Micromorphological Characteristics and Origin Analysis of Contact Metamorphic Coal
-
摘要:
煤层作为岩石圈重要的碳库,被岩浆破坏和吞噬,直接加速了地质历史上岩石圈的碳循环。为揭示该过程中接触变质煤微形貌的变化过程和原因,本研究采集了皖北袁店二矿岩体外围不同热变质程度的接触变质煤样品,进行了煤质分析、可溶有机组分分离、气相色谱-质谱(GC-MS)、偏光显微镜(PLM)、扫描电镜(SEM)等实验。结果显示,趋近岩体,样品挥发份、氢、氮、可溶有机质含量减少;灰分产率和镜质组反射率增加;可溶芳烃当中萘系列相对含量降低,菲系列相对含量升高。未受影响煤和浅热变质煤显微组分主要由胶质结构体组成,后者裂隙发育。天然焦主要由镶嵌结构体组成,局部发育形状不规则的脱挥发孔,孔径多介于20µm×50µm至50µm×150µm。火夹焦主要由多孔炭和炭微球组成:多孔炭富含圆形-椭圆形气孔,孔径多介于0.5~3µm,炭微球群发育在裂隙以及气孔内壁上。分析表明,趋近岩体,煤层热变质程度持续增加:浅热变质煤是煤层受较弱热变质而脆性断裂的产物;天然焦是浅热变质煤脱挥发份、塑性形变所致;火夹焦是天然焦被岩浆进一步中间相化的结果。因此,本文认为,接触变质煤消失过程中微形貌的变化是煤岩组分热蚀变、脱挥发份、中间相化的过程。
Abstract:BACKGROUNDDuring tectonic movements and geological activities, coal seams are destroyed and engulfed by magma, which not only accelerates the slow carbon cycling process in geological history, but also changes and disrupts the carbon cycling balance of the lithosphere at that time. As a global period of tectonic magmatism in the Mesozoic, the Yanshan period magma intruded into the Mesozoic coal-bearing basins and intruded and engulfed coal seams on a large scale.
OBJECTIVESTo reveal the process and reasons for the change of contact metamorphic coal micromorphology during the process.
METHODSContact metamorphic coal samples with different degrees of thermal metamorphism at the periphery of the Yuandian Ⅱ mine in northern Anhui Province were collected and subjected to coal quality analysis, organic fraction separation, GC-MS, polarized light microscopy (PLM) and scanning electron microscopy (SEM).
RESULTSToward the rock, the contents of volatile, hydrogen, nitrogen and soluble organic matter of the sample decreases; ash yield and mirror group reflectance increases; relative content of naphthalene series decreases; relative content of phenanthrene series among soluble aromatics increases. The microfractions of unaffected coal and shallow thermal metamorphic coal consist mainly of colloidal structural bodies, and the latter is fracture developed. The natural coke is composed mainly of mosaic structure with irregularly shaped devolatilized pores, and the pore sizes range from 20µm×50µm to 50µm×150µm. The magma coke is composed mainly of porous carbon and carbon microspheres: the porous carbon is rich in round-elliptical pores, the pore sizes range from 0.5 to 3µm, and the carbon microspheres are developed on the fissures and the inner wall of the pores.
CONCLUSIONSTending to the rock, the degree of thermal metamorphism of coal seams continues to increase: Shallow thermally metamorphosed coals are the products of brittle fracture of coal seams subjected to weaker thermal metamorphism; Natural coke is the result of volatile fraction removal and plastic deformation of shallow thermally metamorphosed coals; Magma coke is the result of further intermediate phase transformation of natural coke by magma. Therefore, the change of contact metamorphic coal micromorphology is considered to be caused by the process of thermal alteration, devolatilization and intermediate phase transformation of coal rock components.
-
Keywords:
- Yuandian coal mine /
- contact metamorphic coal /
- scanning electron microscopy /
- mosaic structure /
- carbon microbeads
-
胶东是中国最重要的金矿集区,是一个主要由前寒武纪基底岩石和超高压变质岩块组成、中生代构造-岩浆作用发育的内生热液金矿成矿集中区,其金矿床形成时代和产出背景在全球造山型金矿中独一无二。山东莱州-招远金矿区是胶东金矿集区的主要组成部分,拥有玲珑、焦家等世界级金矿。其中,焦家金矿带是莱州-招远金矿区最重要的金矿带之一。该带内已发现了3个特大型金矿床及一批大中型金矿床,累计探明金储量超过500吨。焦家断裂带在寺庄金矿区内处于与成矿关系十分密切的玲珑黑云母花岗岩内及胶东群黑云斜长角闪片麻岩的接触带上,产状复杂且变化较大[1]。由于断裂带产状的变化和地质背景的复杂化,焦家金矿控矿构造系统也随之出现了明显的多样性[2]。由于该区在采矿方面存在的科学疑难问题多、找矿难度大、隐伏矿为主、物化探异常干扰显著等原因,前期对该区矿石的工艺矿物学研究以常规为主,李德亭等[3-4]对焦家金矿深部矿石矿物种类、载金矿物种类及金赋存状态等进行了初步研究,研究表明矿物主要有黄铁矿、黄铜矿、方铅矿等硫化矿和石英、绢云母、钾长石等脉石矿物;黄铁矿、黄铜矿为主要载金矿物,金常以裂隙方式充填于黄铁矿、黄铜矿等硫化矿中。现有成果对金赋存状态特征、金矿物种类、不同大小金粒的成色等研究涉及很少,且缺乏先进测试手段进行综合表征。
焦家金矿的主矿区是原矿主要供应区,该矿区供应给焦家金矿的矿量占到总供应量的70%。本文在主矿区采集深采矿石,采用偏光反光两用显微镜、扫描电镜[5-10]、X射线衍射仪[11-13]以及能谱分析[14-16]研究工艺矿物学特征,查清载金矿物种类及含量,进而分析金在主要载金矿物中的赋存状态及特征,同时研究金的形状、金粒度大小及分布特点,对不同粒度的金成色、金矿物类型等进行系统分析,研究成果丰富了焦家金矿矿物学研究的内容,为后续选冶工艺提供了调控依据和重要信息。
1. 实验部分
1.1 仪器及工作条件
LEICA-DMLP高级研究型偏光反光两用显微镜(德国LEICA公司):主要附件LEICA MPS30照相系统,荧光附件。
LINKAM热台THMSE600(-196~600℃):配备工艺矿物学研究的高级软件LINKSYS。
LEICA-MZ6高级研究型体视显微镜(德国LEICA公司):该设备自带全套摄像、自动照相、颗粒分析软件。工作条件为自动对焦;固定倍率切换9段;放大倍率15~100倍;视野范围3.3~41.2 mm;工作距离100 mm;灯源LED环形灯;物镜0.63~4 X。
SSX-550型扫描电镜及其附带的DX-4能谱仪(日产岛津公司):工作条件为二次电子图像分辨率3.5 nm,放大倍率20~30000倍。
Empyrean型X射线衍射仪(XRD,荷兰PANALYTICALB.V公司):配合显微镜分析鉴定矿物种类,工作条件为功率3 kW,测角仪重现性0.0001°,测角仪类型T-2T。
1.2 实验方法
对矿区井下300 m、400 m、500 m处合计取样150 kg,选取有代表性的矿样按要求制作成120块抛光片和30块矿石薄片。采用不同仪器进行观察研究。
2. 金矿主矿区主要矿物组成与金赋存形态
2.1 载金矿物的种类
通过光片研究并结合化学分析及化学物相分析等方法,查明焦家金矿主矿区矿物种类主要为硫化矿,以黄铁矿、黄铜矿为主,还有少量方铅矿、闪锌矿、磁黄铁矿、黝铜矿、辉铋矿、辉钼矿。金属氧化物主要为褐铁矿及少量磁铁矿等。脉石有石英、长石、绢云母、方解石和绿泥石类矿物等;还有极小量的菱铁矿、石榴石、金红石、锆石、榍石、磷灰石等矿物。
采用高级研究型偏光反光两用显微镜对120块抛光片研究,发现载金矿物主要为硫化物,如黄铁矿、黄铜矿、闪锌矿和方铅矿;载金脉石矿物主要是石英和长石。对30块薄片进行研究,统计发现硫化物中金粒有152粒,脉石矿物中金粒22颗。硫化物中金粒占87.37%,脉石中金粒占12.63%。金在各矿物中赋存含量如图 1所示,黄铁矿、黄铜矿是重要载金矿物。66.25%的金赋存在黄铁矿中,19.29%的金赋存在黄铜矿中,11.52%的金赋存在石英中,其他矿物及脉石中含金量很少。
黄铁矿是最重要的载金矿物。在矿石中呈自形粒状、半自形粒状和它形粒状,集合体呈致密块状、粒状或结核状、脉状等。浅黄(铜黄)色,条痕绿黑色,强金属光泽,不透明,无解理,参差状断口,在地表条件下易风化为褐铁矿。黄铁矿与黄铜矿密切共生,成矿期多见黄铁矿包裹黄铜矿。黄铁矿的裂隙往往被黄铜矿充填,表明时间上的同期性。黄铁矿的嵌布粒度最小为0.001 mm,最大为3.9 mm,一般分布于0.050~0.10 mm范围内。黄铜矿也是重要的载金矿物。黄铜矿呈现黄铜色,表面常由于氧化产生斑驳的蓝、紫、褐色的锖色,强金属光泽。黄铜矿的嵌布粒度粗细不均匀。黄铜矿呈它形粒状,以细粒、微细粒状嵌布在脉石中,黄铜矿的嵌布粒度最小为0.001 mm,最大为1.21 mm,一般分布于0.030~0.080 mm范围内。
2.2 金赋存状态分析
对主要载金矿物黄铁矿、黄铜矿、石英和长石等中的金赋存状态进行分析。
2.2.1 裂隙金
通过对120块磨制光片进行高级研究型偏光反光两用显微镜及扫描电镜观察,查明焦家金矿中金的赋存状态主要是裂隙金、包裹金和晶隙金。其中裂隙金占金矿物总量64.82%。裂隙金(图 2)成群网状分布于硫化物裂隙或硫化物和石英裂隙中。对图 2(a)中的裂隙金(1)、(2)点进行能谱分析(图 3)。从图 3(a)可知,Au的M线在2.120 keV处出现,Ag的L线在2.992 keV处出现,Fe的K线在6.405 keV处出现,可知裂隙金含有少量的Fe,另外还发现部分裂隙金中含有Cr、Cu等,裂隙金银矿物成分比较复杂;由图 3(b)可知,石英裂隙中的金不含杂质元素,表明在热液脉Au-SiO2封闭体系中不含其他元素,二氧化硅溶胶聚集形成凝胶,金溶胶可在凝胶内呈浸染状固定下来,后来随着凝胶结晶脱水作用,使金以微粒分散或溶解状态作进一步的迁移,在二氧化硅冷却形成石英期间,被圈闭的金溶胶可以发生扩散作用和聚集作用,结果形成颗粒裂隙金。有些裂隙金含有Fe、Cr、Cu等,有些又不含任何微量元素,反映成矿热液是多期次的,金银矿物结晶也是多期次的。
2.2.2 包裹金
通过120块磨制光片进行电子扫描显微镜观察,金赋存状态中包裹金占金矿物总量19.29%。用电子扫描显微镜研究金颗粒的生长和金成色情况。光片显示小颗粒金分布广且多。图 4是三颗包裹金的扫面电镜图片,较大颗粒(图 4中1处)被黄铜矿包裹,金颗粒中含有孔洞,这些孔洞结构有利于溶液渗透,为氰化溶金提供了良好的条件。图 4中2处是被黄铁矿包裹的小粒金,颗粒粒度为14 μm,小部分边界与石英接触;图 4中3处是被黄铁矿包裹的小粒金,颗粒粒度为12 μm,对该晶体进行了Au、Ag和Cu的线扫描(图 5)。测定Au、Ag和Cu相对的含量。从图 5可知,金边部成色低,银略高,也有微量铜。中心金高,且有微量铜。
2.2.3 晶隙金
晶隙金类型比较多,占金矿物总量的15.89%。对磨制光片进行电子扫描显微镜观察,晶隙金经常出现在黄铁矿/黄铜矿晶隙(占52.12%)、黄铁矿/石英晶隙(占28.45%)、黄铜矿/石英晶隙(占13.20%)及黄铜矿/斑铜矿晶隙(占6.23%)。图 6是黄铁矿/石英晶隙间的金矿物,晶隙金成群分布。能谱分析可知:金矿物晶体中心(图 6中1处):含Ag 17.544%,Au 82.456%,属于自然金;金矿物晶体边部(图 6中2处):含Ag 13.453%,Au 86.547%,属于自然金。小颗粒金矿物(8 μm,图 6中3处)赋存于黄铁矿和石英晶隙间。能谱分析表明:小颗粒金矿物含Ag 15.949%,Au 82.547%,Fe 1.504%。能谱测试粒度为3~8 μm的7颗小金颗粒,表明小粒金矿物成色高,为830.62‰~898.95‰,属于自然金。说明焦家金矿成矿期间的溶液十分丰富,在高温时是一个相,随着温度降低,金先沉淀,而银后沉淀,固溶体分离,而随着结晶到后期,形成尾部和尾梢,金的成分发生变化,形成的金颗粒中银含量幅度变化较大。
研究结果表明焦家金矿金赋存状态主要是裂隙金、包裹金和晶隙金。裂隙金最多占金矿物总量64.82%,其次是包裹金和晶隙金。裂隙金矿物成分复杂,有时含Fe、Cr、Cu等,包裹金体内局部有孔洞,金边部成色低,晶隙金类型丰富,形状多变,多属自然金。
3. 主矿区金矿物形态及种类
3.1 金粒度
用高级研究型偏光反光两用显微镜观察,硫化物黄铁矿、黄铜矿中金颗粒较大,连群分布占多数,孤立分布较少[17-18]。脉石中金颗粒细小,孤立分布占绝大多数,极少见连群分布。金矿物粒度范围较大,大颗粒可达到90~110 μm,小颗粒只有2~3 μm。其中0.104~0.147 mm的金颗粒占1.85%,0.074~0.104 mm金颗粒占4.25%,0.043~0.074 mm金颗粒占16.24%,0.037~0.043 mm金颗粒占30.58%,小于0.037 mm金颗粒占大多数,占47.08%。不同载金矿物中金粒的粒度含量见表 1。从表 1可知细粒级载金矿物中的金含量较多,如小于0.037 mm的石英中金相对含量达56.01%,粗粒中金含量较少,如黄铁矿中0.104~0.147mm的金相对含量只有3.67%。
表 1 载金矿物中金不同粒度的含量Table 1. The gold percentage characteristics in different minerals载金
矿物不同金粒度的相对含量w(Au)/% 0.104~0.147
mm0.074~0.104
mm0.043~0.074
mm0.037~0.043
mm<0.037
mm合计 黄铁矿 3.67 10.38 27.18 40.77 18.00 - 黄铜矿 0 3.34 15.01 30.23 51.42 - 石英 0.91 2.00 10.89 30.19 56.01 - 其他 0 0 7.49 28.50 64.01 - 含量 1.85 4.25 16.24 30.58 47.08 100 3.2 金形状
用高级研究型偏光反光两用显微镜和高级研究型体视显微镜观察,焦家金矿主矿区金矿物形状主要有球形(占40.25%)、三角形(占9.28%)、矩形(占6.91%)、条形(占12.14%)、块形(占8.24%)、钩形(占11.85%)、不规则形(占11.33%)金等。金的典型形状见图 7。
3.3 金矿物种类
用高级研究型偏光反光两用显微镜观察,结合XRD衍射仪测试结果,发现金矿物种类较丰富,有自然金、银金矿、自然银、金铜矿、含铁自然银、螺硫银矿、金银碲化物等。金矿物类型与含量见表 2。其中金银系列矿物占87.55%,金铜矿占6.58%,螺硫银矿占3.31%,碲化金矿占2.56%。金银矿物成色统计见表 3。从表 3可知,金银矿物平均成色较高,其中自然金达950.21‰,银金矿达738.92‰,金银系列矿物加权成色达到728.88‰。银金矿在金银矿系列含量中的比例(分配率)占到79.70%,是最重要的金矿物,其次为自然金,分配率占14.68%。
表 2 金矿物类型与含量Table 2. The gold mineral types and their contents金银矿物系列 矿物名称 w/% 金银系列 自然金 12.85 银金矿 69.78 自然银 3.67 含铁自然银 1.25 小计 87.55 金铜系列 金铜矿 6.58 硫化物系列 螺硫银矿 3.31 碲化物系列 碲化金银 2.56 合计 - 100.00 表 3 金银矿物成色和含量Table 3. The gold percentages and contents of gold-silver minerals矿物名称 平均成色/‰ w/% 分配率/% 加权成色/‰ 自然金 950.21 12.85 14.68 728.88 银金矿 738.92 69.78 79.70 自然银 11.37 3.67 4.19 含铁自然银 0 1.25 1.43 0 合计 - 87.55 100.00 - 用高级研究型偏光反光两用显微镜观察,结合能谱分析测定不同粒度金矿物成色。由表 4的分析结果可知,60 μm和32 μm的大颗粒金成色分别为543.75‰和549.38‰,14 μm和12 μm的小颗粒金成色分别是859.72‰和856.15‰,说明大粒金成色低,为银金矿;小颗粒金与大颗粒金相比成色明显较高,小颗粒金大都为自然金。
表 4 金矿物不同晶体颗粒的成色Table 4. The gold percentages of different size crystal particles金颗粒粒度/μm w(Ag)/‰ w(Au)/‰ 金含量水平 定名 60 456.25 543.75 金低 银金矿 32 450.62 549.38 金低 银金矿 14 140.28 859.72 金高 自然金 12 143.85 856.15 金高 自然金 4. 结语
以往研究成果对焦家金矿深部矿石的矿物种类、载金矿物种类及金赋存状态等进行工艺矿物学常规研究,查明主要载金矿石是黄铁矿、黄铜矿等硫化矿及石英、长石等脉石矿物;金多数以裂隙金方式存在,少数以包裹金、晶隙金存在。随着井下纵深采矿的进一步开拓,现有工艺矿物学结论明显难以满足后续选冶技术的调控要求。本文采用偏光反光两用显微镜、扫描电镜、X射线衍射仪及能谱分析等先进手段,综合分析了焦家金矿主矿区的金矿石样品中金的不同赋存状态、嵌布粒度特征,金的形状、种类、分布状态,不同粒度金的成色特征等。研究结果显示主要载金矿物是黄铁矿、黄铜矿、闪锌矿、方铅矿、石英和长石;金赋存状态有裂隙金、包裹金和晶隙金;金矿物形状有球形、三角形等,其中球形颗粒最多;金矿物粒度范围较大,大金颗粒可达到90~110 μm,小金颗粒只有2~3 μm;金矿物种类丰富,有自然金、银金矿、自然银、金铜矿等;金银矿物的成色普遍较高,赋存于硫化物中的大颗粒金,成色较低,小粒金成色较高。
本文利用不同先进手段表征互相印证,提高了研究结论的可靠性与准确性,丰富了焦家金矿内生热液金矿成矿区含金黄铁矿石英脉型金矿工艺矿物学的研究内容,为后续选冶作业提供了调控依据和重要矿物信息。由于缺乏对主要含金脉石矿物(石英、长石等)构造特征,金在其中赋存状态、嵌布关系等方面的研究,应进一步对其进行系统分析,以为提高后续选矿作业脉石中金的回收效果提供重要的分析依据。
-
图 4 袁店二矿8-3采区7-2煤层7238工作面样品显微照片
a—胶质结构体(单偏光×500);b—胶质结构体(正交偏光×500);c—裂隙(单偏光×500);d—裂隙(正交偏光×500);e—镶嵌结构体、脱挥发孔(单偏光×500);f—镶嵌结构体、脱挥发孔(正交偏光×500;g—左侧流纹状热解炭、左下角辉绿岩、右侧多孔炭(单偏光×500);h—左侧流纹状热解炭、左下角辉绿岩、右侧多孔炭(正交偏光×500)。
Figure 4. Photos of metamorphic coal from working face 7238 of coal seam 7-2 in mining area 8-3 of Yuandian No.2 coal mine under microscope.
图 5 袁店二矿8-3采区7-2煤层7238工作面样品扫描电镜照片
a—胶质结构体(×5000);b—胶质结构体(×5000);c—片层状裂隙(×10000);d—片层状裂隙(×5000);e—镶嵌结构体(×5000);f—镶嵌结构体、脱挥发孔(×10000);g—多孔炭、石英(×2000);h—炭微球群、铁白云石(×5000)。
Figure 5. Photos of metamorphic coal from working face 7238 of coal seam 7-2 in mining area 8-3 of Yuandian No.2 coal mine under SEM.
表 1 袁店二矿8-3采区7-2煤层7238工作面样品基本特征
Table 1 Coal quality parameters of metamorphic coal from 7238 working face samples of 7-2 coal seam in 8-3 mining area of Yuandian No.2 coal mine.
样品
编号样品类型 工业分析指标(%) 元素分析指标(%) Rr Mad Ad Vdaf Cd Hd Nd YE01 火夹焦 1.47 21.33 8.06 60.39 1.28 0.96 3.19 YE02 天然焦 1.85 11.93 7.29 71.52 1.76 1.44 2.31 YE03 浅热变质煤 1.01 11.44 20.47 72.38 3.30 1.53 1.43 YE04 未受影响煤 1.18 6.30 34.90 75.31 4.62 1.72 0.96 YE05 未受影响煤 1.31 7.84 34.08 73.47 4.48 1.63 0.95 YE06 未受影响煤 1.07 7.71 32.41 72.45 4.40 1.60 0.90 注:Mad—水分(空气干燥基); Ad—灰分(干燥基); Vdaf—挥发份(干燥无灰基); Cd—碳(干燥基); Hd—氢(干燥基); Nd—氮(干燥基);Rr—镜质组平均随机反射率。 表 2 袁店二矿8-3采区7-2煤层7238工作面样品可溶有机质含量
Table 2 Content of organic extracts of metamorphic coal from working face 7238 of coal seam 7-2 in mining area 8-3 of Yuandian No.2 coal mine.
样品编号 有机质含量
(mg/g)有机组分含量(mg/g) 饱和烃 芳香烃 极性物 YE01 0.10 0.05 0.02 0.03 YE02 0.18 0.09 0.03 0.06 YE03 6.77 1.07 2.29 3.41 YE04 7.91 1.31 2.70 3.90 -
[1] 唐跃刚,王绍清,郭鑫,等. 煤有机地球化学研究进展与展望[J]. 矿物岩石地球化学通报, 2021, 40(3): 574−596,777. Tang Y G,Wang S Q,Guo X,et al. Researches on the organic geochemistry of coal:Progresses and prospects[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2021, 40(3): 574−596,777.
[2] 赵宁,周蕾,庄杰,等. 中国陆地生态系统碳源/汇整合分析[J]. 生态学报, 2021, 41(19): 7648−7658. Zhao N,Zhou L,Zhuang J,et al. Integration analysis of the carbon sources and sinks in terrestrial ecosystems,China[J]. Acta Ecologica Sinica, 2021, 41(19): 7648−7658.
[3] Zheng S,An Y F,Lai C K,et al. Genesis of high-Mg adakites in the southeastern margin of North China Craton:Geochemical and U-Pb geochronological perspectives[J]. Frontiers in Earth Science, 2021, 9: 731233. doi: 10.3389/feart.2021.731233
[4] 胡靓,张德贤,娄威,等. 含膏盐建造铁矿床中磁铁矿LA-ICP-MS微量元素测定与地球化学特征研究[J]. 岩矿测试, 2022, 41(4): 564−574. Hu L,Zhang D X,Lou W,et al. In situ LA-ICP-MS determination of trace elements in magnetite from a gypsumsalt bearing iron deposit and geochemical characteristics[J]. Rock and Mineral Analysis, 2022, 41(4): 564−574.
[5] 张学君,张垚垚,刘凯,等. 锆石U-Pb和Lu-Hf同位素研究内蒙乌努格吐山斑岩型铜钼矿岩浆岩特征[J]. 岩矿测试, 2022, 41(5): 774−788. Zhang X J,Zhang Y Y,Liu K,et al. Zircon U-Pb and Lu-Hf isotopic dating of magmatic rocks in the Wunugetushan porphyry copper-molybdenum deposit,Inner Mongolia[J]. Rock and Mineral Analysis, 2022, 41(5): 774−788.
[6] 姜禾禾. 从碳源到碳汇:大陆弧演化过程中岩浆与剥蚀作用对长期碳循环的影响[J]. 岩石学报, 2022, 38(5): 1302−1312. doi: 10.18654/1000-0569/2022.05.02 Jiang H H. From carbon source to carbon sink:Influences of magmatism and erosion in continental arcs on long-term carbon cycle[J]. Acta Petrologica Sinica, 2022, 38(5): 1302−1312. doi: 10.18654/1000-0569/2022.05.02
[7] 安燕飞,汪米娜,刘玲玲,等. 淮北袁店8煤岩浆热蚀变的微组构响应[J]. 煤炭学报, 2017, 42(11): 2975−2980. An Y F,Wang M N,Liu L L,et al. Microfabrics response of coal to magma among coal seam Ⅷ in Yuandian mine of Huaibei City,China[J]. Journal of China Coal Society, 2017, 42(11): 2975−2980.
[8] Moura H,Suarez R I,Marques M M,et al. Influence of magmatic fluids on the organic and inorganic fractions of coals from the Peñarroya—Belmez—Espiel Basin (Spain)[J]. International Journal of Coal Geology, 2021, 235: 103679. doi: 10.1016/j.coal.2021.103679
[9] 王海军. 柳江盆地岩浆活动对主力煤田水文地质特征的影响[J]. 煤炭学报, 2021, 46(5): 1670−1684. Wang H J. Influence of magmatic activities in Liujiang Basin on hydrogeological characteristics of main coalfields[J]. Journal of China Coal Society, 2021, 46(5): 1670−1684.
[10] Zhang B F,Chen J,Sha J D,et al. Geochemistry of coal thermally-altered by igneous intrusion:A case study from the Pansan coal mine of Huainan coalfield,Anhui,Eastern China[J]. Journal of Geochemical Exploration, 2020, 213: 106532. doi: 10.1016/j.gexplo.2020.106532
[11] 宋晓夏,马宏涛,李凯杰,等. 大同煤田石炭—二叠系接触变质煤的煤岩学特征研究[J]. 煤炭科学技术, 2020, 48(12): 182−191. Song X X,Ma H T,Li K J,et al. Study on coal petrology characteristics of contact metamorphosed coal from Carboniferous—Permian in Datong coalfield[J]. Coal Science and Technology, 2020, 48(12): 182−191.
[12] 汪米娜,安燕飞,何凯,等. 皖北石台矿岩浆蚀变煤中有毒元素分布、赋存及富集机理[J]. 矿物岩石地球化学通报, 2019, 38(6): 1118−1128. Wang M N,An Y F,He K,et al. Distribution,occurrence and enrichment mechanism of toxic elements in magmatic altered coal in Shitai mine,Northern Anhui[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2019, 38(6): 1118−1128.
[13] An Y F,Liu L L,Wang M N,et al. Source and enrichment of toxic elements in coal seams around mafic intrusions:Constraints from pyrites in the Yuandian coal mine in Anhui,Eastern China[J]. Minerals, 2018, 8(4): 164. doi: 10.3390/min8040164
[14] Qu Q Y,Liu G J,Henry M,et al. Tin stable isotopes in magmatic-affected coal deposits:Insights in the geochemical behavior of tin[J]. Applied Geochemistry, 2020, 119: 104641. doi: 10.1016/j.apgeochem.2020.104641
[15] Chen M Y,Cheng Y P,Zhou H X,et al. Effects of igneous intrusions on coal pore structure,methane desorption and diffusion within coal,and gas occurrence[J]. Environmental & Engineering Geoscience, 2017, 23(3): 191−207.
[16] 王亮,郭海军,程远平,等. 岩浆岩环境煤层瓦斯异常赋存特征与动力灾害防控关键技术[J]. 煤炭学报, 2022, 47(3): 1244−1259. Wang L,Guo H J,Cheng Y P,et al. The abnormal coal seam gas occurrence characteristics and the dynamic disaster control technologies in the magmatic rock intrusion area[J]. Journal of China Coal Society, 2022, 47(3): 1244−1259.
[17] 姜亚琳,郑刘根,程桦,等. 淮北卧龙湖煤矿岩-煤蚀变带矿物变化特征[J]. 矿物岩石地球化学通报, 2017, 36(3): 510−515. Jiang Y L,Zheng L G,Cheng H,et al. Mineralogical characteristics of the alteration zone between coal and intrusion in the Wolonghu coal mine,Huaibei area,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2017, 36(3): 510−515.
[18] Rodrigues S,Esterle J,Ward V,et al. Flow structures and mineralisation in thermally altered coal from the Moatize Basin,Mozambique[J]. International Journal of Coal Geology, 2020, 228: 103551. doi: 10.1016/j.coal.2020.103551
[19] Song X X, Li K J, Ma H T, et al. Characteristics of an altered diabase dike in a coal seam: A case study from the Datong coalfield, Shanxi, China[J]. Geofluids, 2020: 3593827.
[20] Song X X,Ma H T,Saalidong B M,et al. Petrography,mineralogy,and geochemistry of thermally altered coal in the Tashan coal mine,Datong coalfield,China[J]. Minerals, 2021, 11(9): 1−28.
[21] Chen H,Wang S Q,Zhang X M,et al. A study of chemical structural evolution of thermally altered coal and its effect on graphitization[J]. Fuel, 2021, 283: 119295. doi: 10.1016/j.fuel.2020.119295
[22] Chen H,Wang S Q,Deng J S,et al. Petrologic characteristics and chemical structures of macerals in a suite of thermally altered coals by confocal Raman[J]. ACS Omega, 2021, 6(49): 33409−33418. doi: 10.1021/acsomega.1c03922
[23] Matlala I V,Moroeng O M,Wanger N J. Macromolecular structural changes in contact metamorphosed inertinite-rich coals from the No. 2 seam,Witbank coalfield (South Africa):Insights from petrography,NMR and XRD[J]. International Journal of Coal Geology, 2021, 247: 103857. doi: 10.1016/j.coal.2021.103857
[24] Wang X L,Wang S Q,Hao C,et al. Quantifying orientation and curvature in HRTEM lattice fringe micrographs of naturally thermally altered coals:New insights from a structural evolution perspective[J]. Fuel, 2022, 309: 122180. doi: 10.1016/j.fuel.2021.122180
[25] 代世峰,唐跃刚,姜尧发,等. 煤的显微组分定义与分类(ICCP system 1994)解析 Ⅰ:镜质体[J]. 煤炭学报, 2021, 46(6): 1821−1832. Dai S F,Tang Y G,Jiang Y F,et al. An in-depth interpretation of definition and classification of macerals in coal (ICCP system 1994) for Chinese researchers,Ⅰ:Vitrinite[J]. Journal of China Coal Society, 2021, 46(6): 1821−1832.
[26] Zhao M X,An Y F,Wang M N,et al. New genesis of natural coke around magmatic intrusion at the Shitai coalmine of Huaibei City,North China[J]. Acta Geologica Sinica, 2019, 93(4): 1158−1159. doi: 10.1111/1755-6724.13827
[27] Pan J N,Lü M M,Bai H L,et al. Effects of metamorphism and deformation on the coal macromolecular structure by laser Raman spectroscopy[J]. Energy & Fuels, 2017, 31(2): 1136−1146.
[28] Wang R W,Liu G J. Variations of concentration and composition of polycyclic aromatic hydrocarbons in coals in response to dike intrusion in the Huainan coalfield in Eastern China[J]. Organic Geochemistry, 2015, 83-84: 202−214. doi: 10.1016/j.orggeochem.2015.03.014
[29] 王小华,赵洪宇,宋强,等. 不同性质褐煤催化裂解热解产物提质及机理分析[J]. 工程热物理学报, 2019, 40(5): 1194−1203. Wang X H,Zhao H Y,Song Q,et al. Catalytic upgrading of lignite pyrolysis tar over the different properties of lignite-based catalyst and the analysis of its mechanism[J]. Journal of Engineering Thermophysics, 2019, 40(5): 1194−1203.
[30] 岳莉,陈召,赖仕全,等. 煤系针状焦原料在成焦过程中的红外光谱定量分析[J]. 光谱学与光谱分析, 2020, 40(8): 2468−2473. Yue L,Chen Z,Lai S Q,et al. Infrared spectroscopic quantitative analysis of raw material used as coal-based needle coke in the coking process[J]. Spectroscopy and Spectral Analysis, 2020, 40(8): 2468−2473.
[31] Jiang J Y,Zhang Q,Cheng Y P,et al. Quantitative investigation on the structural characteristics of thermally metamorphosed coal:Evidence from multi-spectral analysis technology[J]. Environmental Earth Sciences, 2017, 76(11): 406. doi: 10.1007/s12665-017-6740-4
[32] Presswood S M,Rimmer S M,Anderson K B,et al. Geochemical and petrographic alteration of rapidly heated coals from the Herrin (No. 6) coal seam,Illinois Basin[J]. International Journal of Coal Geology, 2016, 165: 243−256. doi: 10.1016/j.coal.2016.08.022
[33] 陈健,李洋,刘文中,等. 岩浆侵入对煤结构的影响评述[J]. 煤炭科学技术, 2021, 49(6): 170−178. Chen J,Li Y,Liu W Z,et al. Review on impacts of igneous intrusion in coal measures on coal texture[J]. Coal Science and Technology, 2021, 49(6): 170−178.
[34] 陈儒庆. 煤化作用期间煤的地质流变学[J]. 煤田地质与勘探, 1991, 19(2): 36−39. Chen R Q. Geological rheology of coal during coalification[J]. Coal Geology & Exploration, 1991, 19(2): 36−39.
[35] 方家虎,唐修义. 热变煤的光学结构及其地质意义[J]. 煤田地质与勘探, 1993, 21(5): 21−25. Fang J H,Tang X Y. The optical textures of the thermally altered coals and their geological implications[J]. Coal Geology & Exploration, 1993, 21(5): 21−25.
[36] Rimmer S M,Crelling J C,Yoksoulian L E. An occurrence of coked bitumen,raton formation,Purgatoire River Valley,Colorado,USA[J]. International Journal of Coal Geology, 2015, 141-142: 63−73. doi: 10.1016/j.coal.2015.02.010
[37] Ward C R,Warbrooke P R,Roberts F I. Geochemical and mineralogical changes in a coal seam due to contact metamorphism,Sydney Basin,New South Wales,Australia[J]. International Journal of Coal Geology, 1989, 11(2): 105−125. doi: 10.1016/0166-5162(89)90001-3
[38] Sanyal S. Nature of a thin vein of solidified tarry matter formed during natural carbonization of coal from Victoria west colliery Raniganj coalfield,India[J]. Fuel, 1965, 44(5): 333−338.
-
其他相关附件