量方法在蒸发岩矿物组分分析中的精确度评价和误差来源[J]. 岩矿测试, 2017, 36(4): 374-381. doi: 10.15898/j.cnki.11-2131/td.201608020111
Chen A Q, Xue Y, Xu H L, et al. Assessment of accuracy and error sources of the Rietveld quantitative phase analysis method in mineral contents of evaporites[J]. Rock and Mineral Analysis, 2017, 36(4): 374-381. doi: 10.15898/j.cnki.11-2131/td.201608020111
|
Zhang G, Germaine J T, Martin R T, et al. A simple sample-mounting method for radndom powder X-ray diffraction[J]. Clays and Clay Minerals, 2003, 51(2): 218-225. doi: 10.1346/CCMN.2003.0510212
|
彭观良, 杨建坤, 兰勇, 等. 择优取向对X射线衍射积分强度的影响[J]. 大学物理实验, 2007, 20(3): 56-58. doi: 10.3969/j.issn.1007-2934.2007.03.016
Peng G L, Yang J K, Lan Y, et al. The effect of preferred orientation on X-ray diffraction integral intensity[J]. Physical Experimental of College, 2007, 20(3): 56-58. doi: 10.3969/j.issn.1007-2934.2007.03.016
|
Jenkins R, Fawcett T G, Smith D K, et al. JCPDS-International centre for diffraction data sample preparation methods in X-ray powder diffraction[J]. Powder Diffraction, 1986, 1(2): 51-63. doi: 10.1017/S0885715600011581
|
Schingaro E, Lacalamita M, Scordari F, et al. 3T-phlogopite from Kasenyi kamafugite (SW Uganda): EPMA, XPS, FTIR, and SCXRD study[J]. American Mineralogist, 2013, 98: 709-717. doi: 10.2138/am.2013.4283
|
Scordari F, Schingaro E, Ventruti G, et al. Fluorophlogopite from Piano delle Concazze (Mt. Etna, Italy): Crystal chemistry and implications for the crystallization conditions[J]. American Mineralogist, 2013, 98: 1017-1025. doi: 10.2138/am.2013.4225
|
Brindley G W, Brown G. Crystal structures of clay minerals and their X-ray identification[M]. London: Mineralogical Society, 1980: 46-56.
|
郑振环, 李强. X射线多晶衍射数据Rietveld精修及GSAS软件入门[M]. 北京: 中国建材工业出版社, 2016: 20-23.
Zheng Z H, Li Q. Introduction to Rietveld refinement with X-ray powder diffraction data and GSAS software[M]. Beijing: China Building Material Industry Publishing House, 2016: 20-23.
|
陈昊鸿, 雷芳. 粉末衍射理论与实践[M]. 北京: 高等教育出版社, 2016: 158-160.
Chen H H, Lei F. Powder diffraction theory and practice[M]. Beijing: Higher Education Press, 2016: 158-160.
|
Toby B H. R factors in Rietveld analysis: How good is good enough?[J]. Powder Diffraction, 2006, 21(1): 67-70. doi: 10.1154/1.2179804
|
Mottana E A, Sassi F P, Thompson J B, et al. Micas: crystal chemistry and metamorphic petrology, reviews in mineralogy and geochemistry[M]. Washington: Mineralogical Society of America and the Geochemical Society, 2002: 1-90.
|
Pignatelli I, Faure F, Mosser-Ruck R. Self-mixing magma in the Ruiz Peak rhyodacite (New Mexico, USA): A mechanism explaining the formation of long period polytypes of mica[J]. Lithos, 2016, 266: 332-347.
|
陈爱清. 熔体中氟金云母生长机制与多型成因[D]. 北京: 中国科学院大学, 2019.
Chen A Q. Growth mechanism and polytype genesis of synthetic fluorophlogopite from melt[D]. Beijing: University of Chinese Academy of Sciences, 2019.
|
1. |
刘忠梅,周安梁. X射线衍射法快速测定铜精矿矿物组分的试验研究. 中国资源综合利用. 2024(05): 28-32 .
![]() | |
2. |
陈爱清,张立雪,李强,朱建喜,李尚颖,何宏平. Rietveld全图拟合法定量分析伊利石矿的精确度及误差来源. 岩矿测试. 2022(02): 291-299 .
![]() |