• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

四种碰撞/反应模式-电感耦合等离子体串联质谱法测定土壤和水系沉积物样品中的银

刘跃, 林冬, 王记鲁, 李静, 王鑫

刘跃, 林冬, 王记鲁, 李静, 王鑫. 四种碰撞/反应模式-电感耦合等离子体串联质谱法测定土壤和水系沉积物样品中的银[J]. 岩矿测试, 2022, 41(6): 1017-1028. DOI: 10.15898/j.cnki.11-2131/td.202112230206
引用本文: 刘跃, 林冬, 王记鲁, 李静, 王鑫. 四种碰撞/反应模式-电感耦合等离子体串联质谱法测定土壤和水系沉积物样品中的银[J]. 岩矿测试, 2022, 41(6): 1017-1028. DOI: 10.15898/j.cnki.11-2131/td.202112230206
LIU Yue, LIN Dong, WANG Jilu, LI Jing, WANG Xin. Determination of Silver in Soil and Stream Sediments by ICP-MS/MS with Four Collision/Reaction Modes[J]. Rock and Mineral Analysis, 2022, 41(6): 1017-1028. DOI: 10.15898/j.cnki.11-2131/td.202112230206
Citation: LIU Yue, LIN Dong, WANG Jilu, LI Jing, WANG Xin. Determination of Silver in Soil and Stream Sediments by ICP-MS/MS with Four Collision/Reaction Modes[J]. Rock and Mineral Analysis, 2022, 41(6): 1017-1028. DOI: 10.15898/j.cnki.11-2131/td.202112230206

四种碰撞/反应模式-电感耦合等离子体串联质谱法测定土壤和水系沉积物样品中的银

基金项目: 

生态环境部标准编制项目 2018-4

详细信息
    作者简介:

    刘跃,硕士,工程师,主要从事环境监测及无机元素分析工作。E-mail: lymolei@163.com

  • 中图分类号: O657.63;O614.122

Determination of Silver in Soil and Stream Sediments by ICP-MS/MS with Four Collision/Reaction Modes

  • 摘要:

    由于受到铌、锆的质谱干扰,使用电感耦合等离子体质谱法(ICP-MS)很难准确测定土壤和水系沉积物中的银。本文采用电感耦合等离子体串联质谱法(ICP-MS/MS),通过研究93Nb16O+91Zr16OH2+92Zr16OH+109Ag+在氦气、氧气和氨气中质谱信号变化,探讨不同碰撞/反应模式的干扰消除能力和消除机理。实验采用盐酸-硝酸-氢氟酸-高氯酸消解样品,选用氦气MS/MS模式、氧气MS/MS模式、氨气MS/MS模式、氨气Mass-Shift模式测定土壤和水系沉积物中的银含量。结果表明:在优化池气体流速后,四种模式下铌、锆对银的干扰程度分别降低20、1500、1500和2000多倍;方法检出限分别为0.005mg/kg、0.002mg/kg、0.003mg/kg和0.003mg/kg;准确度和精密度采用国家标准物质验证,测定值和标准值的相对误差分别在-1.4%~84.3%、-7.6%~7.2%、-15.0%~10.0%和-12.5%~8.6%之间,相对标准偏差(RSD)分别在1.5%~6.3%、1.4%~8.3%、1.4%~5.9%和0.7%~8.2%之间。氦气MS/MS模式消除干扰能力一般,仅适合测定铌、锆干扰较轻的样品;氧气MS/MS模式、氨气MS/MS模式、氨气Mass-Shift模式消除质谱干扰能力较强,可用于土壤和水系沉积物中痕量银的测定。与行业标准DZ/T 0279.11—2016相比,这三种方法检出限更低、测定范围更宽,并可实现多元素同时测定。

    要点

    (1) 氦气MS/MS、氧气MS/MS、氨气MS/MS、氨气Mass-Shift四种模式均能降低93Nb16O+91Zr16OH2+92Zr16OH+109Ag+的质谱干扰并探讨其消除机理。

    (2) 优化气体流速后,在氧气MS/MS、氨气MS/MS、氨气Mass-Shift三种模式下铌、锆溶液对银的干扰降低了1500倍以上。

    (3) 建立了四种模式ICP-MS/MS直接测定土壤和水系沉积物中银的分析方法。

    HIGHLIGHTS

    (1) The four modes, helium MS/MS, oxygen MS/MS, ammonia MS/MS, ammonia Mass-Shift, could reduce the mass spectrum interference of 93Nb16O+, 91Zr16OH2+, 92Zr16OH+ on 109Ag+, and the elimination mechanism was discussed.

    (2) With the optimal cell gas flow rate, the interference of niobium and zirconium to silver was decreased more than 1500 times in the oxygen MS/MS, ammonia MS/MS, and ammonia Mass-Shift modes.

    (3) Four collision/reaction modes of ICP-MS/MS were utilized for the direct determination of Ag in soil and stream sediments.

  • 锑(Sb)是一种重要的战略金属,应用领域包括阻燃塑料、缩聚催化剂、铅酸电池、玻璃、橡胶、颜料、陶瓷、半导体等1-2。同时,锑也是一种对动植物有害的非必需类金属,其毒性、迁移性受到锑存在形式的影响3。环境中锑主要存在形式为Sb(OH)3和Sb(OH)6,其中三价锑Sb(Ⅲ)的毒性明显高于五价锑Sb(Ⅴ)4。世界卫生组织规定饮用水中锑的最大允许浓度为20μg/L,中国规定饮用水中的最大允许浓度为5μg/L,锑及含锑化合物已被欧盟(EU)和美国环境保护署(USEPA)列为新兴污染物或优先关注的污染物5。中国锑资源丰富,锑矿主要集中在广西、湖南、云南和贵州地区6-7。中国也是锑资源开采大国,锑产能约占全球的78%8。锑矿的大量开采和冶炼,产生的尾矿废渣和矿山废石中锑含量较高。同时,有色金属冶炼、燃烧化石燃料等活动也会产生大量含锑废物,经雨水冲刷和地表径流等因素进入土壤9。例如某射击场和燃煤电厂附近的土壤中锑含量高达67.48mg/kg和39.29mg/kg10-11,造成了严重的污染。地表土壤中的锑除直接污染地表、地下水以外,还可能经由植物根部吸收富集,威胁动物和人类健康12。因此,厘清锑在土壤中的吸附、迁移行为对准确预测锑的环境风险具有重要意义。

    进入土壤的锑可能被吸附、解吸,甚至发生氧化还原反应,自然状况下锑可以通过与金属氢氧化物发生吸附或者共沉淀形成稳定的次生锑矿物13,而锑矿物中的锑也可转变为溶解态,扩散至周边环境乃至地下水中。土壤中吸附锑的活性成分主要为铁、铝和锰氧化物和黏土矿物等,其中广泛存在于土壤和沉积物中的铁氧化物14,如针铁矿、赤铁矿和水铁矿等,对锑的固定占比可达40%~75%15。有研究表明,锑在铁氧化物表面的吸附、沉淀行为与矿物晶面的暴露情况及其浓度有复杂依赖关系16,可在氧化铁表面形成多种配位构型的内球配合物17,基于零价铁的锑污染土壤修复技术也有报道18。锰氧化物是自然界中常见的天然氧化剂,可通过氧化和吸附机制在降低锑的毒性和影响锑的迁移行为方面发挥至关重要的作用19,如有研究报道了天然存在的锰氧化物会降低锑的流动性和生物利用度20。氧化锰不同的暴露晶面对锑的吸附行为也有差异,如Sb(Ⅲ)优先吸附于α-MnO2的{310}、γ-MnO2(斜方锰矿)的{131}和δ-MnO2的{111}晶面21。铝氧化物和黏土材料虽然对锑的吸附量较低,但自然界中氧化铝和黏土矿物相对含量可能较高,对锑的影响也不可忽视22。研究发现Sb(Ⅴ)在γ-Al2O3可形成外配球络合物23,膨润土对Sb(Ⅲ)和Sb(Ⅴ)的最大吸附量分别为370~555μg/g和270~500μg/g24。上述材料通过改性可提高对锑的吸附能力,因而可以构建锑污染的修复材料25。尽管目前已有文献关注天然矿物对锑的吸附、解吸行为26-27,但锑在天然矿物界面处形态的原位表征、其形态与锑浓度的相关性仍未见报道,了解这些基本信息将有助于深入了解锑的地球化学循环及环境风险。

    因此,为探究进入土壤中不同价态锑的吸附迁移行为,有必要对土壤中典型矿物吸附锑的性能及吸附机制进行比较与研究。本文基于土壤的主要成分及相关文献中已证实的对锑的吸附迁移行为有显著影响的组分,选择了土壤中代表性的5种金属氧化物(赤铁矿、针铁矿、水铁矿、斜方锰矿、氧化铝)和一种黏土矿物(高岭石),系统地比较了这6类矿物对Sb(Ⅲ)和Sb(Ⅴ)的吸附性能,获得吸附速率、吸附容量、pH值对吸附的影响等热力学、动力学参数,并结合拉曼光谱对锑在矿物表面的吸附、沉积行为进行原位表征。通过分析吸附机制,总结了上述土壤中典型矿物对锑环境迁移行为的影响,研究结果可为土壤中锑污染风险预警及阻控提供参考。

    为尽可能地反映实际土壤成分的特征,本研究除水铁矿外,其他材料均直接采用商品化的矿物材料,包括:斜方锰矿(γ-MnO2,90%,上海麦克林生化科技有限公司);赤铁矿(α-Fe2O3,99.8%,上海麦克林生化科技有限公司);针铁矿(FeHO2,99%,上海贤鼎生物科技有限公司);氧化铝(α-Al2O3,99.99%,艾览化工科技有限公司);高岭石(A12O3·2SiO2·2H2O,分析纯,上海麦克林生化科技有限公司)。水铁矿由于稳定性较差,为保证实际存在形态的一致性,采用实验室方法合成。合成方法28如下:配制0.2mol/L硝酸铁(分析纯,国药集团化学试剂有限公司)溶液,在不断搅拌情况下滴加浓氨水至溶液pH=7.0,再搅拌30min。离心、超声洗涤3次,真空干燥12h。

    采用X射线衍射仪(XRD,SmartLab SE,日本Rigaku公司)和比表面积测试仪(BET,ASAP2460,美国麦克仪器公司)对材料进行表征。样品处理如下:将赤铁矿、针铁矿、水铁矿、斜方锰矿、氧化铝、高岭石于真空烘箱60℃干燥12h后手动研磨后进行测试。

    采用Zeta电位测试(ZEN3690,英国Malvern公司)表征材料的表面电位。样品处理如下:将材料超声分散后,采用盐酸和氢氧化钠将分散液调至不同pH值,取上清液测试样品的Zeta电位。

    采用电感耦合等离子体发射光谱仪(ICP-OES,EXPEC6000,杭州谱育科技发展有限公司)测定溶液中锑浓度。仪器工作条件:功率1150W,蠕动泵转速50r/min,辅助气流速0.6L/min,雾化器气体流速0.5L/min(转子流量计测量),冲洗时间30s,积分时间15s,重复次数3次。锑元素的特征谱线为:206.8、231.1、259.8nm。

    采用拉曼光谱仪(Raman,QEPRO,蔚海光学仪器(上海)有限公司)对界面吸附态锑进行原位表征。测试方法及仪器条件如下:取吸附后的矿物分散液10μL滴加至玻片,直接进行拉曼光谱测试。激光波长780nm,激光功率100mW,积分时间10s,积分次数10次,光谱分辨率2cm−1。拉曼测试时每个样品至少随机选取10个不同的位置进行光谱采集,计算平均光谱进行后续分析。

    将焦锑酸钾、酒石酸锑钾溶解配制成1000mg/L的储备溶液,实验前按照一定比例稀释到目标浓度。进行吸附实验前,先使用0.1mol/L盐酸或0.1mol/L氢氧化钠将10mL不同浓度的Sb(Ⅲ)和Sb(Ⅴ)初始溶液pH调节至7.0,同时加入硝酸钾控制离子强度为10mmol/L。向溶液中加入一定量的矿物材料,并在25℃下振荡吸附24h。取上层清液通过0.22μm水系滤头过滤,酸化,稀释10倍后,使用ICP-OES测定吸附后锑的浓度,计算吸附量qe(mg/g)。土壤铁锰氧化物和黏土矿物的用量分别为:赤铁矿10mg、针铁矿10mg、水铁矿5mg、氧化铝20mg、斜方锰矿10mg、高岭石50mg。实验中每组样品均平行测定3次,取平均值进行分析。

    取30mL浓度为15mg/L的Sb(Ⅲ)和Sb(Ⅴ)溶液,pH调节至7.0,加入硝酸钾保持离子强度为10mmol/L。加入一定量矿物后于25℃下振荡吸附,在吸附不同时间后,取上层清液通过0.22μm水系滤头过滤,酸化、稀释,ICP-OES检测。土壤铁锰氧化物和黏土矿物的用量分别为:赤铁矿60mg、针铁矿30mg、水铁矿7.5mg、氧化铝150mg、斜方锰矿30mg、高岭石600mg。实验中每组样品均平行测定3次,取平均值进行分析。

    分别将30mL浓度为15mg/L的Sb(Ⅲ)和Sb(Ⅴ)溶液的初始溶液pH调节为4.0、7.0、9.0,加入硝酸钾保持离子强度为10mmol/L。加入一定量矿物材料后,于25℃下振荡吸附。吸附24h后,取上层清液通过0.22μm水系滤头过滤,酸化、稀释,ICP-OES检测。矿物用量同1.2节。实验中每组样品均平行测定3次,计算平均值进行分析。

    为了解矿物的晶型及物相类型,采用X射线衍射谱分析矿物,其谱图见图1。6种矿物的XRD谱图与标准卡片对照,除水铁矿无明显晶型以外,另外5种矿物的XRD谱图与矿物标准谱图吻合较好,且无其他杂相;水铁矿为无定型矿物,其XRD谱图与文献报道结果29一致。矿物的比表面积采用Brunauer-Emmett-Teller法(BET)进行测定,分别测定了6种材料的氮气吸脱附曲线,结果如图2所示。经计算,6种矿物材料赤铁矿、针铁矿、斜方锰矿、氧化铝、高岭石和水铁矿的比表面积分别为6.6、18.9、32.3、6.1、10.5、335.6m2/g。其中,赤铁矿、针铁矿、斜方锰矿、氧化铝、高岭石的氮气吸附-解吸等温线符合Ⅳ类型吸附等温线,说明这5种材料具有介孔结构(孔直径为2~50nm);水铁矿的氮气吸附-解吸等温线符合Ⅰ类型吸附等温线,说明水铁矿具有微孔结构(孔直径<2nm)。

    图  1  六种矿物材料的X射线衍射谱图
    a—赤铁矿;b—针铁矿;c—斜方锰矿;d—氧化铝;e—高岭石;f—水铁矿。
    Figure  1.  The XRD patterns of the six minerals
    图  2  六种矿物材料的氮气吸附-脱附等温线
    a—赤铁矿;b—针铁矿;c—斜方锰矿;d—氧化铝;e—高岭石;f—水铁矿。
    Figure  2.  The N2 adsorption-desorption isotherms of the six minerals

    中性条件下6种矿物材料对Sb(Ⅲ)/Sb(Ⅴ)的吸附动力学如图3所示,吸附数据拟合均更符合准二级动力学模型(表1),表明化学吸附是主要的速率控制步骤。Sb(Ⅲ)和Sb(Ⅴ)在吸附初始阶段即前2h内吸附速率较快;随着吸附时间进一步延长,矿物表面的活性吸附位点逐渐饱和,吸附速率在2~6h内逐渐下降;除斜方锰矿吸附Sb(Ⅲ)外,其他材料均在24h左右达到吸附平衡。斜方锰矿吸附Sb(Ⅲ)在吸附初期(约5min)迅速达到较高的吸附量,该过程可能与其对Sb(Ⅲ)的氧化作用有关,反应方程式如以下(1)和(2)所示,氧化反应30以及生成Sb(Ⅴ)的吸附共同作用导致前期吸附速率较快31;在斜方锰矿氧化Sb(Ⅲ)的过程中,可能破坏其表面结构,导致少部分吸附态锑的溶出25,因此20min后Sb(Ⅲ)的吸附量有一定程度地下降。随吸附时间的继续延长,Sb(Ⅲ)的吸附逐步达到平衡。

    图  3  六种矿物材料吸附(a) Sb(Ⅲ)和(b) Sb(Ⅴ)的吸附动力学
    Figure  3.  The adsorption kinetics of (a) Sb(Ⅲ) and (b) Sb(Ⅴ) on the six minerals
    表  1  Sb(Ⅲ)和Sb(Ⅴ)的吸附动力学拟合参数
    Table  1.  Fitting parameters of adsorption kinetics for Sb(Ⅲ) and Sb(Ⅴ)
    矿物材料 Sb(Ⅲ)准一级动力学 Sb(Ⅲ)准二级动力学 Sb(Ⅴ)准一级动力学 Sb(Ⅴ)准二级动力学
    K1
    (h−1)
    qe
    (mg/g)
    R2 K2
    [g/(mg·h)]
    qe
    (mg/g)
    R2 K1
    (h−1)
    qe
    (mg/g)
    R2 K2
    [g/(mg·h)]
    qe
    (mg/g)
    R2
    赤铁矿 2.58 7.35 0.750 0.88 7.45 0.911 1.15 1.05 0.721 1.52 1.13 0.913
    针铁矿 0.53 7.83 0.896 0.12 8.22 0.986 1.75 2.74 0.721 1.05 2.86 0.924
    水铁矿 4.74 33.7 0.645 0.40 34.4 0.957 3.33 24.1 0.946 0.33 24.8 0.999
    斜方锰矿 82.1 7.03 0.716 41.9 7.22 0.940 0.75 4.90 0.832 0.20 5.30 0.921
    氧化铝 6.58 0.71 0.958 15.5 0.73 0.976 4.49 0.59 0.631 16.1 0.61 0.933
    高岭石 6.45 0.08 0.927 132.8 0.08 0.973 0.34 0.09 0.894 9.17 0.06 0.939
    下载: 导出CSV 
    | 显示表格
    $$ \mathrm{MnO}_{ \mathrm{2}} \mathrm{+Sb(OH)}_{ \mathrm{3}} \mathrm{+H}^{ \mathrm+} \mathrm{+H}_{ \mathrm{2}} \mathrm{O\rightarrow Mn}^{ \mathrm{2+}} \mathrm{+Sb(OH)}_{ \mathrm{6}}^{ \mathrm-} $$ (1)
    $$ \mathrm{2MnO}_{ \mathrm{2}} \mathrm{+Sb(OH)}_{ \mathrm{3}} \mathrm{+5H}^{ \mathrm+}\rightarrow \mathrm{2Mn}^{ \mathrm{3+}} \mathrm{+Sb(OH)}_{ \mathrm{6}}^{ \mathrm-} \mathrm{+H}_{ \mathrm{2}} \mathrm{O} $$ (2)

    为了比较6种矿物材料对锑的吸附能力,分别测得中性条件下Sb(Ⅲ)/Sb(Ⅴ)在6种矿物表面吸附的吸附等温线,结果如图4所示,随着Sb(Ⅲ)/Sb(Ⅴ)初始浓度的增加,矿物对锑的吸附量增加。分别采用Langmuir和Freundlich等温线模型对吸附等温线进行了拟合,相关拟合参数列于表2。结果表明,Freundlich模型拟合结果的R2值均大于Langmuir模型,表明锑在上述6种矿物表面主要发生多层吸附。Freundlich系数(KF)反映了吸附质在吸附剂表面的吸附程度,KF越高,表示吸附越有效,因此对于矿物吸附锑而言,铁氧化物和锰氧化物对锑的KF较大,表明上述材料与锑的亲和性较强32

    图  4  六种矿物材料吸附(a) Sb(Ⅲ)和(b) Sb(Ⅴ)的吸附等温线
    Figure  4.  Adsorption isotherms of (a) Sb(Ⅲ) and (b) Sb(Ⅴ) on the six minerals
    表  2  Sb(Ⅲ)和Sb(Ⅴ)的吸附等温线拟合参数
    Table  2.  Fitting parameters of adsorption isotherms of Sb(Ⅲ) and Sb(Ⅴ)
    材料 Sb(Ⅲ)-Langmuir Sb(Ⅲ)-Freundlich Sb(Ⅴ)-Langmuir Sb(Ⅴ)-Freundlich
    KL
    (L/mg)
    qm
    (mg/g)
    R2 n KF
    [(mg/g)(mg/L)−1/n]
    R2 KL
    (L/mg)
    qm
    (mg/g)
    R2 n KF
    [(mg/g)(mg/L)−1/n]
    R2
    赤铁矿 0.48 5.13 0.961 2.90 1.90 0.996 0.11 3.70 0.925 2.43 0.70 0.997
    针铁矿 0.21 13.30 0.834 2.22 3.05 0.997 0.14 5.67 0.987 2.79 1.30 0.994
    水铁矿 1.01 101.4 0.980 2.09 45.3 0.979 1.00 55.9 0.789 4.62 31.7 0.987
    斜方锰矿 0.15 16.52 0.964 2.19 3.19 0.993 0.76 7.58 0.950 4.62 3.56 0.995
    氧化铝 0.08 1.66 0.961 1.84 0.20 0.993 0.10 1.69 0.871 2.75 0.36 0.983
    高岭石 0.21 0.27 0.967 2.96 0.08 0.957 0.12 0.51 0.990 2.27 0.09 0.921
    下载: 导出CSV 
    | 显示表格

    6种矿物对不同价态锑的吸附能力不同,整体而言,同种矿物材料对Sb(Ⅲ)的吸附容量大于该矿物对Sb(Ⅴ)的吸附容量,表明进入土壤的Sb(Ⅲ)相较于Sb(Ⅴ)更容易被土壤矿物吸附固定。对比吸附容量,单位质量土壤矿物对Sb(Ⅲ)和Sb(Ⅴ)的最大吸附容量(mg/g)分别为:水铁矿(101.4、55.9)>斜方锰矿(16.52、7.58)>针铁矿(13.30、5.67)>赤铁矿(5.13、3.70)>氧化铝(1.66、1.69)>高岭石(0.27、0.51)。土壤中的铁氧化物一般具有较大的比表面积、高孔隙率和表面电荷高等特点,而且对锑有较强的化学亲和力,因此是控制锑元素迁移和生物利用度的关键成分33。相比于晶型的针铁矿和赤铁矿,水铁矿的比表面积更大,吸附活性位点更多,因此对锑的吸附能力更强34。土壤中锰氧化物尽管含量较低,但由于锰具有丰富的价态和较强的氧化能力,因此可介导锑等变价金属发生氧化还原反应21。此外,锰氧化物对锑的亲和作用也会参与锑的吸附固定,因此锰氧化物在控制锑的迁移和形态转化行为方面发挥着重要的作用。斜方锰矿对Sb(Ⅲ)的吸附量大于Sb(Ⅴ),说明在介导Sb(Ⅲ)的氧化过程中,斜方锰矿自身的晶体结构可能发生改变,从而提供更多的活性位点,使得Sb(Ⅲ)的吸附量提高21。氧化铝和黏土矿物高岭石对锑的吸附量较低,原因是这类矿物对锑的化学亲和性较弱22,同时比表面积也较小。但由于某些土壤中,如岩石矿床风化沉积土壤、河流沉积土壤,氧化铝和高岭石的含量可能远高于铁氧化物或锰氧化物,因此对于这类情况,上述矿物对土壤中锑迁移行为的影响也不容忽视。

    为了探究可能的吸附机制,对pH值对矿物材料吸附锑性能的影响进行了实验,结果如图5所示。6种矿物材料对Sb(Ⅲ)的吸附在实验的pH条件下吸附量变化不大(0.3%~14%),而随着pH值的升高,6种矿物材料对Sb(Ⅴ)的吸附量均有所下降(24%~78%),表明偏碱性不利于Sb(Ⅴ)的吸附。相较Sb(Ⅲ)而言,Sb(Ⅴ)的吸附量下降程度更大。矿物材料的Zeta电位表征结果(图5c)显示,赤铁矿、针铁矿、水铁矿、斜方锰矿、氧化铝、高岭石的等电点分别为3.1、4.4、7.2、4.5、7.8和1.6;根据锑在水溶液中的形态分布曲线,实验条件下Sb(Ⅲ)、Sb(Ⅴ)主要存在形态分别为Sb(OH)3和Sb(OH)6。由于Sb(Ⅲ)主要以分子形式存在,因此受静电吸附作用的影响较小,说明矿物对Sb(Ⅲ)的吸附主要依靠化学吸附等机制;对于Sb(Ⅴ),尽管静电吸附作用有一定的贡献,例如酸性条件下,水铁矿、针铁矿、斜方锰矿、氧化铝带正电荷,有利于带负电的Sb(Ⅴ)的吸附,但整体而言,静电吸附的贡献有限,矿物对Sb(Ⅴ)的吸附主要通过化学吸附等形式完成。类似的现象也在砷、镉等重金属的吸附中观测到35-36。由于高岭石在研究的pH范围内均带负电荷,不利于Sb(Ⅴ)的吸附,这与观测到的低吸附量一致。

    图  5  pH值对(a)Sb(Ⅲ)、(b)Sb(Ⅴ)吸附的影响和(c)六种矿物的Zeta电位
    Figure  5.  Effect of pH on the adsorption of (a) Sb(Ⅲ), (b) Sb(Ⅴ) on the minerals and (c) the Zeta potential of the six minerals

    有文献报道,当平衡浓度较低时,土壤矿物对锑吸附主要通过表面化学吸附,而随着表面浓度的增加,超过饱和浓度后,锑可能在矿物表面发生沉积现象37。为了验证上述现象,采集了更高平衡浓度下锑的吸附等温线,结果如图6所示。结果表明,随着平衡浓度的进一步增大,矿物对锑的吸附容量会进一步增大;吸附等温线拟合数据表明,锑在矿物表面吸附符合Freundlich多层吸附模型;特别是对于Sb(Ⅲ)吸附于针铁矿和赤铁矿表面,还观测到吸附量激增的现象,推测发生了表面沉积现象。

    图  6  高浓度(a) Sb(Ⅲ)和(b) Sb(Ⅴ)在6种矿物上的吸附等温线
    Figure  6.  Adsorption isotherms of high concentrations of (a) Sb(Ⅲ) and (b) Sb(Ⅴ) on the six minerals

    由于Sb(Ⅲ)沉积后可能以Sb2O3形式存在,拉曼光谱是一种分子指纹光谱,不仅对矿物材料的结构敏感,同时锑的氧化物也有特征拉曼谱峰,非常适合于这类表面沉积现象的原位表征,因此本实验采用拉曼光谱对吸附锑后的矿物进行表征,结果如图7图8所示。可见除水铁矿外,其他5种矿物具有明显的特征峰。结合已有相关文献报道,对获得的特征拉曼峰的归属进行了归纳,相应的峰位及归属列于表3。对于高浓度的Sb(Ⅴ)吸附后的矿物材料,并没有获得Sb(Ⅴ)氧化物Sb2O5的特征峰,表明并没有明显的沉积现象出现,主要以吸附作用为主;而对于Sb(Ⅲ),如图8所示,出现了明显的Sb2O3特征峰。位于190cm−1和452cm−1的拉曼峰可归属于Sb—O—Sb间的弯曲振动,而256、357、374和715cm−1的拉曼峰则可归属于Sb—O—Sb间的伸缩振动38。上述特征峰与矿物立方晶型α-Sb2O3的特征谱峰一致,表明表面沉积主要形成α型Sb2O3。上述结果证实,高浓度条件下,Sb(Ⅲ)可能在矿物材料发生沉积现象,生成α型Sb2O3,与化学吸附态Sb(Ⅲ)相比,这类Sb可能具有更高的环境迁移性,因此具有更高的环境风险,值得关注。

    图  7  六种矿物材料吸附Sb(Ⅴ)前后的拉曼光谱谱图
    a—赤铁矿;b—针铁矿;c—斜方锰矿;d—氧化铝;e—高岭石;f—水铁矿。
    Figure  7.  Raman spectra of the six minerals before and after Sb(Ⅴ) adsorption
    图  8  六种矿物材料吸附Sb(Ⅲ)前后的拉曼光谱谱图
    a—赤铁矿;b—针铁矿;c—斜方锰矿;d—氧化铝;e—高岭石;f—水铁矿。
    Figure  8.  Raman spectra of the six minerals before and after Sb(Ⅲ) adsorption
    表  3  Sb(Ⅲ)或Sb(Ⅴ)氧化物和相关矿物的拉曼光谱特征峰位及归属
    Table  3.  The characteristic Raman peaks of Sb(Ⅲ) or Sb(Ⅴ) oxides and the minerals and their assignment
    材料 特征峰
    (cm−1)
    归属 材料 特征峰
    (cm−1)
    归属
    Sb2O338-39 190 F2g振动 针铁矿40-41 224 Fe—O拉伸振动
    374 F2g振动 405 Fe—OH 拉伸振动
    452 Ag振动 666 Fe—O拉伸振动
    Sb2O542-43 495 Sb-O伸缩振动 斜方锰矿44-45 575 Mn—O拉伸振动
    635 Sb-O伸缩振动 645 Mn—O对称伸缩振动
    赤铁矿46-47 227 A1g振动 高岭石48-49 189 A1g(ν1)AlO6振动
    293 Eg振动 409 ν2(e)SiO4振动
    413 Eg振动 460 ν2(e)SiO4振动
    499 Eg振动 640 Si-O-Al伸缩振动
    614 Eg振动 717 Si-O-Al伸缩振动
    氧化铝50-51 378 Eg振动 787 OH伸缩振动
    417 A1g振动
    下载: 导出CSV 
    | 显示表格

    从上述结果可见,拉曼光谱可以较为简便地对Sb(Ⅲ)的沉积行为进行原位表征。但拉曼光谱的检测灵敏度较低,因此对于浓度较低的吸附态的Sb(Ⅴ)和Sb(Ⅲ),难以直接检测,结合表面增强拉曼光谱等技术,有望提高检测的灵敏度。

    选取6种土壤中典型矿物(赤铁矿、针铁矿、水铁矿、氧化铝、斜方锰矿和高岭石),研究了Sb(Ⅲ)和Sb(Ⅴ)在上述矿物表面的吸附热、动力学行为,并采用拉曼光谱对吸附界面的锑进行了原位表征。研究结果表明,选取的矿物对锑的吸附量有以下顺序:水铁矿>斜方锰矿>针铁矿>赤铁矿>氧化铝>高岭石;铁氧化物对锑有较强的吸附性,其中水铁矿由于其较大的比表面积,吸附贡献较大;斜方锰矿由于具有较强的氧化能力,可通过氧化作用氧化Sb(Ⅲ),该过程中矿物结构可能发生改变,从而进一步增强对锑的吸附能力;氧化铝和高岭石由于与锑的亲和力较弱,对锑的吸附贡献较小。pH影响实验证实,静电吸附作用对Sb(Ⅴ)的吸附有一定的贡献,但整体而言Sb(Ⅴ)和Sb(Ⅲ)主要依靠化学吸附在矿物表面进行吸附。高浓度吸附等温线实验和拉曼光谱表征结果证实,在较高平衡浓度下,Sb(Ⅴ)主要发生化学吸附,而Sb(Ⅲ)可能在矿物表面发生沉积,生成α型Sb2O3,从而产生与化学吸附态Sb(Ⅲ)不同的环境迁移行为。

    拉曼光谱可方便地用于矿物表面吸附态和沉积态锑的原位光谱表征。但实际土壤中各矿物组分的含量可能有显著差异,要准确评价锑在实际土壤中的吸附、迁移行为,还需要系统地表征各组分的含量、粒度信息,同时结合实际土壤的理化条件(如pH、离子强度、水分和有机质等),综合分析锑的环境行为。

  • 图  1   1μg/L银溶液(a)、1mg/L铌标准溶液(b)和10mg/L锆溶液(c)在不同模式下的主要产物离子和信号强度

    Figure  1.   Main product ions and signal intensives of 1μg/L Ag solution(a), 1mg/L Nb solution(b) and 10mg/L Zr solution(c) in different modes

    图  2   (a) 氦气MS/MS模式、(b)氧气MS/MS模式、(c)氨气MS/MS模式、(d)氨气Mass-Shift模式下池气体流速对基体空白溶液、基体加标溶液信号强度和背景等效浓度的影响

    Figure  2.   Effects of cell gas flow rate on signal intensities of matrix blank solutions, matrix spiked solutions and BEC by (a) helium MS/MS mode, (b) oxygen MS/MS mode, (c) ammonia MS/MS mode, and (d) ammonia Mass-Shift mode

    表  1   ICP-MS/MS仪器工作参数

    Table  1   Working parameters of ICP-MS/MS instrument

    工作参数 标准MS/MS模式 氦气MS/MS模式 氧气MS/MS模式 氨气MS/MS模式 氨气Mass-Shift模式
    产物离子 109Ag+ 109Ag+ 109Ag+ 109Ag+ 109Ag17(NH3)2+
    Q1Q3(m/z) 109→109 109→109 109→109 109→109 109→143
    质量切割参数(RPq) 0.25 0.25 0.45 0.45 0.45
    池气体 - He O2 NH3 NH3
    气体流速(mL/min) - 7.0 2.6 1.8 1.8
    下载: 导出CSV

    表  2   不同浓度的锆、铌溶液在不同测量模式下对109Ag干扰情况

    Table  2   Interference effects of different concentrations of Zr and Nb solutions on 109Ag in different measurement modes

    溶液类型 锆或铌溶液浓度
    (mg/L)
    109Ag测定值(μg/L)
    氦气MS/MS模式 氧气MS/MS模式 氨气MS/MS模式 氨气Mass-Shift模式
    锆溶液 10.0 0.013 0.006 0.006 0.005
    50.0 0.061 0.008 0.007 0.007
    100 0.140 0.019 0.022 0.020
    500 1.047 0.035 0.030 0.030
    1000 2.432 0.050 0.047 0.046
    铌溶液 1.00 0.441 0.000 0.000 0.000
    5.00 2.630 0.005 0.007 0.003
    10.0 4.960 0.009 0.011 0.005
    50.0 26.542 0.036 0.037 0.013
    100 43.441 0.077 0.074 0.026
    500 411.726 0.472 0.356 0.128
    1000 978.826 1.006 0.780 0.261
    下载: 导出CSV

    表  3   不同测量模式下方法准确度和精密度

    Table  3   Accuracy and precision tests of the method by different measurement modes

    标准物质编号 银标准值
    (mg/kg)
    Nb/Ag Zr/Ag 氦气MS/MS模式 氧气MS/MS模式 氨气MS/MS模式 氨气Mass-Shift模式
    银测定平均值
    (mg/kg)
    RSD
    (%)
    相对误差
    (%)
    银测定平均值
    (mg/kg)
    RSD
    (%)
    相对误差
    (%)
    银测定平均值
    (mg/kg)
    RSD
    (%)
    相对误差
    (%)
    银测定平均值
    (mg/kg)
    RSD
    (%)
    相对误差
    (%)
    GBW07403 0.091±0.007 102 2703 0.096 2.4 5.5 0.094 2.2 3.3 0.095 3.1 4.4 0.093 2.6 2.2
    GBW07404 0.070±0.011 543 7143 0.115 3.0 64.3 0.075 4.0 7.2 0.077 3.8 10.0 0.076 4.6 8.6
    GBW07405 4.4±0.4 5 62 4.42 1.5 0.5 4.41 1.4 0.3 4.31 2.8 -2.1 4.40 2.4 0
    GBW07407 0.057±0.011 1123 5579 0.105 4.9 84.3 0.053 4.2 -7.1 0.051 5.1 -10.6 0.055 5.6 -3.6
    GBW07451 0.074±0.006 208 3446 0.073 5.0 -1.4 0.074 2.7 0 0.072 4.2 -2.8 0.070 2.8 -5.5
    GBW07302a 0.040±0.011 1000 3550 0.072 4.7 80.0 0.038 8.3 -5.0 0.034 5.9 -15.0 0.035 7.5 -12.5
    GBW07305a 0.63±0.06 27 437 0.652 3.3 3.5 0.629 1.8 -0.2 0.626 1.4 -0.7 0.628 0.7 -0.4
    GBW07309 0.089±0.010 202 4157 0.088 3.1 -1.2 0.086 1.8 -3.4 0.083 2.9 -6.8 0.087 3.6 -2.3
    GBW07311 3.2±0.4 8 48 3.20 2.0 0 3.21 1.4 0.4 3.18 1.6 -0.7 3.28 2.2 2.5
    GBW07375 0.040±0.004 155 2190 0.043 6.3 7.5 0.037 4.5 -7.6 0.038 5.6 -5.0 0.037 8.2 -7.5
    注:Nb/Ag和Zr/Ag分别为标准样品中铌和锆的含量与银含量的比值。
    下载: 导出CSV
  • [1] 赵学沛. 微波消解-石墨炉原子吸收光谱法测定痕量银的研究[J]. 岩石矿物学杂志, 2019, 38(2): 254-258. doi: 10.3969/j.issn.1000-6524.2019.02.009

    Zhao X P. Determination of trace amounts of silver by microwave digestion graphite furnace atomic absorption spectrometry[J]. Acta Petrologica et Mineralogica, 2019, 38(2): 254-258. doi: 10.3969/j.issn.1000-6524.2019.02.009

    [2] 夏辉, 张永花, 李景文, 等. 石墨炉原子吸收光谱法测定化探样中痕量银的方法改进[J]. 岩矿测试, 2013, 32(1): 48-52. doi: 10.3969/j.issn.0254-5357.2013.01.009

    Xia H, Zhang Y H, Li J W, et al. An improved method for determination of trace silver in geochemical exploration samples by graphite furnace atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2013, 32(1): 48-52. doi: 10.3969/j.issn.0254-5357.2013.01.009

    [3] 谭龙奇. 直接滴加液体缓冲剂CCD-Ⅰ型交流电弧直读发射光谱法测定土壤中银锡[J]. 中国无机分析化学, 2020, 10(2): 39-41. doi: 10.3969/j.issn.2095-1035.2020.02.008

    Tan L Q. Determination of Ag and Sn in soil by direct addition of liquid buffer CCD-Ⅰ emission spectrometer[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(2): 39-41. doi: 10.3969/j.issn.2095-1035.2020.02.008

    [4] 黄海波, 沈加林, 陈宇, 等. 全谱发射光谱仪应用于分析地质样品中的银锡硼钼铅[J]. 岩矿测试, 2020, 39(4): 555-565. doi: 10.15898/j.cnki.11-2131/td.201909230137

    Huang H B, Shen J L, Chen Y, et al. Simultaneous determination of silver, boron, tin, molybdenum and lead in geological samples by atomic emission spectrometer with full spectrum[J]. Rock and Mineral Analysis, 2020, 39(4): 555-565. doi: 10.15898/j.cnki.11-2131/td.201909230137

    [5] 肖细炼, 王亚夫, 陈燕波, 等. 交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J]. 冶金分析, 2018, 38(7): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201807004.htm

    Xiao X L, Wang Y F, Chen Y B, et al. Determination of silver, boron and tin in geochemical samples by alternating current arc optoelectronic direct reading emission spectrometry[J]. Metallurgical Analysis, 2018, 38(7): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201807004.htm

    [6] 黄俐, 陈秀梅, 张晔霞. 微波消解-电感耦合等离子体质谱法测定土壤中的银[J]. 环境科学导刊, 2020, 39(4): 94-96. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK202004028.htm

    Huang L, Chen X M, Zhang Y X. Determination of silver in soil by microwave digestion method and inductively coupled plasma-mass spectrometry[J]. Environmental Science Survey, 2020, 39(4): 94-96. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK202004028.htm

    [7] 于亚辉, 闫红岭, 陈浩凤, 等. 电感耦合等离子体质谱法测定地球化学样品中的银[J]. 理化检验(化学分册), 2016, 52(7): 834-836. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201607025.htm

    Yu Y H, Yan H L, Chen H F, et al. Determination of silver in geochemical samples by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(7): 834-836. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201607025.htm

    [8] 刘静波, 张更宇. 全自动消解电感耦合等离子体质谱仪测定环境土壤中铍钡铊银[J]. 分析试验室, 2018, 37(2): 207-211. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201802017.htm

    Liu J B, Zhang G Y. Determination of Be, Ba, Tl and Ag in environmental soil by inductively coupled plasma mass spectrometry with automatic digestion instrument[J]. Chinese Journal of Analysis Laboratory, 2018, 37(2): 207-211. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201802017.htm

    [9] 张志喜, 黄惠琴. 电感耦合等离子体质谱法测定地球化学样品中的银、砷、锑、铋[J]. 中国无机分析化学, 2014, 4(1): 46-49. doi: 10.3969/j.issn.2095-1035.2014.01.012

    Zhang Z X, Huang H Q. Determination of silver, arsenic, antimony and bismuth in geochemical samples using inductively coupled plasma mass spectrometry together with aqua regia decomposition[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1): 46-49. doi: 10.3969/j.issn.2095-1035.2014.01.012

    [10] 杨艳明. 电感耦合等离子体质谱法测定水系沉积物中银铜砷锑铋镉[J]. 冶金分析, 2019, 39(7): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201907009.htm

    Yang Y M. Determination of silver, copper, arsenic, antimony, bismuth and cadmium in stream sediment by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(7): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201907009.htm

    [11]

    Wu Y, Huang D M, Feng T, et al. Determination of silver in geological samples using aerosol dilution ICP-MS after water-bath extraction with inverse aqua regia[J]. Atomic Spectroscopy, 2021, 42(6): 374-382.

    [12] 刘海明, 武明丽, 成景特. 酸溶分解-电感耦合等离子体质谱内标法测定地质样品中的痕量银[J]. 岩矿测试, 2021, 40(3): 444-450. doi: 10.15898/j.cnki.11-2131/td.202002190018

    Liu H M, Wu M L, Cheng J T. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with acid decomposition and internal standard calibration[J]. Rock and Mineral Analysis, 2021, 40(3): 444-450. doi: 10.15898/j.cnki.11-2131/td.202002190018

    [13] 刘彤彤, 钱银弟, 黄登丽. 磷酸沉淀分离-电感耦合等离子体质谱法测定化探样品中的痕量银[J]. 岩矿测试, 2021, 40(5): 650-658. doi: 10.15898/j.cnki.11-2131/td.202105060058

    Liu T T, Qian Y D, Huang D L. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with phosphoric acid precipitation separation[J]. Rock and Mineral Analysis, 2021, 40(5): 650-658. doi: 10.15898/j.cnki.11-2131/td.202105060058

    [14] 刘彤彤, 黄登丽. 王水溶样-电感耦合等离子体质谱法测定化探样品中痕量银[J]. 冶金分析, 2021, 41(7): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202107013.htm

    Liu T T, Huang D L. Determination of trace silver in geological samples by inductively coupled plasma mass spectrometry after sample dissolution with aqua regia[J]. Metallurgical Analysis, 2021, 41(7): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202107013.htm

    [15] 刘向磊, 孙文军, 文田耀, 等. 负载泡塑富集-电感耦合等离子体质谱法测定地质样品中痕量金和银[J]. 分析化学, 2015, 43(9): 1371-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201509022.htm

    Liu X L, Sun W J, Wen T Y, et al. Determination of Au and Ag in geological samples by loaded polyurethane foam-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(9): 1371-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201509022.htm

    [16] 高玉花, 毕建玲, 殷学博. P507负载泡塑分离-ICP-MS测定地质样品中的痕量银[J]. 山东国土资源, 2015, 31(12): 70-73.

    Gao Y H, Bi J L, Yin X B. Determination of trace Ag in geological samples by using P507 to separate ICP-MS loaded polyfoam[J]. Shandong Land and Resources, 2015, 31(12): 70-73.

    [17] 徐娟, 胡兆初, 刘勇胜, 等. 膜去溶-电感耦合等离子质谱测定21种国际地质标样中的银[J]. 分析化学, 2008, 36(11): 1493-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200811009.htm

    Xu J, Hu Z C, Liu Y S, et al. Direct determination of Ag in 21 international geological reference materials by membrane desolvation-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2008, 36(11): 1493-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200811009.htm

    [18] 朱志刚, 李美丽, 孙元芳, 等. ICP-MS测定银的干扰现象分析与方法建立[J]. 分析仪器, 2016(5): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ201605017.htm

    Zhu Z G, Li M L, Sun Y F, et al. Analysis of interference phenomenon for determination of silver by ICP-MS[J]. Analytical Instrumentation, 2016(5): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ201605017.htm

    [19] 薛志伟, 乔宁强, 朱晓贤, 等. ICP-MS测定土壤和水系沉积物中的微量银[J]. 中国测试, 2015, 41(3): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201503012.htm

    Xue Z W, Qiao N Q, Zhu X X, et al. Determination of trace silver in soil and water sediments by ICP-MS[J]. China Measurement & Test, 2015, 41(3): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201503012.htm

    [20] 王家恒, 刘冬云. 动态反应池-电感耦合等离子体质谱法同时测定地质样品中的金和银[J]. 分析试验室, 2017, 36(7): 819-822. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201707018.htm

    Wang J H, Liu D Y. Determination of Au and Ag in geological samples by dynamic reaction cell-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2017, 36(7): 819-822. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201707018.htm

    [21]

    Guo W, Hu S H, Zhang J Y, et al. Elimination of oxide interferences and determination of ultra-trace silver in soils by ICP-MS with ion-molecule reactions[J]. Science of the Total Environment, 2011, 409(15): 2981-2986.

    [22]

    Chang C C, Liu H T, Jiang S J. Bandpass reaction cell inductively coupled plasma mass spectrometry for the determination of silver and cadmium in samples in the presence of excess Zr, Nb and Mo[J]. Analytica Chimica Acta, 2003, 493(2): 213-218.

    [23] 徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394-402. doi: 10.15898/j.cnki.11-2131/td.201812070131

    Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394-402. doi: 10.15898/j.cnki.11-2131/td.201812070131

    [24] 黄智敏, 吴伟明, 杨雪, 等. 电感耦合等离子体串联质谱法直接测定高纯铽中稀土杂质[J]. 分析试验室, 2021, 40(11): 1345-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202111021.htm

    Huang Z M, Wu W M, Yang X, et al. Direct determination of rare earth impurities in highly pure terbium by inductively coupled plasma-tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2021, 40(11): 1345-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202111021.htm

    [25] 李爱阳, 伍素云, 刘宁, 等. ICP-MS/MS法测定壳聚糖中的重金属元素[J]. 分析试验室, 2020, 39(5): 516-520. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202005005.htm

    Li A Y, Wu S Y, Liu N, et al. Determination of heavy metal elements in chitosan by inductively coupled plasma tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2020, 39(5): 516-520. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202005005.htm

    [26] 赵志飞, 任小荣, 李策, 等. 氧气反应模式-电感耦合等离子体串联质谱法测定土壤中的镉[J]. 岩矿测试, 2021, 40(1): 95-102. doi: 10.15898/j.cnki.11-2131/td.202112230206

    Zhao Z F, Ren X R, Li C, et al. Determination of cadmium in soil samples by ICP-MS/MS using oxygen reaction mode[J]. Rock and Mineral Analysis, 2021, 40(1): 95-102. doi: 10.15898/j.cnki.11-2131/td.202112230206

    [27] 奚小环, 侯青叶, 杨忠芳, 等. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202105001.htm

    Xi X H, Hou Q Y, Yang Z F, et al. Big data based studies of the variation features of Chinese soil's background value versus reference value: A paper written on the occasion of < Soil Geochemical Parameters> of China's publication[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1095-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202105001.htm

    [28] 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 140-142.

    Chi Q H, Yan M C. Handbook of elemental abundance for applied geochemistry[M]. Beijing: Geological Publishing House, 2007: 140-142.

    [29] 王振伟, 王维宇, 郭朝, 等. 电感耦合等离子体串联质谱氨气模式测定土壤中的银[J]. 环境化学, 2021, 40(4): 1285-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202104033.htm

    Wang Z Y, Wang W Y, Guo Z, et al. Determination of silver in soil by ICP tandem mass spectrometry ammonia mode[J]. Environmental Chemistry, 2021, 40(4): 1285-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202104033.htm

    [30]

    Zhu Y B, Ariga T, Nakano K, et al. Trends and advances in inductively coupled plasma tandem quadruple mass spectrometry (ICP-QMS/QMS) with reaction cell[J]. Atomic Spectroscopy, 2021, 42(6): 304-305.

    [31]

    Eduardo B F, Ana R I, Martin R, et al. To shift, or not to shift: Adequate selection of an internal standard in mass-shift approaches using tandem ICP-mass spectrometry (ICP-MS/MS)[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(6): 1135-1149.

    [32]

    Zhang J Y, Dong Y H, Xu Z F. Determination of silver in geological samples by dynamic reaction cell inductively coupled plasma mass spectrometry after extraction from boiling aqua regia[J]. Atomic Spectroscopy, 2017, 38(2): 37-41.

    [33]

    Zhang J Y, Dong Y H, Xu Z F. A simple method for the simultaneous determination of trace cadmium and silver in soil samples by dynamic reaction cell inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2016, 37(4): 131-135.

    [34]

    Naoki S, Yasuyuki S. Removal of spectral interferences on noble metal elements using MS/MS reaction cell mode of a triple quadrupole ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(12): 2481-2487.

  • 期刊类型引用(8)

    1. 王小花,黄韡,顾培良,李静,周佳. 基于自动顶空-固相微萃取-气相色谱质谱检测葡萄酒中的9种木塞污染物. 食品科技. 2024(08): 322-328 . 百度学术
    2. 吴悦,赖永忠,陆国永,林晓昇,梁树生,许文帅. 顶空/气相色谱-质谱法同时测定印染废水中吡啶、苯胺和硝基苯. 岩矿测试. 2023(04): 781-792 . 本站查看
    3. 陶慧,黄理金,欧阳磊,帅琴. 氨基化共价有机骨架固相微萃取涂层用于水体中酚类的高效萃取. 岩矿测试. 2022(06): 1040-1049 . 本站查看
    4. 黄百祺,沈丹妮,王如意,李双林,林焕怡,李咏梅. 不同萃取头分析大高良姜挥发性成分效果比较. 中成药. 2021(06): 1656-1662 . 百度学术
    5. 赵佳平,王俊霞,刘婷婷,张占恩. 含铁二氧化硅涂层固相微萃取-GC/MS法测定水中的有机磷阻燃剂. 现代化工. 2021(09): 235-240 . 百度学术
    6. 梁淼,杨艳,石嘉悦,汪兴平,郑福平,余爱农. 酶/酸水解毛叶木姜子中键合态香味成分的比较. 精细化工. 2020(05): 989-996 . 百度学术
    7. 孙书堂,严倩,黎宁,黄理金,帅琴. 铁丝原位自转化-固相微萃取新涂层应用于萃取环境水样中多环芳烃的性能研究. 岩矿测试. 2020(03): 408-416 . 本站查看
    8. 杨洪早,李锦宇,王东升,张世栋,董书伟,闫宝琪,那立冬,吴春丽,邓俊,吴冠连,陈新丽,赵留涛,朱凯,梁永喜,严作廷. GC法测定马香苓口服液中百秋李醇含量研究. 中国畜牧兽医. 2020(07): 2264-2276 . 百度学术

    其他类型引用(3)

图(2)  /  表(3)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  41
  • PDF下载量:  48
  • 被引次数: 11
出版历程
  • 收稿日期:  2021-12-22
  • 修回日期:  2022-01-26
  • 录用日期:  2022-03-12
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2022-11-27

目录

/

返回文章
返回