• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LIU Gui-lei, XU Chun-xue, CHEN Zong-ding, WEN Hong-li. Determination of Lithium, Gallium, Zirconium, Rare Earth Elements and Other Trace Elements in Corundum-bearing Bauxite by Inductively Coupled Plasma-Mass Spectrometry with Rapid Decomposition of Ammonium Bifluoride[J]. Rock and Mineral Analysis, 2020, 39(5): 670-681. DOI: 10.15898/j.cnki.11-2131/td.202003120031
Citation: LIU Gui-lei, XU Chun-xue, CHEN Zong-ding, WEN Hong-li. Determination of Lithium, Gallium, Zirconium, Rare Earth Elements and Other Trace Elements in Corundum-bearing Bauxite by Inductively Coupled Plasma-Mass Spectrometry with Rapid Decomposition of Ammonium Bifluoride[J]. Rock and Mineral Analysis, 2020, 39(5): 670-681. DOI: 10.15898/j.cnki.11-2131/td.202003120031

Determination of Lithium, Gallium, Zirconium, Rare Earth Elements and Other Trace Elements in Corundum-bearing Bauxite by Inductively Coupled Plasma-Mass Spectrometry with Rapid Decomposition of Ammonium Bifluoride

More Information
  • Received Date: March 11, 2020
  • Revised Date: April 07, 2020
  • Accepted Date: May 12, 2020
  • Published Date: August 31, 2020
  • HIGHLIGHTS
    (1) NH4HF2 was used as a flux, which solved the problem of incomplete decomposition of corundum-containing bauxite by four-acid, five-acid and closure pressure acid dissolution methods.
    (2) The optimum temperature, time and reagent dosage of NH4HF2 to decompose corundum-bearing bauxite were determined.
    (3) The study was applicable to trace element analysis of bauxite, especially high-alumina and corundum-bearing bauxite.
    BACKGROUNDBauxite is often accompanied by useful components such as lithium, gallium, zirconium, and rare earth metals. Complete extraction and accurate determination of the content of these components are of great significance for the comprehensive evaluation and comprehensive utilization of bauxite resources. However, bauxite often contains a small amount of corundum, which is not completely decomposed by the conventional four-acid, five-acid and closure pressure acid dissolution methods, resulting in lower measurement results.
    OBJECTIVESTo explore the new decomposition method to achieve rapid and accurate analysis of trace elements in corundum- bearing bauxite.
    METHODSA digestion technique using the solid compound ammonium bifluoride in a screw-capped PFA vial at high temperature has been developed for trace elements analysis of corundum-bearing bauxite by using a small amount of sulfuric acid during the fusion process. The factors such as different melting temperature, digestion time and reagent dosage were investigated in detail, the optimal smelting conditions (200℃, 3h, sample ratio 4:1) were confirmed. An analytical method for determination of 37 trace elements in corundum-bearing bauxite by inductively coupled plasma-mass spectrometry with rapid decomposition of ammonium bifluoride was established.
    RESULTSThis method can be used to quickly and effectively decompose corundum-bearing bauxite, which has been verified by three national bauxite standard materials GBW07177, GBW07181 and GBW07182. The proposed method was also compared with the results of the four-acid, five-acid and closure pressure acid dissolution methods. The recoveries of nine elements such as Li, Ga, Sr, Zr and Pb in the three standard materials were from 95.0% to 115.0%, 90.0% to 110.0%, and 90.0% to 110.0%, respectively. The analytical result was in agreement with the certified values. The detection limits of the method were from 0.002 to 0.43μg/g, which was closely equivalent to the detection limits (0.000-0.48μg/g) of the traditional nitric acid-hydrofluoric acid closure digestion method. The precisions were from 1.14% to 8.84%, which qualified it to meet the analytical requirements of trace elements in bauxite.
    CONCLUSIONSThis method can be used to achieve accurate analysis of major elements such as Al, Ti, and P in bauxite (Al2O3 content between 42.97% and 90.36%), which further verifies the accuracy of this method for the determination of trace elements in bauxite.

  • 龙克树, 付勇, 龙珍, 等.全球铝土矿中稀土和钪的资源潜力分析[J].地质学报, 2019, 93(6):1279-1295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201906009

    Long K S, Fu Y, Long Z, et al.Resource potential analysis of REE and Sc in global bauxite[J].Acta Geologica Sinica, 2019, 93(6):1279-1295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201906009
    卢业友, 杨芬.电感耦合等离子体原子发射光谱法测定铝土矿中锂和镓[J].冶金分析, 2017, 37(3):70-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201703012

    Lu Y Y, Yang F.Determination of lithium and gallium in bauxite by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2017, 37(3):70-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201703012
    钟海仁, 孙艳, 杨岳清, 等.铝土矿(岩)型锂资源及其开发利用潜力[J].矿床地质, 2019, 38(4):898-916. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201904014

    Zhong H R, Sun Y, Yang Y Q, et al.Bauxite (aluminum)-type lithium resources and analysis of its development and utilization potential[J].Mineral Deposits, 2019, 38(4):898-916. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201904014
    严爽, 黄康俊, 付勇, 等.铝土矿中锂同位素分离提纯方法的建立[J].岩矿测试, 2020, 39(1):41-52. doi: 10.15898/j.cnki.11-2131/td.2019081201275

    Yan S, Huang K J, Fu Y, et al.The establishment of methods for separating and purifying lithium isotopes in bauxite[J].Rock and Mineral Analysis, 2020, 39(1):41-52. doi: 10.15898/j.cnki.11-2131/td.2019081201275
    金中国, 周家喜, 黄智龙, 等.黔北务-正-道地区典型铝土矿床伴生有益元素锂、镓和钪分布规律[J].中国地质, 2015, 42(6):1910-1918. http://www.cqvip.com/QK/90050X/201506/667212800.html

    Jin Z G, Zhou J X, Huang Z L, et al.The distribution of associated elements Li, Sc and Ga in the typical bauxite deposits over the Wuchuan-Zheng'an-Daozhen bauxite ore district, northern Guizhou Province[J].Geology in China, 2015, 42(6):1910-1918. http://www.cqvip.com/QK/90050X/201506/667212800.html
    Lu F H, Xiao T F, Lin J, et al.Resources and extraction of Gallium:A review[J].Hydrometallurgy, 2017, 174:105-115. doi: 10.1016/j.hydromet.2017.10.010
    王登红, 王瑞江, 李建康, 等.中国三稀矿产资源战略调查研究进展综述[J].中国地质, 2013, 40(2):361-370. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201302001

    Wang D H, Wang R J, Li J K, et al.The progress in the strategic research survey of rare earth, rare metal and rare-scattered elements mineral resources[J].Geology in China, 2013, 40(2):361-370. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201302001
    Putzolu F, Papa A P, Mondillo N, et al.Geochemical characterization of bauxite deposits from the Abruzzi mining district (Italy)[J].Minerals, 2018, 8(7):298. doi: 10.3390/min8070298
    Khosravi M, Abedini A, Alipour S, et al.The Darzi-Vali bauxite deposit, West-Azarbaidjan Province, Iran:Critical metals distribution and parental affinities[J].Journal of African Earth Sciences, 2017, 129:960-972. doi: 10.1016/j.jafrearsci.2017.02.024
    Torró L, Proenza J A, Aiglsperger T, et al.Geological, geochemical and mineralogical characteristics of REE-bearing Las Mercedes bauxite deposit, Dominican Republic[J].Ore Geology Reviews, 2017, 89:114-131. doi: 10.1016/j.oregeorev.2017.06.017
    《岩石矿物分析》编委会.岩石矿物分析(第四版第三分册)[M].北京:地质出版社, 2011:255-256.

    The editorial committee of Rock and Mineral Analysis.Rock and mineral analysis (The fourth edition:Volume Ⅲ)[M].Beijing:Geological Publishing House, 2011:255-256.
    胡宝珍.罗丹明B萃取光度法测定铝土矿中镓的质量保证[J].冶金分析, 2005, 25(2):95-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx200502028

    Hu B Z.Quality assurance of determination of gallium in bauxite by Rhodamine B extraction photometry[J].Metallurgical Analysis, 2005, 25(2):95-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx200502028
    朱鲜红, 李德生, 张晶华, 等.乙酸丁酯萃取火焰原子吸收光谱法测定铝土矿中微量镓[J].冶金分析, 2004, 24(6):63-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx200406019

    Zhu X H, Li D S, Zhang J H, et al.Determination of micro gallium in bauxite by butyl acetate extraction and flame atomic absorption spectrometry[J].Metallurgical Analysis, 2004, 24(6):63-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx200406019
    Calagari A A, Abedini A.Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, west Azarbaidjan, Iran[J].Journal of Geochemical Exploration, 2007, 94:1-18. doi: 10.1016/j.gexplo.2007.04.003
    Peh Z, Galović E K.Geochemistry of Istrian Lower Palae-ogene bauxites-Is it relevant to the extent of subaerial exposure during Cretaceous times?[J].Ore Geology Reviews, 2014, 63:296-306. doi: 10.1016/j.oregeorev.2014.05.020
    Cotta A J B, Enzweiler J.Classical and new procedures of whole rock dissolution for trace element determination by ICP-MS[J].Geostandards and Geoanalytical Research, 2011, 36(1):27-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1bf9b3e287948e3c1f181d920b8981c7
    Zhang W, Hu Z C, Liu Y S, et al.Reassessment of HF/HNO3 decomposition capability in the high-pressure digestion of felsic rocks for multi-element determination by ICP-MS[J].Geostandards and Geoanalytical Research, 2012, 36(3):271-278. doi: 10.1111/j.1751-908X.2012.0156.x
    王琰, 孙洛新, 张帆, 等.电感耦合等离子体发射光谱法测定含刚玉的铝土矿中硅铝铁钛[J].岩矿测试, 2013, 32(5):719-723. http://www.ykcs.ac.cn/article/id/b77e549e-dbd2-49c3-96ce-9d0075b681e6

    Wang Y, Sun L X, Zhang F, et al.Determination of Si, Al, Fe and Ti in bauxite by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2013, 32(5):719-723. http://www.ykcs.ac.cn/article/id/b77e549e-dbd2-49c3-96ce-9d0075b681e6
    孙红宾, 刘贵磊, 赵怀颖, 等.偏硼酸锂熔融-ICP-AES法测定含刚玉铝土矿中主成分[J].分析试验室, 2017, 36(12):1429-1434. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201712013

    Sun H B, Liu G L, Zhao H Y, et al.Determination of main components in corundum-bearing bauxite by ICP-AES with lithium metaborate fusion method[J].Chinese Journal of Analysis Laboratory, 2017, 36(12):1429-1434. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201712013
    杨小丽, 李小丹, 邹棣华.溶样方法对电感耦合等离子体质谱法测定铝土矿中稀土元素的影响[J].冶金分析, 2016, 36(7):56-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201607009

    Yang X L, Li X D, Zou D H.Influence of sample dissolution method on determination of rare earth elements in bauxite by inductively coupled plasma mass spectrometry[J]. Metellurgical Analysis, 2016, 36(7):56-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201607009
    da Costa M L, da Silva Cruz G, de Almeida H D F, et al.On the geology, mineralogy and geochemistry of the bauxite-bearing regolith in the Lower Amazon Basin:Evidence of genetic relationship[J].Journal of Geochemical Exploration, 2014, 146:58-74. doi: 10.1016/j.gexplo.2014.07.021
    Monsels D A, van Bergen M J.Bauxite formation on Proterozoic bedrock of Suriname[J].Journal of Geochemical Exploration, 2017, 180:71-90. doi: 10.1016/j.gexplo.2017.06.011
    Mongelli G, Boni M, Buccione R, et al.Geochemistry of the Apulian karst bauxites (southern Italy):Chemical fractionation and parental affinities[J].Ore Geology Reviews, 2014, 63:9-21. doi: 10.1016/j.oregeorev.2014.04.012
    Ahmadnejad F, Zamanian H, Taghipour B, et al.Mineralogical and geochemical evolution of the Bidgol bauxite deposit, Zagros Mountain Belt, Iran:Implications for ore genesis, rare earth elements fractionation and parental affinity[J].Ore Geology Reviews, 2017, 86:755-783. doi: 10.1016/j.oregeorev.2017.04.006
    杨载明.电感耦合等离子体发射光谱法测定铝土矿样品中镓三种前处理方法的比较[J].岩矿测试, 2011, 30(3):315-317. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201103014

    Yang Z M.The comparison of three sample pretreatment methods in determination of gallium in bauxite ores by inductively coupled plasma-atomic emission spectro-metry[J].Rock and Mineral Analysis, 2011, 30(3):315-317. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201103014
    高志军, 陈静, 陈浩凤, 等.熔融制样-X射线荧光光谱法测定硅酸盐和铝土矿中主次组分[J].冶金分析, 2015, 35(7):73-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201507013

    Gao Z J, Chen J, Chen H F, et al.Simultaneous determination of major and minor components in silicate and bauxite by X-ray fluorescence[J].Metellurgical Analysis, 2015, 35(7):73-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201507013
    胡璇, 石磊, 张炜华.碱熔融-电感耦合等离子体发射光谱法测定高硫铝土矿中的硫[J].岩矿测试, 2017, 36(2):124-129. doi: 10.15898/j.cnki.11-2131/td.2017.02.005

    Hu X, Shi L, Zhang W H.Determination of sulfur in high-sulfur bauxite by alkali fusion-inductively coupled plasma-optical emission spectrometry[J].Rock and Mineral Analysis, 2017, 36(2):124-129. doi: 10.15898/j.cnki.11-2131/td.2017.02.005
    Awaji S, Nakamura K, Nozaki T, et al.A simple method for precise determination of 23 trace elements in granitic rocks by ICP-MS after lithium tetraborate fusion[J].Resource Geology, 2006, 56(4):471-478. doi: 10.1111/j.1751-3928.2006.tb00299.x
    Zhang W, Hu Z C, Liu Y S, et al.Quantitative analysis of major and trace elements in NH4HF2-modified silicate rock powders by laser ablation-inductively coupled plasma mass spectrometry[J].Analytica Chimica Acta, 2017, 983(29):149-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f4687d8b182cc968dd8d014647a13f25
    Zhang W, Hu Z C.Recent advances in sample prepa-ration methods for elemental and isotopic analysis of geological samples[J].Spectrochimica Acta Part B, 2019, 160:105690. doi: 10.1016/j.sab.2019.105690
    Magaldi T T, Navarro M S, Enzweiler J.Assessment of dissolution of silicate rock reference materials with ammonium bifluoride and nitric acid in a microwave oven[J].Geostandards and Geoanalytical Research, 2019, 43(1):189-208. doi: 10.1111/ggr.12242
    Ayranci B.A rapid decomposition method for analyzing zirconia[J].Mineral Research and Exploration Bulletin, 1989, 109:75-79. http://www.researchgate.net/publication/237446337_A_rapid_decomposition_method_for_analyzing_zirconia
    Mariet C, Belhadj O, Leroy S, et al.Relevance of NH4F in acid digestion before ICP-MS analysis[J].Talanta, 2008, 77(2):445-450. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e2c02d5be104173a0d6febd89f2139bd
    Hu Z C, Gao S, Liu Y S, et al.NH4F assisted high pressure digestion of geological samples for multi-element analysis by ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2010, 25(3):408-413. doi: 10.1039/b921006g
    Zhang W, Hu Z C, Liu Y S, et al.Total rock dissolution using ammonium bifluoride (NH4HF2) in screw-top teflon vials:A new development in open-vessel digestion[J].Analytical Chemistry, 2012, 84(23):10686-10693. doi: 10.1021/ac302327g
    Hu Z C, Zhang W, Liu Y S, et al.Rapid bulk rock decomposition by ammonium fluoride (NH4F) in open vessels at an elevated digestion temperature[J].Chemical Geology, 2013, 355:144-152. doi: 10.1016/j.chemgeo.2013.06.024
    Zhang W, Qi L, Hu Z C, et al.An investigation of diges-tion methods for trace elements in bauxite and their determination in ten bauxite reference materials using inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2016, 40(2):195-216. doi: 10.1111/j.1751-908X.2015.00356.x
    Yokoyama T, Makishima A, Nakamura E.Evaluation of the coprecipitation of incompatible trace elements with fluoride during silicate rock dissolution by acid digestion[J].Chemical Geology, 1999, 157:175-187. doi: 10.1016/S0009-2541(98)00206-X
    Hu Z C, Gao S.Upper crustal abundances of trace elements:A revision and update[J].Chemical Geology, 2008, 253(3-4):205-221. doi: 10.1016/j.chemgeo.2008.05.010
  • Cited by

    Periodical cited type(5)

    1. 刘畅,胡骏翔,苑芷茜. 应用PXRF与ICP-OES法测定土壤中锰的比对研究. 环境科学与管理. 2023(07): 115-119 .
    2. 田戈,刘卫,郭颖超,马春红,张文宇,谷周雷. 恒温振荡浸提-电感耦合等离子体发射光谱法测定土壤中的交换性锰. 中国土壤与肥料. 2023(08): 243-248 .
    3. 杨晓红,陈丽琼,刘婉秋. X射线荧光光谱法在环境监测中的发展与应用. 理化检验-化学分册. 2022(07): 861-868 .
    4. 徐冬梅,陈晋,张敏. WDXRF法测定污染土壤和沉积物中金属元素. 环境监测管理与技术. 2022(06): 52-55+68 .
    5. 刘宏,付淑惠,李海霞,靳晧琛,余恒. X射线荧光光谱仪滤光片故障解决思路探讨. 四川环境. 2022(06): 254-259 .

    Other cited types(2)

Catalog

    Article views (3596) PDF downloads (89) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return