Determination of Silver in Soil and Stream Sediments by ICP-MS/MS with Four Collision/Reaction Modes
-
摘要:
由于受到铌、锆的质谱干扰,使用电感耦合等离子体质谱法(ICP-MS)很难准确测定土壤和水系沉积物中的银。本文采用电感耦合等离子体串联质谱法(ICP-MS/MS),通过研究93Nb16O+、91Zr16OH2+、92Zr16OH+和109Ag+在氦气、氧气和氨气中质谱信号变化,探讨不同碰撞/反应模式的干扰消除能力和消除机理。实验采用盐酸-硝酸-氢氟酸-高氯酸消解样品,选用氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式、氨气Mass-Shift模式测定土壤和水系沉积物中的银含量。结果表明:在优化池气体流速后,四种模式下铌、锆对银的干扰程度分别降低20、1500、1500和2000多倍;方法检出限分别为0.005mg/kg、0.002mg/kg、0.003mg/kg和0.003mg/kg;准确度和精密度采用国家标准物质验证,测定值和标准值的相对误差分别在-1.4%~84.3%、-7.6%~7.2%、-15.0%~10.0%和-12.5%~8.6%之间,相对标准偏差(RSD)分别在1.5%~6.3%、1.4%~8.3%、1.4%~5.9%和0.7%~8.2%之间。氦气MS/MS模式消除干扰能力一般,仅适合测定铌、锆干扰较轻的样品;氧气MS/MS模式、氨气MS/MS模式、氨气Mass-Shift模式消除质谱干扰能力较强,可用于土壤和水系沉积物中痕量银的测定。与行业标准DZ/T 0279.11—2016相比,这三种方法检出限更低、测定范围更宽,并可实现多元素同时测定。
-
关键词:
- 碰撞/反应模式 /
- 银 /
- 电感耦合等离子体串联质谱法 /
- 土壤 /
- 水系沉积物
要点(1) 氦气MS/MS、氧气MS/MS、氨气MS/MS、氨气Mass-Shift四种模式均能降低93Nb16O+、91Zr16OH2+、92Zr16OH+对109Ag+的质谱干扰并探讨其消除机理。
(2) 优化气体流速后,在氧气MS/MS、氨气MS/MS、氨气Mass-Shift三种模式下铌、锆溶液对银的干扰降低了1500倍以上。
(3) 建立了四种模式ICP-MS/MS直接测定土壤和水系沉积物中银的分析方法。
HIGHLIGHTS(1) The four modes, helium MS/MS, oxygen MS/MS, ammonia MS/MS, ammonia Mass-Shift, could reduce the mass spectrum interference of 93Nb16O+, 91Zr16OH2+, 92Zr16OH+ on 109Ag+, and the elimination mechanism was discussed.
(2) With the optimal cell gas flow rate, the interference of niobium and zirconium to silver was decreased more than 1500 times in the oxygen MS/MS, ammonia MS/MS, and ammonia Mass-Shift modes.
(3) Four collision/reaction modes of ICP-MS/MS were utilized for the direct determination of Ag in soil and stream sediments.
Abstract:BACKGROUNDIt is difficult to accurately determine the content of Ag in soil and sediment due to the mass spectrum interference of niobium, zirconium oxide and hydroxide during inductively coupled plasma-mass spectrometry (ICP-MS) analysis.
OBJECTIVESTo develop methods for the determination of trace Ag in soil and sediment samples by four collision/reaction modes.
METHODSThe changes of mass spectrum signals of 93Nb16O+, 91Zr16OH2+, 92Zr16OH+ and 109Ag+ in helium, oxygen and ammonia were determined using inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). The interference elimination ability and elimination mechanism of different collision/reaction modes were investigated. The samples were digested by HCl-HNO3-HF-HClO4. The content of Ag in soil and stream sediments was determined by helium MS/MS mode, oxygen MS/MS mode, ammonia MS/MS mode and ammonia Mass-Shift mode.
RESULTSWith the optimal gas flow rate in the tank of the four collision/reaction modes, the interference degree of niobium and zirconium on Ag were decreased more than 20, 1500, 1500 and 2000 times, respectively. The detection limits of the method were 0.005mg/kg, 0.002mg/kg, 0.003mg/kg and 0.003mg/kg, respectively. The accuracy and precision were verified by national reference materials of soil and sediment, while the relative errors of measured values and certified values were -1.4%-84.3%, -7.6%-7.2%, -15.0%-10.0% and -12.5%-8.6%, respectively. The relative standard deviations were 1.5%-6.3%, 1.4%-8.3%, 1.4%-5.9% and 0.7%-8.2%, respectively.
CONCLUSIONSHelium MS/MS mode has a low capacity to eliminate mass spectrometry interference, and is suitable for the determination of samples with little interference of niobium and zirconium. Oxygen MS/MS, ammonia MS/MS and ammonia Mass-Shift modes have a strong ability to eliminate mass spectrometry interference, which can be used for the determination of trace Ag in soil and stream sediments; and have the advantages of lower detection limit, wider linear range, and simultaneous determination of multiple elements, when compared with the industry standard DZ/T 0279.11—2016.
-
稀土元素(REE)指镧系(La-Lu)元素及化学性质相似的钪(Sc)和钇(Y)在内的共17个元素。由于其物理化学性质的独特性,常作为一种地球化学指示剂被国内外学者广泛应用[1-4]。我国稀土资源丰富,大部分的稀土矿分布在内蒙古、江西、四川等地,北方地区富集以铈为主的矿物晶格型轻稀土矿,南方地区富集离子吸附型中重稀土矿,具有“北轻南重”的分布特征[5]。随着稀土的大量开采与应用,稀土元素进入土壤的量也逐年上升,导致了多种生态环境污染问题。
土壤中元素的迁移能力、生物有效性等行为并不简单地取决于它们的总浓度,更多地依赖于元素在土壤中的赋存形态[6-7]。目前稀土元素形态分析通常采用Tessier顺序提取法和BCR顺序提取法[8-11],将单一的分析元素全量转变为分析元素各形态含量。王立军等[12]利用Tessier法对中国不同地带土壤中的稀土元素赋存形态进行了研究,各形态稀土含量为:残渣态>交换态>铁锰氧化物结合态>有机态>碳酸盐结合态,即稀土元素主要以稳定的残渣态存在,环境活性较低。Rao等[9]通过BCR法对印度Ingaldhal铜矿周边污染土壤进行稀土元素形态分析,各形态高低分布为:残渣态>可还原态>可氧化态>弱酸提取态,该土壤中稀土元素主要以残渣态和可还原态形式存在。Šmuc等[13]对Kočani稻田土壤的稀土形态分析表明,稀土元素主要以残渣态和可氧化态形式存在,残渣态中轻稀土元素的比例高于中重稀土元素。不同的土壤母质、稀土来源以及环境条件都会影响土壤中稀土元素的赋存形态,矿区周边土壤与自然景观区土壤中稀土的赋存形态存在一定的差异[12-15]。郭伟等[16]研究表明内蒙古白云鄂博尾矿库边缘50m以内的区域中土壤稀土含量最高可达全国土壤背景值的上百倍,受西北风影响,下风向东南方位污染最为严重。金姝兰等[17]调查发现江西省龙南县重稀土矿区周边土壤中的稀土元素含量(976.94μg/g)是全国土壤背景值的5.09倍,各形态高低分布为:可还原态稀土>可氧化态稀土>酸提取态稀土>残渣态稀土。
目前国内外学者对于土壤中的稀土元素研究,主要集中在稀土元素的含量及空间分布特征,形态分析相对较弱,且各个学者在形态提取中采用的顺序提取法不尽相同,其结果缺乏可对比性。我国土壤稀土形态的研究大多针对南方地区离子型中重稀土矿区周边土壤,北方地区矿物晶格型轻稀土矿周边土壤中的稀土形态研究鲜有报道。本文拟利用欧盟BCR顺序提取法、电感耦合等离子体质谱测定的方法对内蒙古和江西两种不同类型的稀土矿区周边土壤进行稀土元素含量和形态的分析调查,采用同一标准方法进行实验与对比分析,探讨其分布特征、影响因素及治理方法,旨在了解不同类型矿区土壤稀土污染特征,为稀土矿的开采利用、矿区污染治理提供科学的理论依据。
1. 实验部分
1.1 研究区概况
本文选取我国内蒙古白云鄂博稀土尾矿区和江西赣南稀土矿区作为研究区域,采样点分布情况如表 1所示。
表 1 采样点分布情况Table 1. Information of soil sampling points in collecting areas样品编号 采样地点 采样点
概况土壤
类型BTS-1 内蒙古白云鄂博稀土尾矿坝70m处 荒地 栗钙土 BTS-2 内蒙古白云鄂博稀土尾矿坝8km处 农田区 栗钙土 BTS-3 内蒙古白云鄂博稀土尾矿坝16km处 农田区 栗钙土 JXS-1 江西赣南龙南黄沙窑 矿区边 砖红壤 JXS-2 江西赣南龙南黄沙矿区 农田区 砖红壤 JXS-3 江西赣南定南岭北蔡阳 农田区 砖红壤 (1) 内蒙古白云鄂博稀土尾矿区:白云鄂博矿区隶属于内蒙古自治区包头市,矿区内90%以上的稀土元素以独立矿物存在,以独居石和氟碳铈矿等轻稀土矿为主,开采方式主要是露天开采[16]。白云鄂博尾矿区属温带大陆性气候,常年低温少雨、干旱多风,土壤类型以栗钙土为主。尾矿库外露的矿砂和粉尘随风飘散后沉积于矿区周边土壤中。
(2) 江西赣南稀土矿区:江西省龙南、定南、全南三县是江西赣州三大稀土产区,矿区主要为大规模的表生离子吸附型中重稀土矿床,多采用露天开采工艺[18]。江西赣南地区位于中亚热带常绿阔叶林带,气候温暖潮湿,土壤类型以砖红壤为主。在稀土开采的过程中会剥离大量的矿石,产生大量的尾砂以及剥离物,导致附近土壤中稀土元素存在一定程度的富集。
1.2 样品采集处理
本研究选择6个典型采样地点,采集表层或耕作层(0~20cm内)土壤,用多点采样法混匀,将碎石、植物根系、生物残骸等杂质去除,自然风干,进一步混合均匀,用四分法取25g样品在玛瑙研钵中充分研磨,过200目筛,储存在样品袋中,供分析测试使用。
1.3 实验方法
稀土元素含量分析采用封闭酸溶法[19-22]。称取25mg样品于封闭溶样器的内罐中,加入1mL氢氟酸、0.5mL硝酸,密封。将溶样器放入烘箱中,加热24h,温度控制在185±5℃左右。冷却后取出内罐,置于电热板上加热120℃蒸干,再加入0.5mL硝酸蒸干,重复操作此步骤一次。加入5mL 50%硝酸,再次密封,放入烘箱中,130℃加热3h。冷却后取出内罐,将溶液转移至塑料瓶中。用水稀释,定容至50mL,摇匀,采用电感耦合等离子体质谱法(ICP-MS)测定镧系(Pm除外)和钇(Y)15个元素的浓度。通过标准物质(GBW07402、GBW07430、GBW07158、GBW07161)进行质量监控[23],标准物质的稀土元素测定值均在(认定值±不确定度)范围内,满足研究需求。
稀土元素形态提取采用欧盟BCR顺序提取法[6, 10, 24],其操作简单,重现性好,将稀土元素分为弱酸提取态、可还原态、可氧化态、残渣态,具体步骤见表 2。采用ICP-MS对6个土壤样品中稀土元素各形态含量进行测定。在BCR顺序提取过程中,使用国际标准物质BCR-701进行质量监控[25],Cd、Cr、Cu、Ni、Pb、Zn的分析误差均小于20%,从而验证了方法的可靠性。6个样品中稀土元素四个相态的加和值与总含量值在误差范围内相一致,稀土元素的回收率在82.8%~115.8%之间,满足了研究工作的需求。
表 2 BCR顺序提取法Table 2. BCR sequential extraction procedure步骤 形态 提取方法 1 弱酸提取态 40mL 0.11mol/L乙酸提取,22±5℃,振荡提取16h,离心分离 2 可还原态 40mL 0.5mol/L盐酸羟胺提取,22±5℃,振荡提取16h,离心分离 3 可氧化态 10mL过氧化氢,室温消化1h;82±5℃消化,体积减至约3mL;再加入10mL过氧化氢,82±5℃消化,体积减至约1mL;加入50mL 1.0mol/L乙酸铵,22±5℃,振荡提取16h,离心分离 4 残渣态 封闭酸溶 ICP-MS在稀土元素测试过程中的工作参数见表 3,上机分析使用的标准溶液为各元素的混合标准溶液,由各单元素标准物质逐级稀释配制而成。质谱最佳调谐液为2μg/L的Li、Be、Co、In、Bi、U标准溶液,内标溶液为10μg/L的Rh和Re混合溶液。稀土元素测试时均选择灵敏度较高、不受干扰的同位素,依次为:139La、140Ce、141Pr、146Nd、147Sm、153Eu、157Gd、159Tb、163Dy、165Ho、166Er、169Tm、172Yb、175Lu、89Y。土壤样品的化学处理和上机测试均在国家地质实验测试中心完成。
表 3 ICP-MS工作参数Table 3. Working parameters of ICP-MS工作参数 设定条件 ICP功率 1300W 冷却气流量 13.0L/min 辅助气流量 0.75L/min 雾化气流量 1.0L/min 采样锥孔径 1.0mm 截取锥孔径 0.7mm 测量方式 跳峰 扫描次数 50 停留时间/通道 10ms 每个质量通道数 3 总采集时间 48s 2. 结果与讨论
2.1 土壤中稀土元素含量及分布特征
6个土壤样品中15个稀土元素测定结果见表 4。各采样点稀土元素在含量上存在较大差异,总含量约为264~15955μg/g,均高于全国土壤背景值;在分布上表现为原子序数为偶数的稀土元素含量大于原子序数为奇数的稀土元素含量,遵循Odd-Harkins规则。轻稀土元素含量显著大于重稀土元素,La、Ce、Pr、Nd、Sm占主导位置,La占REE总量(ΣREE)的9.18%~24.6%,Ce占REE总量的13.8%~48.2%。
表 4 土壤中稀土元素含量及特征参数Table 4. Concentrations and characteristic parameters of REE in soils元素 含量(μg/g) 全国土壤
背景值
(μg/g)BTS-1 BTS-2 BTS-3 JXS-1 JXS-2 JXS-3 Y 89.1 26.2 27.9 413 314 167 22.9 La 3931 447 49.7 94.6 93.7 262 39.7 Ce 7696 884 105 142 143 315 68.4 Pr 836 96.8 11.4 25.9 27.4 57.8 7.17 Nd 2968 339 42.2 106 112 217 26.4 Sm 240 29.6 7.33 36.6 40.9 40.6 5.22 Eu 42.5 5.32 1.32 2.53 2.61 3.12 1.03 Gd 69.4 9.05 5.55 48.3 47.6 32.0 4.60 Tb 7.42 1.19 0.87 9.43 8.83 4.90 0.63 Dy 44.2 7.83 5.31 61.3 53.8 29.3 4.13 Ho 3.95 1.05 1.04 12.1 10.3 5.27 0.87 Er 22.2 4.23 3.07 35.3 28.5 15.1 2.54 Tm 0.72 0.35 0.41 5.14 3.85 1.94 0.37 Yb 4.21 2.27 2.76 33.6 23.7 12.2 2.44 Lu 0.55 0.35 0.43 5.02 3.41 1.78 0.36 ∑REE 15955 1854 264 1030 914 1165 186 LREE 15713 1801 216 407 420 895 147 HREE 241 52.5 47.3 623 494 269 38.8 $\frac{{{\rm{LREE}}}}{{{\rm{HREE}}}} $ 65.0 34.3 4.58 0.65 0.85 3.32 3.81 δEu 0.77 0.77 0.61 0.18 0.18 0.26 0.63 δCe 0.98 0.98 1.02 0.68 0.67 0.59 0.91 注:REE为不含Pm、Sc的15个稀土元素的总含量, LREE为轻稀土元素La~Eu,HREE为重稀土元素Gd~Lu+Y。全国土壤背景值参考《中国土壤元素背景值》[26]。 白云鄂博土壤样品中明显富集轻稀土元素,主要为Ce、La、Nd、Pr、Sm;赣南三个土壤样品中富集重稀土元素和Y元素,Y含量依次为:413μg/g、314μg/g、167μg/g,远高于全国背景值(22.9μg/g),说明了稀土元素在地理空间分布上具有差异性,同时验证了我国稀土分布“南重北轻”的特点。各采样点的稀土元素含量高于全国背景值,说明在稀土矿的矿化蚀变和开采利用过程中,稀土元素发生迁移转化,导致周边土壤出现了富集。距离矿区越近,土壤中的稀土含量越高,污染问题越严重,说明了土壤稀土含量与矿区距离呈显著的负相关关系,与前人研究结果一致[16, 27]。
对6个土壤样品的稀土元素进行球粒陨石标准化,如图 1所示,各样品值与中国土壤背景值的球粒陨石标准化分布曲线趋势相似,均表现向右倾斜型,轻稀土相对富集,轻重稀土发生分异。LREE/HREE分布位于0.65~65.0,说明了轻、重稀土元素分馏程度明显。白云鄂博样品δEu在0.61~0.77之间,δCe为0.98~1.02,异常程度与中国土壤背景值(δEu为0.63,δCe为0.91)相近,说明了白云鄂博尾矿区周边土壤中稀土元素的分配模式几乎没有发生变化;赣南矿区周边土壤中δEu为0.18~0.26,δCe为0.59~0.68,显著低于全国土壤背景值,呈现明显的Eu、Ce负异常,说明了江西赣南矿区周边土壤中稀土元素分异明显,与弱酸性的土壤环境中稀土元素容易发生迁移转化有关。
2.2 土壤中稀土元素的形态特征
BCR顺序提取法中,弱酸提取态是指交换吸附在土壤中黏土矿物和其他成分(腐植质等)上的元素以及与碳酸盐结合的元素,是自然环境中最容易被植物吸收利用的形态,具有较高的活性;可还原态是指与铁锰水合氧化物结合的元素,pH < 7时,稀土元素容易水解,具有一定的生物有效性;可氧化态是指与有机物和硫化物结合的元素,在强氧化剂的条件下才可以释放;残渣态是指硅酸盐、原生、次生矿物等晶格里的元素,最为稳定,很难进入环境中。
6个土壤样品的形态分析结果如图 2所示。内蒙古白云鄂博和江西赣南矿区周边土壤样品中稀土元素具有不同的形态特征。①白云鄂博土壤样品中稀土元素的分布为:残渣态>可还原态>可氧化态>弱酸提取态,其中残渣态的比例最高,为64.0%~89.4%,弱酸提取态的比例仅为0.63%~1.11%;赣南土壤样品中稀土元素的分布为:可还原态>弱酸提取态>残渣态>可氧化态,其中可还原态的比例为62.4%~70.1%,弱酸提取态的比例为9.12%~21.0%。赣南土壤样品中稀土元素的弱酸提取态显著高于白云鄂博土壤样品,其具有更高的迁移性和生物活性。②白云鄂博土壤样品的稀土残渣态分布曲线类似于“V”字形,轻稀土La、Ce和重稀土Yb、Sc、Lu的含量都高于中间的稀土Gd、Tb、Dy等元素含量;而赣南土壤样品稀土残渣态中同样是轻稀土和重稀土的含量高于中稀土含量,由于Eu的独特性质,不容易迁移转化,在残渣态中相对其他元素含量较高,故稀土残渣态的分布曲线类似于“W”字形。
综上所述,内蒙古白云鄂博尾矿区周边土壤中稀土元素主要以残渣态形式存在,弱酸提取态含量较低,表明了矿区周边土壤虽然受稀土尾矿的侵染,稀土元素含量较高,但是其生物活性较低,对周边环境的污染较小,与前人研究结果一致[16, 27]。由于白云鄂博稀土矿主要以独居石、氟碳铈矿等晶格型矿物存在,矿区属于大陆性气候,常年干燥少雨,矿石以物理风化作用为主,稀土元素很难被解离出来,因此稀土原矿的污染并没有改变周边土壤中稀土元素的赋存形式。江西赣南矿区周边土壤中弱酸提取态和可还原态所占比例远大于残渣态,说明了该土壤中稀土元素具有较高的活动性,容易被动植物吸收利用,存在一定的环境污染。这一现象与赣南地区土壤为典型南方酸性砖红壤有关,酸性环境有利于稀土元素的迁移转化[15, 28]。前人研究也有相似结论,认为当稀土元素所处环境pH值为酸性时,其容易发生水解并与铁锰氧化物相结合,使得可还原态含量升高,在土壤全风化层呈吸附状态,在黏土中大量富集[29-30]。
2.3 稀土元素形态的影响因素
土壤中稀土元素的各形态含量主要受pH值、有机质含量和矿物组成等多种因素影响[27, 30-31]。本文采用pH计测定了6个土壤样品的pH值(土水比为1:1),X射线衍射仪测定了样品的矿物组成。各土壤样品的pH值、黏土矿物含量等以及稀土各形态百分比见表 5。
表 5 土壤理化性质和形态测定结果Table 5. Results of soil physicochemical properties and REE fractions样品编号 pH 黏土矿物
含量(%)弱酸提取态稀土
含量百分比(%)可还原态稀土
含量百分比(%)可氧化态稀土
含量百分比(%)残渣态稀土
含量百分比(%)稀土总量
(μg/g)BTS-1 8.32 18.7 1.11 7.20 2.34 89.4 15437 BTS-2 8.28 7.5 0.95 11.8 16.0 71.3 1580 BTS-3 8.25 15.2 0.63 23.5 11.9 64.0 267 JXS-1 5.18 32.8 16.6 62.4 8.93 12.0 988 JXS-2 5.72 39.6 9.12 70.1 12.0 8.78 842 JXS-3 4.51 24.2 21.0 62.4 9.67 6.90 1087 注:稀土元素各相态百分比为该相态稀土含量/稀土总量×100%。 白云鄂博土壤样品的pH值为8.25~8.32,呈弱碱性;赣南土壤样品的pH值为4.51~5.72,呈酸性。白云鄂博矿区碱性土壤中,残渣态稀土元素占稀土元素总量的比例为64.0%~89.4%。赣南酸性土壤中,残渣态稀土元素仅占稀土元素总量的比例为6.90%~12.0%,非残渣态含量可高达90%以上。碱性土壤中稀土元素的残渣态占比明显高于酸性土壤,随着pH值的降低,稀土元素的弱酸提取态含量不断升高,残渣态含量呈下降趋势。与前人研究[17, 31]一致,即pH值与弱酸提取态稀土含量呈显著负相关。
白云鄂博地区土壤来源于基底花岗岩、白云岩、板岩、大理岩等复杂岩体风化,成分较为复杂,土壤中黏土矿物含量约为7.5%~18.7%;赣南地区土壤主要来源于该地区花岗岩基底的风化剥蚀,土壤中黏土矿物含量平均为24.2%~39.6%,明显高于白云鄂博地区。赣南地区土壤样品中的弱酸提取态、可还原态稀土元素含量相比白云鄂博地区土壤较高,是由于稀土元素容易吸附到黏土矿物中,当土壤中黏土矿物、游离铁氧化物的含量较为丰富时,与弱酸提取态、可还原态稀土元素结合程度增加,导致了对应的相态稀土含量升高,前人研究[29-31]也证实了这一观点。
2.4 土壤稀土污染现状和治理探讨
内蒙古和江西土壤样品中稀土元素含量和形态分析研究表明,稀土矿的开采会导致大量稀土元素发生迁移转化,进入矿区周边土壤中,造成环境污染。稀土元素生物有效态主要指弱酸提取态,在土壤环境中长期积累势必破坏土壤生态系统,进而危及动植物健康,因此需要高度重视稀土资源开发导致的土壤环境污染,并对其进行有效防治。
白云鄂博矿区周边污染土壤中,稀土元素的主要来源是尾矿渣随着降水和强风的扩散,在土壤中以独立矿物形式存在,在各形态中以残渣态为主,占稀土总量比值约为64.0%~89.4%(表 5),生物有效性较低。目前针对白云鄂博矿区周边土壤污染治理的研究相对较少,其治理措施以预防为主[16],如建立渣场或渣库存放采矿废渣等,通过抑制尘粉飞扬来降低环境污染。
赣南矿区周边污染土壤富集重稀土元素,其在土壤中的主要存在形式是弱酸提取态和可还原态,如JXS-1、JXS-2、JXS-3弱酸提取态稀土元素含量占稀土总量比值约为16.6%、9.12%、21.0%(表 5),具有较高的迁移性和生物活性。结合南方地区红土酸性、黏性较强等特点,对污染土壤的治理建议主要采用化学改良和生物改良结合法[18, 32]。首先,对污染土壤进行化学改良,加入天然矿物改良剂蒙脱石、凹凸棒土等,调节土壤pH值,使稀土元素发生吸附、氧化还原、沉淀反应,由弱酸提取态向可氧化态转移,降低其生物可利用性。其次,对污染土壤进行生物改良,通过选择稀土元素提取能力强和积累量较高的微生物或植物,将稀土元素向生物转移,从而改善土壤环境,使稀土元素含量恢复至“安全”水平。
3. 结论
本文对内蒙古白云鄂博稀土尾矿区和江西赣南稀土矿区周边土壤样品中稀土元素的研究结果表明,两地稀土含量均高于全国土壤背景值,稀土含量特征与形态分布规律不同。白云鄂博土壤样品明显富集轻稀土元素,稀土元素主要以残渣态存在,说明其生物有效性较低,环境污染较小;赣南土壤样品富集重稀土元素,稀土元素主要以弱酸提取态和可还原态存在,其生物有效性较高,存在一定的环境污染。pH和黏土矿物含量是影响土壤中稀土元素形态分布的重要因素。在稀土污染治理方面,白云鄂博尾矿区周边土壤应以预防为主,通过降低尘粉扩散来减少污染;赣南矿区周边土壤可采用化学法和生物法来综合治理,通过降低土壤中稀土生物有效态,使土壤中稀土元素含量降到“安全”水平。本研究为今后的稀土开采和土壤污染治理提供了可靠的实验数据和理论依据,具有较好的科学意义。
-
图 2 (a) 氦气MS/MS模式、(b)氧气MS/MS模式、(c)氨气MS/MS模式、(d)氨气Mass-Shift模式下池气体流速对基体空白溶液、基体加标溶液信号强度和背景等效浓度的影响
Figure 2. Effects of cell gas flow rate on signal intensities of matrix blank solutions, matrix spiked solutions and BEC by (a) helium MS/MS mode, (b) oxygen MS/MS mode, (c) ammonia MS/MS mode, and (d) ammonia Mass-Shift mode
表 1 ICP-MS/MS仪器工作参数
Table 1 Working parameters of ICP-MS/MS instrument
工作参数 标准MS/MS模式 氦气MS/MS模式 氧气MS/MS模式 氨气MS/MS模式 氨气Mass-Shift模式 产物离子 109Ag+ 109Ag+ 109Ag+ 109Ag+ 109Ag17(NH3)2+ Q1→Q3(m/z) 109→109 109→109 109→109 109→109 109→143 质量切割参数(RPq) 0.25 0.25 0.45 0.45 0.45 池气体 - He O2 NH3 NH3 气体流速(mL/min) - 7.0 2.6 1.8 1.8 表 2 不同浓度的锆、铌溶液在不同测量模式下对109Ag干扰情况
Table 2 Interference effects of different concentrations of Zr and Nb solutions on 109Ag in different measurement modes
溶液类型 锆或铌溶液浓度
(mg/L)109Ag测定值(μg/L) 氦气MS/MS模式 氧气MS/MS模式 氨气MS/MS模式 氨气Mass-Shift模式 锆溶液 10.0 0.013 0.006 0.006 0.005 50.0 0.061 0.008 0.007 0.007 100 0.140 0.019 0.022 0.020 500 1.047 0.035 0.030 0.030 1000 2.432 0.050 0.047 0.046 铌溶液 1.00 0.441 0.000 0.000 0.000 5.00 2.630 0.005 0.007 0.003 10.0 4.960 0.009 0.011 0.005 50.0 26.542 0.036 0.037 0.013 100 43.441 0.077 0.074 0.026 500 411.726 0.472 0.356 0.128 1000 978.826 1.006 0.780 0.261 表 3 不同测量模式下方法准确度和精密度
Table 3 Accuracy and precision tests of the method by different measurement modes
标准物质编号 银标准值
(mg/kg)Nb/Ag Zr/Ag 氦气MS/MS模式 氧气MS/MS模式 氨气MS/MS模式 氨气Mass-Shift模式 银测定平均值
(mg/kg)RSD
(%)相对误差
(%)银测定平均值
(mg/kg)RSD
(%)相对误差
(%)银测定平均值
(mg/kg)RSD
(%)相对误差
(%)银测定平均值
(mg/kg)RSD
(%)相对误差
(%)GBW07403 0.091±0.007 102 2703 0.096 2.4 5.5 0.094 2.2 3.3 0.095 3.1 4.4 0.093 2.6 2.2 GBW07404 0.070±0.011 543 7143 0.115 3.0 64.3 0.075 4.0 7.2 0.077 3.8 10.0 0.076 4.6 8.6 GBW07405 4.4±0.4 5 62 4.42 1.5 0.5 4.41 1.4 0.3 4.31 2.8 -2.1 4.40 2.4 0 GBW07407 0.057±0.011 1123 5579 0.105 4.9 84.3 0.053 4.2 -7.1 0.051 5.1 -10.6 0.055 5.6 -3.6 GBW07451 0.074±0.006 208 3446 0.073 5.0 -1.4 0.074 2.7 0 0.072 4.2 -2.8 0.070 2.8 -5.5 GBW07302a 0.040±0.011 1000 3550 0.072 4.7 80.0 0.038 8.3 -5.0 0.034 5.9 -15.0 0.035 7.5 -12.5 GBW07305a 0.63±0.06 27 437 0.652 3.3 3.5 0.629 1.8 -0.2 0.626 1.4 -0.7 0.628 0.7 -0.4 GBW07309 0.089±0.010 202 4157 0.088 3.1 -1.2 0.086 1.8 -3.4 0.083 2.9 -6.8 0.087 3.6 -2.3 GBW07311 3.2±0.4 8 48 3.20 2.0 0 3.21 1.4 0.4 3.18 1.6 -0.7 3.28 2.2 2.5 GBW07375 0.040±0.004 155 2190 0.043 6.3 7.5 0.037 4.5 -7.6 0.038 5.6 -5.0 0.037 8.2 -7.5 注:Nb/Ag和Zr/Ag分别为标准样品中铌和锆的含量与银含量的比值。 -
[1] 赵学沛. 微波消解-石墨炉原子吸收光谱法测定痕量银的研究[J]. 岩石矿物学杂志, 2019, 38(2): 254-258. doi: 10.3969/j.issn.1000-6524.2019.02.009 Zhao X P. Determination of trace amounts of silver by microwave digestion graphite furnace atomic absorption spectrometry[J]. Acta Petrologica et Mineralogica, 2019, 38(2): 254-258. doi: 10.3969/j.issn.1000-6524.2019.02.009
[2] 夏辉, 张永花, 李景文, 等. 石墨炉原子吸收光谱法测定化探样中痕量银的方法改进[J]. 岩矿测试, 2013, 32(1): 48-52. doi: 10.3969/j.issn.0254-5357.2013.01.009 Xia H, Zhang Y H, Li J W, et al. An improved method for determination of trace silver in geochemical exploration samples by graphite furnace atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2013, 32(1): 48-52. doi: 10.3969/j.issn.0254-5357.2013.01.009
[3] 谭龙奇. 直接滴加液体缓冲剂CCD-Ⅰ型交流电弧直读发射光谱法测定土壤中银锡[J]. 中国无机分析化学, 2020, 10(2): 39-41. doi: 10.3969/j.issn.2095-1035.2020.02.008 Tan L Q. Determination of Ag and Sn in soil by direct addition of liquid buffer CCD-Ⅰ emission spectrometer[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(2): 39-41. doi: 10.3969/j.issn.2095-1035.2020.02.008
[4] 黄海波, 沈加林, 陈宇, 等. 全谱发射光谱仪应用于分析地质样品中的银锡硼钼铅[J]. 岩矿测试, 2020, 39(4): 555-565. doi: 10.15898/j.cnki.11-2131/td.201909230137 Huang H B, Shen J L, Chen Y, et al. Simultaneous determination of silver, boron, tin, molybdenum and lead in geological samples by atomic emission spectrometer with full spectrum[J]. Rock and Mineral Analysis, 2020, 39(4): 555-565. doi: 10.15898/j.cnki.11-2131/td.201909230137
[5] 肖细炼, 王亚夫, 陈燕波, 等. 交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J]. 冶金分析, 2018, 38(7): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201807004.htm Xiao X L, Wang Y F, Chen Y B, et al. Determination of silver, boron and tin in geochemical samples by alternating current arc optoelectronic direct reading emission spectrometry[J]. Metallurgical Analysis, 2018, 38(7): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201807004.htm
[6] 黄俐, 陈秀梅, 张晔霞. 微波消解-电感耦合等离子体质谱法测定土壤中的银[J]. 环境科学导刊, 2020, 39(4): 94-96. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK202004028.htm Huang L, Chen X M, Zhang Y X. Determination of silver in soil by microwave digestion method and inductively coupled plasma-mass spectrometry[J]. Environmental Science Survey, 2020, 39(4): 94-96. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK202004028.htm
[7] 于亚辉, 闫红岭, 陈浩凤, 等. 电感耦合等离子体质谱法测定地球化学样品中的银[J]. 理化检验(化学分册), 2016, 52(7): 834-836. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201607025.htm Yu Y H, Yan H L, Chen H F, et al. Determination of silver in geochemical samples by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(7): 834-836. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201607025.htm
[8] 刘静波, 张更宇. 全自动消解电感耦合等离子体质谱仪测定环境土壤中铍钡铊银[J]. 分析试验室, 2018, 37(2): 207-211. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201802017.htm Liu J B, Zhang G Y. Determination of Be, Ba, Tl and Ag in environmental soil by inductively coupled plasma mass spectrometry with automatic digestion instrument[J]. Chinese Journal of Analysis Laboratory, 2018, 37(2): 207-211. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201802017.htm
[9] 张志喜, 黄惠琴. 电感耦合等离子体质谱法测定地球化学样品中的银、砷、锑、铋[J]. 中国无机分析化学, 2014, 4(1): 46-49. doi: 10.3969/j.issn.2095-1035.2014.01.012 Zhang Z X, Huang H Q. Determination of silver, arsenic, antimony and bismuth in geochemical samples using inductively coupled plasma mass spectrometry together with aqua regia decomposition[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1): 46-49. doi: 10.3969/j.issn.2095-1035.2014.01.012
[10] 杨艳明. 电感耦合等离子体质谱法测定水系沉积物中银铜砷锑铋镉[J]. 冶金分析, 2019, 39(7): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201907009.htm Yang Y M. Determination of silver, copper, arsenic, antimony, bismuth and cadmium in stream sediment by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(7): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201907009.htm
[11] Wu Y, Huang D M, Feng T, et al. Determination of silver in geological samples using aerosol dilution ICP-MS after water-bath extraction with inverse aqua regia[J]. Atomic Spectroscopy, 2021, 42(6): 374-382.
[12] 刘海明, 武明丽, 成景特. 酸溶分解-电感耦合等离子体质谱内标法测定地质样品中的痕量银[J]. 岩矿测试, 2021, 40(3): 444-450. doi: 10.15898/j.cnki.11-2131/td.202002190018 Liu H M, Wu M L, Cheng J T. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with acid decomposition and internal standard calibration[J]. Rock and Mineral Analysis, 2021, 40(3): 444-450. doi: 10.15898/j.cnki.11-2131/td.202002190018
[13] 刘彤彤, 钱银弟, 黄登丽. 磷酸沉淀分离-电感耦合等离子体质谱法测定化探样品中的痕量银[J]. 岩矿测试, 2021, 40(5): 650-658. doi: 10.15898/j.cnki.11-2131/td.202105060058 Liu T T, Qian Y D, Huang D L. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with phosphoric acid precipitation separation[J]. Rock and Mineral Analysis, 2021, 40(5): 650-658. doi: 10.15898/j.cnki.11-2131/td.202105060058
[14] 刘彤彤, 黄登丽. 王水溶样-电感耦合等离子体质谱法测定化探样品中痕量银[J]. 冶金分析, 2021, 41(7): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202107013.htm Liu T T, Huang D L. Determination of trace silver in geological samples by inductively coupled plasma mass spectrometry after sample dissolution with aqua regia[J]. Metallurgical Analysis, 2021, 41(7): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202107013.htm
[15] 刘向磊, 孙文军, 文田耀, 等. 负载泡塑富集-电感耦合等离子体质谱法测定地质样品中痕量金和银[J]. 分析化学, 2015, 43(9): 1371-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201509022.htm Liu X L, Sun W J, Wen T Y, et al. Determination of Au and Ag in geological samples by loaded polyurethane foam-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(9): 1371-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201509022.htm
[16] 高玉花, 毕建玲, 殷学博. P507负载泡塑分离-ICP-MS测定地质样品中的痕量银[J]. 山东国土资源, 2015, 31(12): 70-73. Gao Y H, Bi J L, Yin X B. Determination of trace Ag in geological samples by using P507 to separate ICP-MS loaded polyfoam[J]. Shandong Land and Resources, 2015, 31(12): 70-73.
[17] 徐娟, 胡兆初, 刘勇胜, 等. 膜去溶-电感耦合等离子质谱测定21种国际地质标样中的银[J]. 分析化学, 2008, 36(11): 1493-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200811009.htm Xu J, Hu Z C, Liu Y S, et al. Direct determination of Ag in 21 international geological reference materials by membrane desolvation-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2008, 36(11): 1493-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200811009.htm
[18] 朱志刚, 李美丽, 孙元芳, 等. ICP-MS测定银的干扰现象分析与方法建立[J]. 分析仪器, 2016(5): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ201605017.htm Zhu Z G, Li M L, Sun Y F, et al. Analysis of interference phenomenon for determination of silver by ICP-MS[J]. Analytical Instrumentation, 2016(5): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ201605017.htm
[19] 薛志伟, 乔宁强, 朱晓贤, 等. ICP-MS测定土壤和水系沉积物中的微量银[J]. 中国测试, 2015, 41(3): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201503012.htm Xue Z W, Qiao N Q, Zhu X X, et al. Determination of trace silver in soil and water sediments by ICP-MS[J]. China Measurement & Test, 2015, 41(3): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201503012.htm
[20] 王家恒, 刘冬云. 动态反应池-电感耦合等离子体质谱法同时测定地质样品中的金和银[J]. 分析试验室, 2017, 36(7): 819-822. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201707018.htm Wang J H, Liu D Y. Determination of Au and Ag in geological samples by dynamic reaction cell-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2017, 36(7): 819-822. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201707018.htm
[21] Guo W, Hu S H, Zhang J Y, et al. Elimination of oxide interferences and determination of ultra-trace silver in soils by ICP-MS with ion-molecule reactions[J]. Science of the Total Environment, 2011, 409(15): 2981-2986.
[22] Chang C C, Liu H T, Jiang S J. Bandpass reaction cell inductively coupled plasma mass spectrometry for the determination of silver and cadmium in samples in the presence of excess Zr, Nb and Mo[J]. Analytica Chimica Acta, 2003, 493(2): 213-218.
[23] 徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394-402. doi: 10.15898/j.cnki.11-2131/td.201812070131 Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394-402. doi: 10.15898/j.cnki.11-2131/td.201812070131
[24] 黄智敏, 吴伟明, 杨雪, 等. 电感耦合等离子体串联质谱法直接测定高纯铽中稀土杂质[J]. 分析试验室, 2021, 40(11): 1345-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202111021.htm Huang Z M, Wu W M, Yang X, et al. Direct determination of rare earth impurities in highly pure terbium by inductively coupled plasma-tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2021, 40(11): 1345-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202111021.htm
[25] 李爱阳, 伍素云, 刘宁, 等. ICP-MS/MS法测定壳聚糖中的重金属元素[J]. 分析试验室, 2020, 39(5): 516-520. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202005005.htm Li A Y, Wu S Y, Liu N, et al. Determination of heavy metal elements in chitosan by inductively coupled plasma tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2020, 39(5): 516-520. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202005005.htm
[26] 赵志飞, 任小荣, 李策, 等. 氧气反应模式-电感耦合等离子体串联质谱法测定土壤中的镉[J]. 岩矿测试, 2021, 40(1): 95-102. doi: 10.15898/j.cnki.11-2131/td.202112230206 Zhao Z F, Ren X R, Li C, et al. Determination of cadmium in soil samples by ICP-MS/MS using oxygen reaction mode[J]. Rock and Mineral Analysis, 2021, 40(1): 95-102. doi: 10.15898/j.cnki.11-2131/td.202112230206
[27] 奚小环, 侯青叶, 杨忠芳, 等. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202105001.htm Xi X H, Hou Q Y, Yang Z F, et al. Big data based studies of the variation features of Chinese soil's background value versus reference value: A paper written on the occasion of < Soil Geochemical Parameters> of China's publication[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1095-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202105001.htm
[28] 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 140-142. Chi Q H, Yan M C. Handbook of elemental abundance for applied geochemistry[M]. Beijing: Geological Publishing House, 2007: 140-142.
[29] 王振伟, 王维宇, 郭朝, 等. 电感耦合等离子体串联质谱氨气模式测定土壤中的银[J]. 环境化学, 2021, 40(4): 1285-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202104033.htm Wang Z Y, Wang W Y, Guo Z, et al. Determination of silver in soil by ICP tandem mass spectrometry ammonia mode[J]. Environmental Chemistry, 2021, 40(4): 1285-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202104033.htm
[30] Zhu Y B, Ariga T, Nakano K, et al. Trends and advances in inductively coupled plasma tandem quadruple mass spectrometry (ICP-QMS/QMS) with reaction cell[J]. Atomic Spectroscopy, 2021, 42(6): 304-305.
[31] Eduardo B F, Ana R I, Martin R, et al. To shift, or not to shift: Adequate selection of an internal standard in mass-shift approaches using tandem ICP-mass spectrometry (ICP-MS/MS)[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(6): 1135-1149.
[32] Zhang J Y, Dong Y H, Xu Z F. Determination of silver in geological samples by dynamic reaction cell inductively coupled plasma mass spectrometry after extraction from boiling aqua regia[J]. Atomic Spectroscopy, 2017, 38(2): 37-41.
[33] Zhang J Y, Dong Y H, Xu Z F. A simple method for the simultaneous determination of trace cadmium and silver in soil samples by dynamic reaction cell inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2016, 37(4): 131-135.
[34] Naoki S, Yasuyuki S. Removal of spectral interferences on noble metal elements using MS/MS reaction cell mode of a triple quadrupole ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(12): 2481-2487.
-
期刊类型引用(4)
1. 曹瑞芹,杨忠芳,余涛. 镉锌稳定同位素地球化学及其在土壤等地质体中的危害与治理研究进展. 中国地质. 2024(03): 833-864 . 百度学术
2. 万丹,陈玖斌,张婷,安宇宸,帅旺财. 镉同位素分馏及其在示踪土壤镉来源和迁移转化过程中的应用进展. 岩矿测试. 2022(03): 341-352 . 本站查看
3. 刘勇. 机载设备自动化测试中应用系统的研究. 中国设备工程. 2022(21): 150-152 . 百度学术
4. 朱志勇,潘辰旭,朱祥坤. 利用套柱法快速分离提纯Sr和Nd元素. 岩矿测试. 2020(04): 515-524 . 本站查看
其他类型引用(0)