• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LI Da-yong, ZHU Zhi-xiong, LI Jing, WANG Liang. Accuracy Research of Minerals with High Loss of Ignition during X-ray Fluorescence Spectrometry Semi-quantitative Analysis[J]. Rock and Mineral Analysis, 2020, 39(1): 135-142. DOI: 10.15898/j.cnki.11-2131/td.201903080034
Citation: LI Da-yong, ZHU Zhi-xiong, LI Jing, WANG Liang. Accuracy Research of Minerals with High Loss of Ignition during X-ray Fluorescence Spectrometry Semi-quantitative Analysis[J]. Rock and Mineral Analysis, 2020, 39(1): 135-142. DOI: 10.15898/j.cnki.11-2131/td.201903080034

Accuracy Research of Minerals with High Loss of Ignition during X-ray Fluorescence Spectrometry Semi-quantitative Analysis

More Information
  • Received Date: March 07, 2019
  • Revised Date: July 04, 2019
  • Accepted Date: July 15, 2019
  • Published Date: December 31, 2019
  • HIGHLIGHTS
    (1) A calibration mode combined chemical quantitative analysis with X-ray fluorescence spectrometry semi-quantitative analysis was proposed.
    (2) The average accuracy of multi-element in bauxite, carbonate minerals and sulfide metal minerals was increased by 2.6 to 4.5 times using this calibration mode.
    (3) This method can be used to quickly determine multi-element in minerals with high loss of ignition.
    BACKGROUNDThe SQX, X-ray fluorescence spectrometry semi-quantitative analysis software, was used to analyze an unknown sample. The software can analyze the range of 9F-92U elements, but cannot directly analyze the parameters such as H2O and C. Employing the balanced normalized calculation to test a special sample, such as bauxite with high loss of ignition and high crystalliferous water content, carbonate minerals with higher CO2 content, sulfide metal minerals with higher sulfur and carbon content, the analysis results for main elements like Al2O3, SiO2, CaO, MgO and Fe are largely affected by undetermined parameters resulting in low accuracy of semi-quantitative analysis data.
    OBJECTIVESTo propose a new calibration mode through experimental research.
    METHODSThe calibration mode quantitatively and selectively analyzes the parameters such as loss of ignition, crystalliferous water, carbon dioxide and sulfur of an unknown sample, based on the preliminary results of semi-quantitative analysis. By putting the quantitative analysis result into SQX, the new semi-quantitative analysis results were obtained by using the second equilibrium normalization calculation.
    RESULTSThe experimental results show that the average accuracy of multi-element in bauxite, carbonate minerals and sulfide metal minerals was increased by 2.6 to 4.5 times using this calibration mode.
    CONCLUSIONSThe method can quickly and accurately determine multi-element in minerals with high loss of ignition, including bauxite, carbonate minerals, and sulfide metal minerals.

  • Platbood G, Serbyns M, Quitin J M.Automated qualitative wavelength-dispersive X-ray fluorescence analysis[J].X-Ray Spectrometry, 1982, 11(2):83-88. doi: 10.1002/xrs.1300110211
    Vila E, Bermuder-Polonio J, Jimenez-Seco J L.Com-puter method for qualitative wavelength-dispersive X-ray fluorescence analysis[J].X-Ray Spectrometry, 1984, 13(4):187-191. doi: 10.1002/xrs.1300130413
    Jordanov J, Tsanov T, Stafanov R, et al.Problems of automatic qualitative X-ray fluorescence analysis:Part one[J].X-Ray Spectrometry, 1986, 16:255-259. http://cn.bing.com/academic/profile?id=c181e80588d21e794c16a2bfeea7b65c&encoded=0&v=paper_preview&mkt=zh-cn
    Jordanov J, Tsanov T, Stafanov R, et al.Problems of automated qualitative X-ray fluorescence analysis.2.Location of maxima and line identification[J].X-Ray Spectrometry, 1988, 17:117-121. doi: 10.1002/xrs.1300170308
    Janssens K, Espen P V.Implementation of an expert system for the qualitative interpretation of X-ray fluorescence spectra[J].Analytica Chimica Acta, 1986, 184:117-132. doi: 10.1016/S0003-2670(00)86475-2
    Janssens K, van Espen P.Evaluation of energy- dispersive X-ray spectra with the aid of expert systems[J].Analytica Chimica Acta, 1986, 191:169-180. doi: 10.1016/S0003-2670(00)86306-0
    Janssens K, Dorrine W, Espen P V.The development process of an expert system for the automated interpretation of large EMPA data sets[J].Chemometrics and Intelligent Laboratory Systems, 1988, 4:147-161. doi: 10.1016/0169-7439(88)80086-8
    吉昂, 陶光仪, 卓尚军, 等.X射线荧光光谱分析[M].北京:科学出版社, 2005:145.

    Ji A, Tao G Y, Zhuo S J, et al.X-ray Fluorescence Spectrum Analysis[M].Beijing:Science Press, 2005:145.
    吉昂.X射线荧光光谱30年[J].岩矿测试, 2012, 31(3):383-398. doi: 10.3969/j.issn.0254-5357.2012.03.002

    Ji A.Development of X-ray fluorescence spectrometry in the 30 years[J].Rock and Mineral Analysis, 2012, 31(3):383-398. doi: 10.3969/j.issn.0254-5357.2012.03.002
    刘敏, 庹先国, 李哲, 等.SDD-EDXRF中FP法无标样校正钒钛铁间吸收增强效应[J].核电子学与探测技术, 2012, 32(10):1192-1195. doi: 10.3969/j.issn.0258-0934.2012.10.020

    Liu M, Tuo X G, Li Z, et al.The application of fundamental parameters method in EDXRF based on SDD[J].Nuclear Electronics & Detection Technology, 2012, 32(10):1192-1195. doi: 10.3969/j.issn.0258-0934.2012.10.020
    刘岩, 孙杨, 李冬梅, 等.X射线荧光光谱无标样分析法在催化剂检测中的应用[J].分析试验室, 2017, 36(12):1398-1401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201712008

    Liu Y, Sun Y, Li D M, et al.Application of X-ray fluorescence spectrometry in catalyst composition determination without standard[J].Chinese Journal of Analysis Laboratory, 2017, 36(12):1398-1401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201712008
    张红菊, 张丁非, 余大亮, 等.X射线荧光光谱无标样分析在轻合金中的应用[J].分析试验室, 2017, 36(2):147-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201702006

    Zhang H J, Zhang D F, Yu D L, et al.Application of X-ray fluorescence spectrometer in the determination of light alloys[J].Chinese Journal of Analysis Laboratory, 2017, 36(2):147-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201702006
    张淑英, 卜赛斌.X射线荧光光谱无标半定量分析稀土元素方法的改进[J].岩矿测试, 2003, 22(1):37-39. doi: 10.3969/j.issn.0254-5357.2003.01.008

    Zhang S Y, Bu S B.A semi-quantitative method improved for rare-earth element analysis by XRF without standards[J].Rock and Mineral Analysis, 2003, 22(1):37-39. doi: 10.3969/j.issn.0254-5357.2003.01.008
    宋焕玲, 吴亲娟, 张兵.分析有机物中钾的IQ+无标样定量分析软件[J].科学技术与工程, 2006, 6(18):2981-2982. doi: 10.3969/j.issn.1671-1815.2006.18.049

    Song H L, Wu Q J, Zhang B.Analysis of potassium in organic compounds by using IQ+ standardless quantitative analysis program[J].Science Technology and Engineering, 2006, 6(18):2981-2982. doi: 10.3969/j.issn.1671-1815.2006.18.049
    朱志秀, 冯健, 李晨, 等.X射线荧光光谱无标样分析技术在出入境矿产品检验中的应用[J].理化检验(化学分册), 2009, 45(7):832-835. http://d.old.wanfangdata.com.cn/Periodical/zgkjzh201602042

    Zhu Z X, Feng J, Li C, et al.Application of XRFS without using standard samples to inspection of mineral products in exits and entrances at customs[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2009, 45(7):832-835. http://d.old.wanfangdata.com.cn/Periodical/zgkjzh201602042
    梁述廷, 刘玉纯, 胡浩.X射线荧光光谱法同时测定土壤样品中碳氮等多元素[J].岩矿测试, 2004, 23(2):102-108. doi: 10.3969/j.issn.0254-5357.2004.02.005

    Liang S T, Liu Y C, Hu H.Determination of C, N and other 36 elements in soil samples by XRF[J].Rock and Mineral Analysis, 2004, 23(2):102-108. doi: 10.3969/j.issn.0254-5357.2004.02.005
    张勤, 樊守忠, 潘宴山, 等.X射线荧光光谱法测定化探样品中主、次和痕量组分[J].理化检验, 2005, 41(8):547-552. doi: 10.3321/j.issn:1001-4020.2005.08.003

    Zhang Q, Fan S Z, Pan Y S, et al.X-ray fluorescence spectrometric determination of major, minor and trace elements in geochemical samples[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2005, 41(8):547-522. doi: 10.3321/j.issn:1001-4020.2005.08.003
    修凤凤, 樊勇, 李俊雨, 等.波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素[J].岩矿测试, 2018, 37(5):526-532. doi: 10.15898/j.cnki.11-2131/td.201704170061

    Xiu F F, Fan Y, Li J Y, et al.Determination of 18 minor elements in the structural superimposed Halo samples from gold deposits by wavelength dispersive X-ray fluorescence spectrometry with pressed-powder pellets[J].Rock and Mineral Analysis, 2018, 37(5):526-532. doi: 10.15898/j.cnki.11-2131/td.201704170061
    刘玉纯, 林庆文, 马玲, 等.粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J].岩矿测试, 2018, 37(6):671-677. doi: 10.15898/j.cnki.11-2131/td.201801300014

    Liu Y C, Lin Q W, Ma L, et al.Optimization of measurement conditions for geochemical survey sample analysis by X-ray fluorescence spectrometry with pressed powder pellet sample preparation[J].Rock and Mineral Analysis, 2018, 37(6):671-677. doi: 10.15898/j.cnki.11-2131/td.201801300014
    卜兆杰, 蒋春宏, 陶泽秀, 等.粉末压片制样-X射线荧光光谱法测定稀土镁中间合金中镁锰硅钛钙铁[J].冶金分析, 2018, 38(3):61-64. http://d.old.wanfangdata.com.cn/Periodical/yjfx201803012

    Bu Z J, Jiang C H, Tao Z X, et al.Determination of magnesium, manganese, silicon, titanium, calcium, iron in rare earth-magnesium intermediate alloy by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2018, 38(3):61-64. http://d.old.wanfangdata.com.cn/Periodical/yjfx201803012
    李强, 张学华.粉末压片-X射线荧光光谱法快速分析多金属核和富钴结壳中22种组分[J].冶金分析, 2014, 34(1):28-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201401005

    Li Q, Zhang X H.Rapid determination of twenty-two components in polymetallic nodule and cobalt-rich crusts by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2014, 34(1):28-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201401005
    曾江萍, 李小莉, 张楠, 等.粉末压片制样-X射线荧光光谱法测定锂云母中的高含量氟[J].岩矿测试, 2019, 38(1):71-76. doi: 10.15898/j.cnki.11-2131/td.201804060038

    Zeng J P, Li X L, Zhang N, et al.Determination of high concentration of fluorine in lithium mica by X-ray fluorescence spectrometry with pressed-powder pellets[J].Rock and Mineral Analysis, 2019, 38(1):71-76. doi: 10.15898/j.cnki.11-2131/td.201804060038
    《岩石矿物分析》编委会.岩石矿物分析(第四版第三分册)[M].北京:地质出版社, 2011:234.

    The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (The Fourth Edition:Vol.Ⅲ)[M].Beijing:Geological Publishing House, 2011:234.
    杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社, 1993:5-6.

    Yang Z Y.Alumina Production Technology[M].Beijing:Metallurgical Industry Press, 1993:5-6.
    刘静, 马慧侠, 彭展, 等.浅析铝土矿烧失量放入差异在X射线荧光光谱(XRF)分析中造成的影响[J].中国无机分析化学, 2018, 8(4):26-29. doi: 10.3969/j.issn.2095-1035.2018.04.007

    Liu J, Ma H X, Peng Z, et al.Influence of measurement on the ignition loss difference of bauxite by X-ray fluorescence (XRF)[J].Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(4):26-29. doi: 10.3969/j.issn.2095-1035.2018.04.007
    孙晓飞, 文孟喜, 杨丹丹.康普顿散射线结合经验系数法校正在X射线荧光光谱测定石灰石和白云石中的应用[J].冶金分析, 2016, 36(1):11-17. http://d.old.wanfangdata.com.cn/Periodical/yjfx201601003

    Sun X F, Wen M X, Yang D D.Application of Compton scatter and empirical coefficient correction in X-ray fluorescence spectrometric determination of limestone and dolomite[J].Metallurgical Analysis, 2016, 36(1):11-17. http://d.old.wanfangdata.com.cn/Periodical/yjfx201601003
    田琼, 张文昔, 宋嘉宁, 等.波长色散X射线荧光光谱法测定锌精矿中主次量成分[J].岩矿测试, 2012, 31(3):463-467. doi: 10.3969/j.issn.0254-5357.2012.03.015

    Tian Q, Zhang W X, Song J N, et al.Determination of major and minor components in zinc concentrate by wavelength dispersive-X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2012, 31(3):463-467. doi: 10.3969/j.issn.0254-5357.2012.03.015
    王谦, 应晓浒, 张建波.X射线荧光光谱分析样品烧增量的影响及校正[J].光谱学与光谱分析, 2011, 31(9):2574-2577. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201109059

    Wang Q, Ying X H, Zhang J B.The influence of the gain on ignition and correction in X-ray fluorescence spectrometry[J].Spectroscopy and Spectral Analysis, 2011, 31(9):2574-2577. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201109059
    曲月华, 王一凌, 张悫, 等.熔融制样-X射线荧光光谱法测定锰矿中9种组分[J].冶金分析, 2011, 31(9):24-29. doi: 10.3969/j.issn.1000-7571.2011.09.006

    Qu Y H, Wang Y L, Zhang Q, et al.Determination of nine components in manganese ore by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2011, 31(9):24-29. doi: 10.3969/j.issn.1000-7571.2011.09.006
    曾江萍, 张莉娟, 李小莉, 等.超细粉末压片-X射线荧光光谱法测定磷矿石中12种组分[J].冶金分析, 2015, 35(7):37-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201507007

    Zeng J P, Zhang L J, Li X L, et al.Determination of twelve components in phosphate ore by X-ray fluorescence spectrometry with ultra-fine powder tabletting[J].Metallurgical Analysis, 2015, 35(7):37-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201507007
    宫嘉辰, 白小叶, 姜炳南.熔融制样-X射线荧光光谱法测定钒钛磁铁矿中12种组分[J].冶金分析, 2019, 39(2):66-70. http://d.old.wanfangdata.com.cn/Periodical/jsyj201704008

    Gong J C, Bai X Y, Jiang B N.Determination of twelve components in vanadium-titanium magnetite ore by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2019, 39(2):66-70. http://d.old.wanfangdata.com.cn/Periodical/jsyj201704008
  • Cited by

    Periodical cited type(5)

    1. 刘畅,胡骏翔,苑芷茜. 应用PXRF与ICP-OES法测定土壤中锰的比对研究. 环境科学与管理. 2023(07): 115-119 .
    2. 田戈,刘卫,郭颖超,马春红,张文宇,谷周雷. 恒温振荡浸提-电感耦合等离子体发射光谱法测定土壤中的交换性锰. 中国土壤与肥料. 2023(08): 243-248 .
    3. 杨晓红,陈丽琼,刘婉秋. X射线荧光光谱法在环境监测中的发展与应用. 理化检验-化学分册. 2022(07): 861-868 .
    4. 徐冬梅,陈晋,张敏. WDXRF法测定污染土壤和沉积物中金属元素. 环境监测管理与技术. 2022(06): 52-55+68 .
    5. 刘宏,付淑惠,李海霞,靳晧琛,余恒. X射线荧光光谱仪滤光片故障解决思路探讨. 四川环境. 2022(06): 254-259 .

    Other cited types(2)

Catalog

    Article views (2615) PDF downloads (56) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return