GAO Zi-han, LI Li-wu, WANG Yu-hui, CAO Chun-hui, HE Jian. Development of a Double Vacuum Furnace Tube and Its Application in Gas Composition Determination during Rock Heating Degassing[J]. Rock and Mineral Analysis, 2019, 38(5): 469-478. DOI: 10.15898/j.cnki.11-2131/td.201812190138
Citation: GAO Zi-han, LI Li-wu, WANG Yu-hui, CAO Chun-hui, HE Jian. Development of a Double Vacuum Furnace Tube and Its Application in Gas Composition Determination during Rock Heating Degassing[J]. Rock and Mineral Analysis, 2019, 38(5): 469-478. DOI: 10.15898/j.cnki.11-2131/td.201812190138

Development of a Double Vacuum Furnace Tube and Its Application in Gas Composition Determination during Rock Heating Degassing

More Information
  • Received Date: December 18, 2018
  • Revised Date: May 13, 2019
  • Accepted Date: July 15, 2019
  • Published Date: August 31, 2019
  • HIGHLIGHTS
    (1) A double vacuum furnace tube with small volume and simple structure composed of quartz glass and metal parts was developed.
    (2) An experimental method for heating degassing of rock and ore samples using the double vacuum furnace tube was established.
    (3) The results of parallel comparative experiments show that the closure of the double vacuum furnace tube was better than that of the single quartz glass tube at high temperature.
    BACKGROUNDThe analysis of gas chemical composition in rock and mineral can provide important information and constraints for the study of different geochemical processes of lithospheric mantle, redox environment in the earth, and water circulation in the deep earth. Heating rock and ore samples to remove gas is a common experimental method. A single quartz glass tube is used as the sample tube. Irregular voids in quartz glass structure make gas easy to diffuse and permeate at high temperature. The double vacuum furnace tubes consisting of molybdenum and tantalum crucibles are generally used for the analysis of rare gas isotope composition, but seldom used for the analysis of gas chemical composition. The device has a complex structure, is not easy to assemble and disassemble, and is easily damaged.
    OBJECTIVESTo solve the problems contained in the sample-filling tube proposed in the background research.
    METHODSA double vacuum sampling furnace tube composed of quartz glass and metal parts had been developed. The furnace tube had the characteristics of small size, easy assembly, disassembly and movement. Under the same experimental conditions, the result was compared with that of a single quartz glass tube.
    RESULTSH2 concentration measured by the double vacuum sampling tube was higher than that measured by the single quartz glass tube under the same experimental conditions, no matter which type of sample was heated to degas at 500℃ or 950℃.
    CONCLUSIONSThe closure of the double vacuum furnace tube is better than that of the single quartz glass tube, which is conducive to obtain more real gas chemical composition in the sample.

  • 倪培, 范宏瑞, 丁俊英.流体包裹体研究进展[J].矿物岩石地球化学通报, 2014, 33(1):1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001

    Ni P, Fan H R, Ding J Y.Progress in fluid inclusions[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1):1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001
    Lowell R M, Nikita M, Maximb P, et al.Volatile contents of primitive bubble-bearing melt inclusions from Klyuchevskoy volcano, Kamchatka:Comparison of volatile contents determined by mass-balance versus experimental homogenization[J].Journal of Volcanology and Geothermal Research, 2018, 358:124-131. doi: 10.1016/j.jvolgeores.2018.03.007
    Metrich N, Wallace P J.Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions[J].Reviews in Mineralogy and Geochemistry, 2008, 69(1):363-402. doi: 10.2138/rmg.2008.69.10
    汤庆艳, 李建平, 张铭杰, 等.东昆仑夏日哈木镍铜硫化物矿床成矿岩浆条件[J].岩石学报, 2017, 33(1):104-114. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201701009

    Tang Q Y, Li J P, Zhang M J, et al.The volatile conditions of ore-forming magma for the Xiarihamu Ni-Cu sulfide deposit in East Kunlun orogenic belt, Western China:Constraints from chemical and carbon isotopic compositions of volatiles[J].Acta Petrologica Sinica, 2017, 33(1):104-114. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201701009
    米敬奎, 王晓梅, 朱光有, 等.利用包裹体中气体地球化学特征与源岩生气模拟实验探讨鄂尔多斯盆地靖边气田天然气来源[J].岩石学报, 2012, 28(3):859-869. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201203014

    Mi J K, Wang X M, Zhu G Y, et al.Origin determination of gas from Jingbian gas field in Ordos Basin collective through the geochemistry of gas from inclusions and source rock pyrolysis[J].Acta Petrologica Sinica, 2012, 28(3):859-869. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201203014
    Armstrong L S, Hirschmann M M, Stanley B D, et al.Speciation and solubility of reduced C-O-H-N volatiles in mafic melt:Implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets[J].Geochimica et Cosmochimica Acta, 2015, 171:283-302. doi: 10.1016/j.gca.2015.07.007
    何佳乐, 潘忠习, 冉敬.激光拉曼光谱法在单个流体包裹体研究中的应用进展[J].岩矿测试, 2015, 34(4):383-391. doi: 10.15898/j.cnki.11-2131/td.2015.04.002

    He J L, Pan Z X, Ran J.Research progress on the application of laser Raman spectroscopy in single fluid inclusions[J].Rock and Mineral Analysis, 2015, 34(4):383-391. doi: 10.15898/j.cnki.11-2131/td.2015.04.002
    周姣花, 徐金沙, 牛睿, 等.利用扫描电镜和能谱技术研究四川会理铂钯矿床中的铂族矿物特征及铂族元素赋存状态[J].岩矿测试, 2018, 37(2):130-138. doi: 10.15898/j.cnki.11-2131/td.201605050114

    Zhou J H, Xu J S, Niu R, et al.Application of SEM and EDS to analyze the occurrence of platinum group elements and characteristics of platinum group minerals in the Pt-Pd deposit from Huili, Sichuan Province, China[J].Rock and Mineral Analysis, 2018, 37(2):130-138. doi: 10.15898/j.cnki.11-2131/td.201605050114
    张凤奇, 钟红利, 张凤博, 等.鄂尔多斯盆地X地区延长组长7油层组致密油藏流体包裹体特征及成藏期次[J].兰州大学学报(自然科学版), 2016, 52(6):722-727. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lzdxxb201606002

    Zhang F Q, Zhong H L, Zhang F B, et al.Hydrocarbon accumulation dating by fluid inclusion characteristics in Chang 7 tight oil reservoirs of Yanchang Formation of X area, Ordos Basin[J].Journal of Lanzhou University (Natural Sciences), 2016, 52(6):722-727. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lzdxxb201606002
    杨丹, 徐文艺.激光拉曼光谱测定流体包裹体成分研究进展[J].光谱学与光谱分析, 2014, 34(4):874-878. doi: 10.3964/j.issn.1000-0593(2014)04-0874-05

    Yang D, Xu W Y.Development of Raman spectroscopy study of fluid inclusion[J].Spectroscopy and Spectral Analysis, 2014, 34(4):874-878. doi: 10.3964/j.issn.1000-0593(2014)04-0874-05
    李立武, 刘艳, 王先彬, 等.高真空与脉冲放电气相色谱联用装置研发及其在岩石脱气化学分析中的应用[J].岩矿测试, 2017, 36(3):222-230. doi: 10.15898/j.cnki.11-2131/td.201609080137

    Li L W, Liu Y, Wang X B, et al.Development of a combined device with high vacuum and pulsed discharge gas chromatography and its application in chemical analysis of gases from rock samples[J].Rock and Mineral Analysis, 2017, 36(3):222-230. doi: 10.15898/j.cnki.11-2131/td.201609080137
    Mironova F.Volatile components of natural fluids:Evi-dence from inclusions in minerals:Methods and results[J].Geochemistry International, 2010, 48(1):83-90.
    杨丹, 徐文艺, 崔艳合, 等.二维气相色谱法测定流体包裹体中气相成分[J].岩矿测试, 2007, 26(6):451-454. doi: 10.3969/j.issn.0254-5357.2007.06.005

    Yang D, Xu W Y, Cui Y H, et al.Determination of gaseous components in fluid inclusion samples by two-dimensional gas chromatography[J].Rock and Mineral Analysis, 2007, 26(6):451-454. doi: 10.3969/j.issn.0254-5357.2007.06.005
    朱和平, 王莉娟.四极质谱测定流体包裹体中的气相成分[J].中国科学(D辑), 2001, 31(7):586-590. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200107008

    Zhu H P, Wang L J.Quadrupole mass spectrometry for the determination of gas composition in fluid inclusions[J].Science in China(Series D), 2001, 31(7):586-590. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200107008
    Azmy K, Blamey N J F.Source of diagenetic fluids from fluid-inclusion gas ratios[J].Chemical Geology, 2013, 347(6):246-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1812c1d91ac5c21bead322a20bbfba25
    Blamey N J F.Composition and evolution of crustal, geo-thermal and hydrothermal fluids interpreted using quantitative fluid inclusion gas analysis[J].Journal of Geochemical Exploration, 2012, 116-117:17-27. doi: 10.1016/j.gexplo.2012.03.001
    Bekaert D V, Avice G, Marty B, et al.Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component on the Moon[J].Geochimica et Cosmochimica Acta, 2017, 218:114-131. doi: 10.1016/j.gca.2017.08.041
    Zhang M J, Tang Q Y, Hu P Q, et al.Noble gas isotopic constraints on the origin and evolution of the Jinchuan Ni-Cu-(PGE) sulfide ore-bearing ultramafic intrusion, Western China[J].Chemical Geology, 2013, 339:301-312. doi: 10.1016/j.chemgeo.2012.07.023
    孙明良, 叶先仁.固体样品中He、Ar同位素的质谱测定[J].沉积学报, 1997, 15(1):48-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700005818

    Sun M L, Ye X R.Measurement on He and Ar isotopic compositions in solid samples by mass spectrometry[J].Acta Sedimentologica Sinica, 1997, 15(1):48-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700005818
    Tolstikhin I, Kamensky I, Tarakanov S, et al.Noble gas isotope sites and mobility in mafic rocks and olivine[J].Geochimica et Cosmochimica Acta, 2010, 74:1436-1447. doi: 10.1016/j.gca.2009.11.001
    Broadley M W, Ballentine C J, Chavrit D, et al.Sedi-mentary halogens and noble gases within Western Antarctic xenoliths:Implications of extensive volatile recycling to the sub continental lithospheric mantle[J].Geochimica et Cosmochimica Acta, 2016, 176:139-156. doi: 10.1016/j.gca.2015.12.013
    张铭杰, 王先彬, 李立武.对幔源岩中流体组分的不同测定方法评价[J].地质论评, 2000, 46(2):160-166. doi: 10.3321/j.issn:0371-5736.2000.02.006

    Zhang M J, Wang X B, Li L W.An appraisal of different experimental methods in the determination of fluid composition in mantle-derived rocks[J].Geological Review, 2000, 46(2):160-166. doi: 10.3321/j.issn:0371-5736.2000.02.006
    李洪伟, 冯连君, 陈健, 等.密封石英管法快速分析包裹体中氢同位素[J].质谱学报, 2015, 36(1):40-44. http://d.old.wanfangdata.com.cn/Periodical/zpxb201501007

    Li H W, Feng L J, Chen J, et al.A rapid method for determination of the hydrogen isotope of inclusions by sealed quartz tube[J].Journal of Chinese Mass Spectrometry Society, 2015, 36(1):40-44. http://d.old.wanfangdata.com.cn/Periodical/zpxb201501007
    王广, 李立武.玄武岩热解氢同位素在线分析[J].岩矿测试, 2006, 25(4):311-314. doi: 10.3969/j.issn.0254-5357.2006.04.003

    Wang G, Li L W.On-line analysis of hydrogen isotopes of basalt with stepped heating degas[J].Rock and Mineral Analysis, 2006, 25(4):311-314. doi: 10.3969/j.issn.0254-5357.2006.04.003
    王小东, 张铭杰, 伏珏蓉, 等.稀有气体同位素对岩浆侵入方向的制约:以夏日哈木镍铜硫化物矿床为例[J].岩石学报, 2018, 34(11):3433-3444. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201811022

    Wang X D, Zhang M J, Fu J R, et al.The magmatic intrusive direction constrains from noble gas isotopic compositions:A case study of the Xiarihamu Ni-Cu sulfide deposit in East Kunlun Orogenic Belt, China[J].Acta Petrologica Sinica, 2018, 34(11):3433-3444. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201811022
    汤庆艳, 张铭杰, 余明, 等.晚二叠世峨眉山地幔柱岩浆成矿作用[J].岩石矿物学杂志, 2013, 32(5):680-692. doi: 10.3969/j.issn.1000-6524.2013.05.010

    Tang Q Y, Zhang M J, Yu M, et al.The magmatic ore-forming system of Late-Permian Emeishan mantle plume[J].Acta Petrologica et Mineralogica, 2013, 32(5):680-692. doi: 10.3969/j.issn.1000-6524.2013.05.010
    Huang Y H, Tarantola A, Wang W J, et al.Charge history of CO2 in Lishui Sag, East China Sea Basin:Evidence from quantitative Raman analysis of CO2-bearing fluid inclusions[J].Marine and Petroleum Geology, 2018, 98:50-65. doi: 10.1016/j.marpetgeo.2018.07.030
    Caumona M C, Robert P, Laverret E, et al.Determination of methane content in NaCl-H2O fluid inclusions by Raman spectroscopy:Calibration and application to the external part of the Central Alps (Switzerland)[J].Chemical Geology, 2014, 378-379:52-61. doi: 10.1016/j.chemgeo.2014.03.016
    Tristan A, Matthew J S, Brian G R, et al.In situ quan-titative analysis of individual H2O-CO2 fluid inclusions by laser Raman spectroscopy[J].Chemical Geology, 2007, 237:255-263. doi: 10.1016/j.chemgeo.2006.06.025
    顾长光.碳酸盐矿物热分解机理的研究[J].矿物学报, 1990, 10(3):266-272. doi: 10.3321/j.issn:1000-4734.1990.03.012

    Gu C G.A study on the mechanism of thermal decomposition of carbonate minerals[J].Acta Mineralogica Sinica, 1990, 10(3):266-272. doi: 10.3321/j.issn:1000-4734.1990.03.012
    Severs M J, Azbej T, Thomas J B, et al.Experimental determination of H2O loss from melt inclusions during laboratory heating:Evidence from Raman spectroscopy[J].Chemical Geology, 2007, 237:358-371. doi: 10.1016/j.chemgeo.2006.07.008
    Doucet L S, Peslier A H, Ionov D A, et al.High water contents in the Siberian Cratonic mantle linked to metasomatism:A FTIR study of Udachnaya peridotite xenoliths[J].Geochimica et Cosmochimica Acta, 2014, 137:159-187. doi: 10.1016/j.gca.2014.04.011
  • Cited by

    Periodical cited type(12)

    1. 王玲,刘建欣,束浩杰,王宏刚,刘成垚,刘淑贤,聂轶苗,韩秀丽. 河北某铅锌尾矿库周边土壤重金属元素空间分布及风险评价. 金属矿山. 2025(03): 253-261 .
    2. 张雅静. 农田土壤重金属污染风险及治理措施研究. 环境科学与管理. 2024(01): 67-71 .
    3. 汪明星,廖传华,曾祥荣,刘胜敏,王银峰. 铁尾矿中重金属去除技术研究进展. 矿冶. 2024(01): 86-95 .
    4. 郭学辉,黄仁亮,万建华. 冀北山区某有色多金属尾矿库周边农用地重金属污染特征与生态健康风险评价. 地学前缘. 2024(02): 77-92 .
    5. 鲁银鹏,孟郁苗,黄小文,王丛林,杨秉阳,谭侯铭睿,谢欢. 宁芜盆地玢岩型铁矿尾矿元素与矿物组成特征. 岩矿测试. 2024(02): 259-269 . 本站查看
    6. 刘强,胡建,宫少军,罗锋,杨贵芳. 江苏南京沿江地区土壤-底泥重金属Cd富集特征及风险评价. 地质通报. 2024(05): 756-765 .
    7. 王志勇. 农田土壤重金属污染的评估及治理措施研究. 中国锰业. 2024(03): 103-107 .
    8. 吴超,孙彬彬,成晓梦,刘冬,乔宇,贺灵,曾道明. 基于DGT和化学提取法研究浙西北地质高背景区土壤镉生物有效性. 岩矿测试. 2023(04): 823-838 . 本站查看
    9. 汪易坤. 地表径流中重金属的污染特征分析——以乌鲁木齐市为例. 资源节约与环保. 2023(11): 18-22 .
    10. 冯娟,艾昊,陈清敏,李华,汪文波,薛智凤. 秦岭山区某金属矿区土壤重金属污染评价及迁移路径解析. 岩矿测试. 2023(06): 1189-1202 . 本站查看
    11. 冯娟,艾昊,陈清敏,赵鹏鹤,李华,汪文波,薛智凤. 金属矿区土壤重金属污染的分布特征及因果关系解析——以某金矿为例. 农业环境科学学报. 2023(12): 2721-2730 .
    12. 钱江波,陈涤,王夏晖,李喜林,黄国鑫. 基于机器学习的区域土壤重金属污染风险诊断. 环境工程. 2023(12): 296-303 .

    Other cited types(6)

Catalog

    Article views (2203) PDF downloads (40) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return