中文核心期刊

中国科技核心期刊

CSCD来源期刊

DOAJ 收录

Scopus 收录

王勇,李子敬,刘林,等. 攀西地区钒钛磁铁矿中硫含量测定方法优化[J]. 岩矿测试,2024,43(3):524−532. DOI: 10.15898/j.ykcs.202306270081
引用本文: 王勇,李子敬,刘林,等. 攀西地区钒钛磁铁矿中硫含量测定方法优化[J]. 岩矿测试,2024,43(3):524−532. DOI: 10.15898/j.ykcs.202306270081
WANG Yong,LI Zijing,LIU Lin,et al. Optimization of Sulfur Determination in Vanadium-Titanium Magnetite Ore in the Panxi Area[J]. Rock and Mineral Analysis,2024,43(3):524−532. DOI: 10.15898/j.ykcs.202306270081
Citation: WANG Yong,LI Zijing,LIU Lin,et al. Optimization of Sulfur Determination in Vanadium-Titanium Magnetite Ore in the Panxi Area[J]. Rock and Mineral Analysis,2024,43(3):524−532. DOI: 10.15898/j.ykcs.202306270081

攀西地区钒钛磁铁矿中硫含量测定方法优化

Optimization of Sulfur Determination in Vanadium-Titanium Magnetite Ore in the Panxi Area

  • 摘要: 硫是钒钛磁铁矿中重要的质量和环保指标,准确测定其含量对后续工艺控制和污染评价具有重要意义。攀西地区钒钛磁铁矿中硫赋存形态多样且含量范围宽,采用高频燃烧红外吸收法测定硫时,部分矿区样品易出现积分延迟、低硫精密度差的问题。本文结合扫描电镜技术及红外碳硫仪的程序升温功能,通过大量实验,得出钒钛磁铁矿中硫化物形态及含量的差异是造成上述问题的主要原因,并通过优化仪器分析功率、助熔剂及添加顺序、样品质量等分析条件,实现高频燃烧红外吸收法对攀西地区钒钛磁铁矿中0.0004%~1.52%硫的测定。优化后的实验条件如下:样品质量0.30g、助熔剂为0.30g铁粒、0.20g铜粒和1.0g钨粒,助熔剂和样品的添加顺序为铁粒—铜粒—样品—钨粒,分析功率95%。采用不同硫含量的钒钛磁铁矿标准物质建立标准曲线,硫的质量分数为0.0004%~0.200%时(低硫),标准曲线线性方程为y=1.0028x−1.35×10−6 (r=0.9998);硫的质量分数为0.201%~1.52%时(高硫),标准曲线线性方程为y=1.0062x−1.49×10−6 (r=0.9998),方法检出限为0.0004%。采用本方法对标准物质及攀西地区钒钛磁铁矿实际样品进行测定,标准物质硫含量测定值在标准值的允许范围内,相对标准偏差(RSD)为0.72%~1.40%;实际样品硫含量测定值的RSD为0.40%~0.67%。

     

    Abstract: Sulfur is an important quality and environmental indicator in vanadium-titanium magnetite ore, so the accurate measurement of sulfur is of great significance for subsequent process control and pollution evaluation. There are some problems such as integration delay and poor precision in low sulfur when measuring sulfur in vanadium-titanium magnetite ore with the high-frequency combustion infrared absorption method. To solve the problems, scanning electron microscope (SEM) and infrared absorption carbon-sulfur analyzer with programmed heating function were used, and the analysis conditions such as power, flux and addition sequence, and sample mass were optimized. The optimized experimental conditions were as follows: analysis power of 95%, iron particle flux of 0.30g, copper particle flux of 0.20g, and tungsten particle flux of 1.0g, sample mass of 0.30g. The order of addition is iron-copper-sample-tungsten. The optimized method was used to measure sulfur content, and the results of sulfur in the standard sample were within the allowable error, with satisfactory accuracy. The relative standard deviation (RSD) in samples was 0.40%−0.67%, with satisfactory precision. The range of the method was 0.0004%−1.52%, and the detection limit was 0.0004%.

     

/

返回文章
返回