• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
CHEN Ai-qing, HE Hong-ping, TAN Wei, YANG Yi-ping, TAO Qi. Composition and Content of Fluorophlogopite Polytypes by X-ray Diffraction with Rotation-spraying Method[J]. Rock and Mineral Analysis, 2021, 40(4): 504-511. DOI: 10.15898/j.cnki.11-2131/td.202101250014
Citation: CHEN Ai-qing, HE Hong-ping, TAN Wei, YANG Yi-ping, TAO Qi. Composition and Content of Fluorophlogopite Polytypes by X-ray Diffraction with Rotation-spraying Method[J]. Rock and Mineral Analysis, 2021, 40(4): 504-511. DOI: 10.15898/j.cnki.11-2131/td.202101250014

Composition and Content of Fluorophlogopite Polytypes by X-ray Diffraction with Rotation-spraying Method

More Information
  • Received Date: January 24, 2021
  • Revised Date: April 06, 2021
  • Accepted Date: July 01, 2021
  • Published Date: July 27, 2021
  • HIGHLIGHTS
    (1) The developed rotation-spraying method showed a stronger effect on reducing the preferred orientation of fluorphlogopites than the side loading method.
    (2) Synthetic fluorphlogopites were mainly composed of 1M and 2M1 polytypes.
    (3) Commercial synthetic fluorphlogopites had abundant 2M1 polytype (28%-43%).
    BACKGROUNDThe polytype species and the content of synthetic fluorophores have a considerable influence on the physiochemical properties of fluorphlogopites. However, conventional methods (e.g., front loading and side loading) of sample preparation tend to generate a strongly preferred orientation on the 00l basal plane, limiting the X-ray diffraction (XRD) analysis of the composition and content of fluorphlogopite polytypes. The conventional spraying method was utilized to prepare samples with random orientations for XRD analysis. However, the sample surface was not flat enough to perform the analysis.
    OBJECTIVESTo decrease the preferred orientation and develop a method for quantitative analysis of fluorphlogopite polytypes.
    METHODSIn this study, the conventional spraying method was improved. The sample holder was rotated evenly during the spraying process to obtain a flat surface sample.
    RESULTSXRD data suggested that the orientation index (OI=I001/I060) obtained by the rotation-spraying method was 3.9, which was close to the theoretical value (4.5). The OIs of the front and side loading methods were 38.7 and 18.1, respectively, which were significantly larger than the theoretical value (4.5). The results showed that the rotation-spraying method significantly decreased the preferred orientation of mica along the 00l basal plane compared with the front and side loading methods. Microscopic observations revealed that the surface of the sample prepared by the rotation-spraying method exhibited a canine tooth staggered distribution. This increased the random distribution between the crystal particles and reduced the preferred orientation. Rietveld quantitative phase analyses of fluorphlogopites were successfully performed based on the XRD data for the samples prepared by the rotation-spraying method. In this study, Rietveld refinement showed that the contents of 1M and 2M1 polytypes of synthetic fluorphlogopites were 86% and 14%, respectively. The systematic investigations of eight commercial fluorphlogopites revealed that these samples were composed of 28%-43% 2M1 polytype and 57%-72% 1M polytype. In addition, significant stacking faults were observed in these eight commercial samples.
    CONCLUSIONSThe rotation-spraying method significantly weakened the effect of preferential orientation. This study provides technical support for understanding the mica crystal growth, polymorphism, and structure-performance relationship.

  • 徐扬群. 合成云母的制造、加工与应用[M]. 北京: 化学工业出版社, 2012: 1-5.

    Xu Y Q. Manufacuring, processing and application of synthetic mica[M]. Beijing: Chemical Industry Press, 2012: 1-5.
    Casasola R, Pérez J, Romero M. Crystal growth of F-phlogopite from glasses of the SiO2-Al2O3-MgO-K2O-F system[J]. Journal of the American Ceramic Society, 2016, 99(2): 484-491. doi: 10.1111/jace.13995
    Ma L J, Sun Z C, Zhang L, et al. Study on mechanism and theoretical model of tool wear in fluorophlogopite glass-ceramics turning[J]. Journal of Materials Processing Technology, 2020, 275: 1-10. http://www.sciencedirect.com/science/article/pii/S0924013619302560
    Fregola R A, Capitani G C, Scandale E, et al. Chemical control of 3T stacking order in a Li-poor biotite mica[J]. American Mineralogist, 2009, 94: 334-344. doi: 10.2138/am.2009.3004
    Capitani G C, Schingaro E, Lacalamita M, et al. Structural anomalies in tobelite-2M2 explained by high resolution and analytical electron microscopy[J]. Mineralogical Magazine, 2016, 80(1): 143-156. doi: 10.1180/minmag.2015.079.7.14
    Kuo C L, Huang Y H, Fan S J. X-ray topography study on imperfections in synthetic mica (fluorophlogopite) crystal[J]. Journal of Material Science, 1981, 16(4): 877-882. doi: 10.1007/BF00542730
    Bloss F D, Gibbs G V, Cummings D. Polymorphism and twinning in synthetic fluorophlogopite[J]. Journal of Geology, 1963, 71(5): 537-548. doi: 10.1086/626931
    Shell H R, Ivey K H. Fluorine micas[M]. Washington: U.S. Department of the Interior, Bureau of Mines, 1969: 152-154.
    Sunagawa I, Endo Y, Daimon N, et al. Nucleation, growth and polytypism of flour-phlogopite from the vapour phase[J]. Journal of Crystal Growth, 1968, 3(4): 751. http://www.sciencedirect.com/science/article/pii/0022024868902595
    Hammouda T, Pichavant M, Barbey P, et al. Synthesis of fluorphlogopite single crystals. Applications to experi-mental studies[J]. European Journal of Mineralogy, 1995, 7: 1381-1387. doi: 10.1127/ejm/7/6/1381
    李中和, 秦关华, 翁臻培. 人造氟金云母的多型[J]. 人工晶体学报, 1982(增刊): 144. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT1982Z1196.htm

    Li Z H, Qin G H, Weng Z P. Polytype of synthetic fluorophlogopite[J]. Journal of Synthetic Crystals, 1982(Supplement): 144. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT1982Z1196.htm
    Hillier S. Use of an air brush to spray dry samples for X-ray powder diffraction[J]. Clay Minerals, 1999, 34: 127-135. doi: 10.1180/000985599545984
    Moore D M, Reynolds R C J. X-ray diffraction and the identification and analysis of clay minerals[M]. New York: Oxford University Press, 1997: 204-225.
    Grathoff G H, Moore D M. Illite polytype quantification using WILDFIRE® calculated X-ray diffraction patterns[J]. Clays and Clay Minerals, 1996, 44(6): 835-842. doi: 10.1346/CCMN.1996.0440615
    Kleeberg R, Monecke T, Hillier S. Preferred orientation of mineral grains in sample mounts for quantitative XRD measurements: How random are powder samples?[J]. Clays and Clay Minerals, 2008, 56(4): 404-415. doi: 10.1346/CCMN.2008.0560402
    马礼敦. X射线粉末衍射仪用试样的制作[J]. 上海计量测试, 2008(5): 2-6. doi: 10.3969/j.issn.1673-2235.2008.05.001

    Ma L D. Preparation of the samples for X-ray powder diffractometers[J]. Shanghai Measurement and Testing, 2008(5): 2-6. doi: 10.3969/j.issn.1673-2235.2008.05.001
    Zhou X, Liu D, Bu H, et al. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review[J]. Solid Earth Sciences, 2018, 3: 16-29. doi: 10.1016/j.sesci.2017.12.002
    冉敬, 郭创锋, 杜谷, 等. X射线衍射全谱拟合法分析蓝晶石的矿物含量[J]. 岩矿测试, 2019, 38(6): 660-667. doi: 10.15898/j.cnki.11-2131/td.201902220025

    Ran J, Guo C F, Du G, et al. Quantitative analysis of mineral composition of kyanite by X-ray diffraction with Rietveld refinement method[J]. Rock and Mineral Analysis, 2019, 38(6): 660-667. doi: 10.15898/j.cnki.11-2131/td.201902220025
    Toby B H. EXPGUI, a graphical user interface for GSAS[J]. Journal of Applied Crystallography, 2001, 34: 210-213. doi: 10.1107/S0021889801002242
    陈爱清, 薛雍, 徐洪柳, 等. Rietveld定量方法在蒸发岩矿物组分分析中的精确度评价和误差来源[J]. 岩矿测试, 2017, 36(4): 374-381. doi: 10.15898/j.cnki.11-2131/td.201608020111

    Chen A Q, Xue Y, Xu H L, et al. Assessment of accuracy and error sources of the Rietveld quantitative phase analysis method in mineral contents of evaporites[J]. Rock and Mineral Analysis, 2017, 36(4): 374-381. doi: 10.15898/j.cnki.11-2131/td.201608020111
    Zhang G, Germaine J T, Martin R T, et al. A simple sample-mounting method for radndom powder X-ray diffraction[J]. Clays and Clay Minerals, 2003, 51(2): 218-225. doi: 10.1346/CCMN.2003.0510212
    彭观良, 杨建坤, 兰勇, 等. 择优取向对X射线衍射积分强度的影响[J]. 大学物理实验, 2007, 20(3): 56-58. doi: 10.3969/j.issn.1007-2934.2007.03.016

    Peng G L, Yang J K, Lan Y, et al. The effect of preferred orientation on X-ray diffraction integral intensity[J]. Physical Experimental of College, 2007, 20(3): 56-58. doi: 10.3969/j.issn.1007-2934.2007.03.016
    Jenkins R, Fawcett T G, Smith D K, et al. JCPDS-International centre for diffraction data sample preparation methods in X-ray powder diffraction[J]. Powder Diffraction, 1986, 1(2): 51-63. doi: 10.1017/S0885715600011581
    Schingaro E, Lacalamita M, Scordari F, et al. 3T-phlogopite from Kasenyi kamafugite (SW Uganda): EPMA, XPS, FTIR, and SCXRD study[J]. American Mineralogist, 2013, 98: 709-717. doi: 10.2138/am.2013.4283
    Scordari F, Schingaro E, Ventruti G, et al. Fluorophlogopite from Piano delle Concazze (Mt. Etna, Italy): Crystal chemistry and implications for the crystallization conditions[J]. American Mineralogist, 2013, 98: 1017-1025. doi: 10.2138/am.2013.4225
    Brindley G W, Brown G. Crystal structures of clay minerals and their X-ray identification[M]. London: Mineralogical Society, 1980: 46-56.
    郑振环, 李强. X射线多晶衍射数据Rietveld精修及GSAS软件入门[M]. 北京: 中国建材工业出版社, 2016: 20-23.

    Zheng Z H, Li Q. Introduction to Rietveld refinement with X-ray powder diffraction data and GSAS software[M]. Beijing: China Building Material Industry Publishing House, 2016: 20-23.
    陈昊鸿, 雷芳. 粉末衍射理论与实践[M]. 北京: 高等教育出版社, 2016: 158-160.

    Chen H H, Lei F. Powder diffraction theory and practice[M]. Beijing: Higher Education Press, 2016: 158-160.
    Toby B H. R factors in Rietveld analysis: How good is good enough?[J]. Powder Diffraction, 2006, 21(1): 67-70. doi: 10.1154/1.2179804
    Mottana E A, Sassi F P, Thompson J B, et al. Micas: crystal chemistry and metamorphic petrology, reviews in mineralogy and geochemistry[M]. Washington: Mineralogical Society of America and the Geochemical Society, 2002: 1-90.
    Pignatelli I, Faure F, Mosser-Ruck R. Self-mixing magma in the Ruiz Peak rhyodacite (New Mexico, USA): A mechanism explaining the formation of long period polytypes of mica[J]. Lithos, 2016, 266: 332-347.
    陈爱清. 熔体中氟金云母生长机制与多型成因[D]. 北京: 中国科学院大学, 2019.

    Chen A Q. Growth mechanism and polytype genesis of synthetic fluorophlogopite from melt[D]. Beijing: University of Chinese Academy of Sciences, 2019.
  • Cited by

    Periodical cited type(2)

    1. 刘忠梅,周安梁. X射线衍射法快速测定铜精矿矿物组分的试验研究. 中国资源综合利用. 2024(05): 28-32 .
    2. 陈爱清,张立雪,李强,朱建喜,李尚颖,何宏平. Rietveld全图拟合法定量分析伊利石矿的精确度及误差来源. 岩矿测试. 2022(02): 291-299 . 本站查看

    Other cited types(0)

Catalog

    Article views (2144) PDF downloads (38) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return