Geochemical Characteristics of Rare, Dispersed, and Rare Earth Elements in the Middle Jurassic Yan'an Formation of the Ningdong Coalfield and Their Indication for a Sedimentary Environment
-
摘要:
稀有稀散稀土元素(三稀元素)因性能和作用特殊,是重要的战略资源,同时因其特有的地球化学属性,在研究古气候、古水体和古沉积环境、沉积物源等方面具有重要的意义。前人针对宁东煤田研究发现,煤系伴生稀散元素Ga轻度富集,而稀土元素含量偏低。本次研究选取灵武、积家井两个典型矿区,在钻孔岩心中开展系统采样,采用电感耦合等离子体质谱法(ICP-MS)对延安组泥岩、砂岩以及煤层顶(底)板开展三稀元素含量测试,探讨煤系三稀元素富集成矿可能性,同时讨论延安组古沉积环境特征及物源区岩石性质。结果表明:宁东煤田中侏罗统延安组煤系三稀元素整体含量水平较低(仅有Ga元素最高含量29.40μg/g,接近于30.00μg/g的最低工业品位)。稀有、稀散元素在延安组底部或细-粉砂岩、泥岩中的含量较高,与世界煤中的平均含量相比,稀有元素Li、Nb、Ta、Rb、Cs、Zr和稀散元素Ga、In、Sc、Hf为轻度富集或富集;REY(稀土元素+Y元素)属于LREY富集型,Eu呈明显的负异常。通过典型元素地球化学参数研究延安组古沉积环境,Rb、Sr和REY指示古气候条件温湿,Li、Sr、Ga指示为淡水沉积环境,Ce、Ce/La反映缺氧的还原环境;REY含量未受成岩作用影响,可以用于对原始沉积岩物源的判别。
要点(1) 宁东煤田延安组煤系三稀元素含量较低(仅有Ga元素最高含量29.40μg/g,接近于30.00μg/g的最低工业品位),均未达到矿床工业指标要求,不具有综合开发利用前景。
(2) 样品Rb/Sr、(La/Yb)N、REY值相对较高,Eu呈负异常,古水温平均29.90℃,Ceanom、Ce/La平均值分别为-0.05和1.92,显示延安组沉积时期气候温湿,为缺氧的淡水、还原环境。
(3) 样品Eu呈负异常,Ce无明显异常,LREY富集,物源主要来自上地壳,混合有碱性玄武岩和花岗岩,显示贺兰山地区岩浆岩、变质岩为延安组主要物源供给区域。
HIGHLIGHTS(1) The contents of rare, dispersed, and rare earth elements in the Yan’an Formation of Ningdong Coalfield are low, which does not meet the requirements of industrial indicators of the deposit and cannot be exploited comprehensively.
(2) The Rb/Sr ratio, (La/Yb)N, and REY (REEs+yttium) are relatively high, and δEu is negative. The average ancient water temperature is 29.90℃. The Ce anomaly and the Ce/La ratio are -0.05 and 1.92, respectively, indicating that the climate of the Yan’an Formation is warm and humid during deposition, and it is a fresh water deposition and reduction environment with hypoxia.
(3) The sample Eu has a negative anomaly, Ce has no obvious anomaly, LREY is enriched, the provenance is mainly from the upper crust, mixed with alkaline basalt and granite. It is inferred that magmatic rocks and metamorphic rocks in Helanshan area are the main source areas of the Yan’an Formation.
Abstract:BACKGROUNDRare, dispersed, and rare earth elements are important strategic resources because of their special performance and function. At the same time, because of its unique geochemical properties, it is of great significance in the study of paleoclimate, paleo-water and paleo-sedimentary environment, and sediment sources. Previous studies have found that Ga in the Ningdong Coalfield is slightly enriched and rare earth element content is low.
OBJECTIVESTo explore the possibility of enrichment and mineralization of rare, dispersed, and rare earth elements in the coal series of the Yan'an Formation of Middle Jurassic in the Ningdong Coalfield, and discuss the characteristics of paleosedimentary environment and properties of provenance rock.
METHODSSystematic sampling was carried out in the core of boreholes from the Lingwu and Jijiajing mining areas of the Ningdong Coalfield. ICP-MS was used to determine the content of rare, dispersed, and rare earth elements in mudstone, sandstone and top (bottom) plate of the Yan'an Formation.
RESULTSThe overall content of rare, dispersed, and rare earth elements in the Yan'an Formation of the Ningdong Coalfield is low, which do not meet the requirements of the industrial indicators of the deposit and cannot be exploited comprehensively. The highest content of Ga is 29.40μg/g, which is close to the lowest industrial grade of 30.00μg/g. Compared with the average content of elements in world coal, rare elements Li, Nb, Ta, Rb, Cs, Zr and dispersed elements Ga, In, Sc, Hf are slightly enriched or enriched. The distribution of rare earth elements shows LREY type, and significant negative anomaly of Eu.
CONCLUSIONSRb, Sr and REY indicate the humidity of paleoclimate conditions, Li, Sr and Ga represent the freshwater deposition environment, and Ce, Ce/La reflect the anoxic reducing environment. The REY content is not affected by diagenesis and can be used to discriminate the original sediment source.
-
碘是制造无机或有机碘化物的基本原料,又是人体或植物必不可少的营养元素,建立土壤、沉积物、岩石中碘元素的测试方法具有重要意义[1-7]。样品测定结果的准确性和精密度,不仅取决于所采用的分析测试技术,更取决于样品前处理技术。样品前处理技术是一个十分重要的步骤,实验分析误差可能不是来自仪器本身,而是产生于样品的前处理。目前,报道的土壤、沉积物、岩石中痕量碘的样品前处理常用方法有:碳酸钠-氧化锌半熔法或碱熔法[2, 8-16]、稀氨水密封溶解法[17]、热解法[18]等。其中碳酸钠-氧化锌半熔法或碱熔法,存在全流程步骤较多、样品易污染损失、空白较高的问题,对方法检出限有一定的影响;稀氨水密封溶解法对于岩石样品或其他难以完全提取的样品存在分解不完全的问题,不适合岩石样品中痕量碘的分析;热解法的提取装置繁多,不适合批量样品分析。
综合上述问题,本文采用高压密闭封闭消解样品[19-26],加盐酸羟胺将碘还原成I-后,以稀氨水作介质,用电感耦合等离子体质谱法(ICP-MS)测定土壤、沉积物、岩石中的痕量碘。一方面提高了样品的分解效率,并避免了碘的挥发损失,且空白显著降低,用酸量小,安全可靠;碘为多价态元素,在不同介质和条件下具有多种形态,加盐酸羟胺还原保证了溶液中的碘为I-状态[27],提高了碘的稳定性;加稀氨水降低了ICP-MS测定过程中的记忆效应[1]。实验中对盐酸羟胺用量、混合酸用量、消解时间、氨水用量进行了考察,优化了ICP-MS测定土壤、沉积物、岩石中痕量碘的分析方法。
1. 实验部分
1.1 仪器与分析条件
15mL高压密闭消解罐:青岛济科实验仪器有限公司。
AB54-S分析天平:梅特勒-托利多仪器(上海)有限公司。
iCAP-Qa型电感耦合等离子体质谱仪(美国ThermoFisher公司),仪器工作参数为:射频功率1150W,冷却气(Ar)流量14.6L/min,辅助气(Ar)流量1.0L/min,雾化气(Ar)流量0.8~1.0L/min,截取锥(Ni)直径1.0mm,采样锥(Ni)孔径1.2mm,进样泵速100r/min,进样冲洗时间30s,单个元素积分时间0.5s,扫描方式为跳峰。
1.2 标准溶液和主要试剂
碘标准储备溶液(国家有色金属及电子材料分析测试中心):ρ(I-)=1000μg/mL。
碘标准溶液:将碘标准储备溶液逐级稀释为ρ(I-)=20.0ng/mL和ρ(I-)=1.0ng/mL的溶液。
20g/L盐酸羟胺还原剂:称取20.0g盐酸羟胺(分析纯)溶于1000mL水中。
氨水:分析纯,本文所涉及的稀氨水为氨水-水,体积比1 : 19。
混合酸:磷酸(分析纯)-高氯酸(分析纯)-水,体积比2 : 1 : 1。
内标溶液:ρ(Te)=10ng/mL(稀氨水介质)。
1.3 实验方法
称取50mg(精确至0.0001g)通过200目筛孔的试样,置于高压密闭消解罐中,准确加入0.5mL 20g/L盐酸羟胺溶液、0.5mL磷酸-高氯酸, 摇匀使样品分散,加盖装入钢套中,拧紧钢套盖,于100℃烘箱中保温至少20min, 取下冷却,转入25mL比色管中,加2.5mL 50%的氨水,用水稀释至刻度,摇匀,待澄清后以10ng/mL Rh(稀氨水介质)为内标,用ICP-MS直接测定,同时做空白实验。用稀氨水清洗进样系统,校准标准系列的介质与空白样品一致。
2. 结果与讨论
2.1 样品分解条件的选择
2.1.1 盐酸羟胺用量
碘为多价态元素,在不同介质和条件下具有多种形态,其行为也大不相同,如何正确处理样品,碘不挥发损失,在溶液中更稳定,是稳定测定痕量碘的关键所在。为了保证测定结果的稳定性,本法试验了加入一定量的盐酸羟胺还原剂,以保证溶液中碘为I-状态,获得了良好的实验结果。根据测定结果(图 1a)分析,盐酸羟胺用量在0.5mL以上,碘的测定结果已经趋于稳定,本法确定了20g/L盐酸羟胺溶液用量为0.5mL。
2.1.2 磷酸-高氯酸的用量
碘的样品分解方法,有之前报道的半熔法或碱熔法[2, 8-16]、稀氨水法[17]等。半熔法或碱熔法测得的样品空白高,影响方法检出限;稀氨水法在土壤和沉积物中碘分解完全,但在岩石中还是存在样品测定结果偏低,分解不完全的问题。本实验选用磷酸-高氯酸分解样品,不仅降低了样品空白,同时也使岩石样品分解完全。根据图 1b测定结果分析,混合酸用量越大,样品分解越完全,当用量为0.5mL时,样品已经分解完全,测定值与标准值基本吻合。本法确定了磷酸-高氯酸用量为0.5mL。
2.1.3 消解时间
消解时间是影响样品分解完全程度的主要因素之一,根据图 1c结果可知,当消解时间为15~20min时,已足以使样品分解完全,考虑到难溶矿种类型,本法消解时间确定为至少20min。
2.1.4 氨水用量
碘在用ICP-MS测试时存在严重的记忆效应,李冰等[1]报道了不同介质对碘记忆效应的影响,提出在微碱条件下,碘能以I-和IO3-的形式存在而不挥发,会使记忆效应明显降低。本法试验了将氨水直接加入溶液中,一方面中和混合酸;另一方面保证了溶液的微碱性。0.5mL磷酸-高氯酸含0.25mL磷酸和0.125mL高氯酸,经计算得到的H+量不大于12.5mmol。样品分解完毕后,加入2.5mL 50%的氨水,中和后在25mL溶液中还约有1.5%的氨水,既保证了溶液的微碱性,又使大量的PO43-形成微溶性的Ca3(PO4)2沉淀,降低了碘的记忆效应。因此本法确定了50%的氨水用量为2.5mL。
2.2 标准曲线的绘制及内标元素的选择
标准曲线绘制:吸取碘为ρ(I-)=1000μg/mL标准储备溶液逐级稀释为0.0、0.5、1.0、2.0、10.0、20.0ng/mL的标准系列溶液。
内标元素的选择:本文采用内标法来校正因仪器漂移引起的误差,常用内标元素有115In、103Rh、187Re、126Te,由于所选择的碘的同位素为127I, 与126Te质量数比较接近,再者126Te与127I无干扰存在,本文采用126Te作为内标元素。
2.3 方法技术指标
2.3.1 精密度、准确度和加标回收率
选定具有代表性的5个国家一级标准物质,按照本法测定碘的含量,分别测定12次,计算其相对标准偏差(RSD)为4.88%~9.19%,符合《地质矿产实验室测试质量管理规范》(DZ/T 0130—2006)要求,与宋萍等[18]报道的液氮冷凝吸收热解法相比,一致性更好,稳定;与马新荣等[17]报道的稀氨水法相比,RSD比其略差。
选定具有代表性的5个国家一级标准物质,按照本法测定碘的含量,计算其相对误差见表 1。本法的测定值与认定值相吻合,准确度较好。
表 1 方法准确度和加标回收率Table 1. Accuracy and spiked recovery tests of the method标准物质
编号认定值
(mg/kg)加标前测定值
(mg/kg)加入量
(mg/kg)加标后测定值
(mg/kg)回收率
(%)相对误差
(%)GBW07107
(岩石)0.24±0.06 0.22 0.200 0.41 95.0 8.33 GBW07302a
(沉积物)0.64±0.12 0.65 0.500 1.17 104.4 -3.17 GBW07305a
(沉积物)2.4±0.4 2.4 2.500 5.14 109.6 -6.90 GBW07404
(土壤)9.4±1.1 9.1 5.000 13.8 94.0 1.06 GBW07407
(土壤)19±2 18.2 20.00 36.7 92.5 2.58 用本文方法进行标准样品加入法回收实验,选用土壤、沉积物、岩石国家一级标准物质进行验证,分析结果见表 1,样品回收率在92.5%~109.6%,符合质量规范要求(加标回收率一般要求90%~105%)。取大批量的土壤、沉积物、岩石样品,采用封闭酸溶-盐酸羟胺还原ICP-MS法测定碘,与半熔法[2]进行数据比对,两者数据(表 2)相吻合,满足了《地质矿产实验室测试质量管理规范》(DZ/T 0130—2006)要求,方法稳定可靠。
表 2 半熔法与本法碘测试结果比对Table 2. Comparison of analytical results of iodine determined by semi-solution method and this study method样品编号 样品
类型碘(μg/g) 半熔法 本法 HT-1 岩石 0.35 0.38 HT-2 岩石 0.44 0.43 HT-20 岩石 0.38 0.41 HT-21 岩石 0.69 0.68 HT-90 岩石 1.23 1.20 HT-92 岩石 0.54 0.57 HT-150 岩石 1.92 1.89 HT-152 沉积物 3.85 3.77 HT-203 沉积物 15.2 16.4 HT-235 沉积物 14.1 14.1 HT-272 沉积物 6.24 6.33 HT-352 沉积物 5.40 5.40 HT-367 沉积物 8.86 8.78 HT-462 土壤 0.82 0.89 HT-524 土壤 3.27 3.24 HT-685 土壤 7.77 7.65 HT-686 土壤 7.92 8.01 HT-728 土壤 0.88 0.86 HT-791 土壤 11.3 11.7 HT-899 土壤 0.45 0.48 HT-902 土壤 2.73 2.80 HT-1006 土壤 2.45 2.38 可见,采用本法分析标准物质,各样品中碘的测定值与其认定值相比,或与半熔法测定值相比,不存在偏低的问题,满足质量规范要求,岩石样品分解完全,解决了马新荣等[17]报道的岩石样品或其他难以完全提取的样品存在的分解不完全的问题,拓宽了方法的适用范围。
2.3.2 检出限
方法所带来的误差与样品性质、预处理过程和仪器都有关。本研究中,选取20份样品空白溶液,用ICP-MS测定,采用GB/T 27415—2013方法计算碘的方法检出限为0.012μg/g。李冰等[2]采用半熔法测定的检出限为0.028μg/g,其实验样品处理程序相对复杂,全流程空白较高,使方法检出限受到影响,而本法样品处理程序相对简单,全流程空白较低,方法检出限优于半熔法,更适合痕量碘的分析。
3. 结论
土壤、沉积物、岩石样品经磷酸-高氯酸高压密闭消解,样品分解完全,盐酸羟胺将碘还原成I-保证了碘价态的稳定性,以稀氨水作介质降低了ICP-MS的记忆效应,使测定结果可靠。本分析方法的流程短,消解过程不易受到污染,空白低,适用范围广,解决了碳酸钠-氧化锌半熔法或碱熔法流程长、样品易污染损失、空白较高的问题,也不存在采用稀氨水密封溶解法测定岩石或其他样品存在的分解不完全的问题,适合批量样品分析,具有一定的推广应用价值。
-
表 1 宁东煤田延安组样品稀有、稀散元素含量统计
Table 1 Statistics of rare and dispersed element contents in samples from Yan'an Formation, Ningdong Coalfield
元素类型 元素 积家井矿区 灵武矿区 最低值(μg/g) 最高值(μg/g) 平均值(μg/g) 最低值(μg/g) 最高值(μg/g) 平均值(μg/g) 稀有元素 Li 6.00 65.70 35.40 19.00 45.70 35.70 Be 0.72 6.66 2.70 1.52 3.27 2.35 Rb 14.70 140.00 105.60 52.60 140.00 112.70 Sr 91.50 308.00 159.10 116.00 279.00 165.70 Nb 3.17 21.00 13.70 8.15 19.80 16.30 Cs 1.00 9.72 6.10 2.68 14.10 8.10 Ta 0.28 1.73 1.10 0.60 1.64 1.30 Zr - - - 132.00 275.00 230.00 稀散元素 Sc 3.10 18.50 12.90 8.00 1.70 15.90 Ge 0.60 2.59 1.30 0.90 2.24 1.50 Ga 5.80 25.10 19.40 13.50 29.40 24.30 Cd 0.02 0.38 0.10 0.10 0.26 0.16 In 0.02 0.09 0.06 0.05 0.10 0.08 Tl 0.57 1.74 0.82 0.39 0.78 0.66 Hf - - - 4.03 8.33 6.89 Se 0.00 0.52 0.15 0.04 0.37 0.19 注:表中数据为本次实测结果,“-”表示未测试项目。 表 2 宁东煤田延安组样品稀有稀散元素平均富集系数
Table 2 Average enrichment coefficient of rare and dispersed elements in samples of Yan'an Formation, Ningdong Coalfield
元素 稀有稀散元素平均富集系数 元素 稀有稀散元素平均富集系数 积家井矿区 灵武矿区 平均值 积家井矿区 灵武矿区 平均值 Li 2.95 2.98 2.96 Sc 3.30 4.07 3.68 Be 1.70 1.47 1.58 Ge 0.58 0.68 0.63 Rb 7.54 8.05 7.79 Ga 3.35 4.18 3.75 Sr 1.45 1.51 1.48 Cd 0.57 0.75 0.65 Nb 3.71 4.39 4.04 In 2.03 2.51 2.26 Cs 6.07 8.10 7.06 Tl 1.31 1.05 1.18 Ta 4.05 4.50 4.27 Hf - 5.74 5.74 Zr - 6.39 6.39 Se 0.12 0.15 0.13 注:表中数据为本次研究样品实测元素含量除以世界煤中平均含量的比值;“-”表示该元素未测定。 表 3 宁东煤田延安组样品稀土和钇元素含量
Table 3 Contents of REEs and yttrium in samples from Yan'an Formation, Ningdong Coalfield
序号 积家井矿区样品编号 采样深度(m) 样品岩性 元素含量(单位:μg/g) La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu 1 ND-SX01 531 炭质泥岩(煤层底板) 50.50 98.73 11.00 39.74 7.19 1.50 6.52 1.04 5.88 32.46 1.18 3.43 0.53 3.50 0.53 2 ND-SX02 607 中粒砂岩 50.60 98.80 11.19 40.91 7.70 1.65 6.82 1.11 6.07 33.65 1.19 3.39 0.53 3.33 0.52 3 ND-SX03 622 中-粗粒砂岩 42.69 82.80 9.53 35.99 6.66 1.51 5.94 0.92 4.97 24.35 0.93 2.48 0.42 2.47 0.39 4 ND-SX04 631 细砂岩 39.93 76.01 8.93 32.00 6.08 1.37 5.39 0.88 4.82 25.56 0.95 2.64 0.42 2.68 0.41 5 ND-SX05 655 中-粗粒砂岩 25.37 46.13 5.83 22.22 4.11 1.09 3.89 0.66 4.02 25.39 0.86 2.51 0.43 2.71 0.41 6 ND-SX06 681 粉砂岩(煤层顶板) 49.36 95.08 11.25 41.41 7.65 1.60 6.89 1.08 6.18 36.24 1.21 3.43 0.54 3.48 0.55 7 ND-SX07 691 中-粗粒砂岩 25.38 45.91 5.77 21.46 3.82 1.01 3.58 0.60 3.34 18.81 0.71 2.04 0.35 2.20 0.35 8 ND-SX08 717 细-粉砂岩 48.28 95.64 11.07 40.53 7.44 1.60 6.68 1.07 5.91 32.17 1.17 3.26 0.51 3.45 0.53 9 ND-SX09 717 细-粉砂岩 43.09 85.80 9.89 36.84 6.98 1.50 6.24 1.01 5.81 33.81 1.17 3.28 0.52 3.43 0.52 10 ND-SX10 751 粉砂岩 46.74 90.47 10.54 38.65 7.31 1.58 6.73 1.08 6.18 38.49 1.24 3.48 0.56 4.82 0.57 11 ND-SX11 766 中粒砂岩 18.80 36.90 4.29 15.10 2.60 0.73 2.33 0.36 1.98 10.34 0.37 1.04 0.21 1.15 0.21 12 ND-SX12 784 粉砂岩(煤层顶板) 49.40 97.92 11.14 40.53 7.49 1.61 6.83 1.06 6.01 32.91 1.18 3.35 0.52 3.42 0.51 13 ND-SX13 784 粉砂岩 42.93 85.36 9.89 36.53 6.74 1.50 6.21 1.01 5.68 31.15 1.13 3.14 0.50 3.29 0.51 14 ND-SX14 799 粗粒砂岩 12.65 21.22 2.67 10.52 1.83 0.65 1.63 0.29 1.58 9.75 0.33 0.94 0.19 1.06 0.18 15 ND-SX15 817 粉砂岩 74.05 148.60 16.33 58.62 10.91 2.29 9.67 1.46 7.61 37.13 1.41 3.80 0.56 3.63 0.55 16 ND-SX16 817 粉砂岩 48.18 93.54 10.75 39.23 7.13 1.58 6.43 1.03 5.65 36.01 1.53 3.10 0.49 3.08 0.48 17 ND-SX17 841 粗粒砂岩 46.55 82.93 8.88 30.70 5.16 1.05 4.80 0.78 4.79 30.62 0.99 2.98 0.50 3.28 0.50 18 ND-SX18 851 粉砂岩夹泥岩(煤层顶板) 15.62 25.25 3.09 11.37 1.78 0.58 1.53 0.25 1.21 7.71 0.27 0.80 0.18 1.00 0.18 19 ND-SX19 872 中粒砂岩 37.82 70.21 8.34 31.16 5.54 1.11 4.82 0.73 3.85 20.90 0.76 2.12 0.36 2.12 0.35 20 ND-SX20 895 粉砂岩 52.07 99.20 11.28 41.70 7.59 1.42 6.52 1.01 5.50 31.96 1.06 3.04 0.49 3.11 0.47 积家井矿区样品元素含量平均值 41.00 78.83 9.08 33.26 6.09 1.35 5.47 0.87 4.85 27.47 0.98 2.71 0.44 2.86 0.44 积家井矿区样品元素平均富集系数 3.73 3.43 2.6 2.77 3.04 2.86 2.03 2.73 2.31 3.27 1.82 2.92 1.42 2.86 2.18 序号 灵武矿区样品编号 采样深度(m) 样品岩性 元素含量(单位:μg/g) La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu 21 ND-SX21 335 泥岩(煤层底板) 33.06 61.29 6.63 24.86 4.13 1.23 3.58 0.52 2.47 12.28 0.46 1.29 0.23 1.30 0.25 22 ND-SX22 339 泥岩 49.94 97.24 11.30 42.85 8.03 1.76 6.68 1.09 6.43 33.85 1.28 3.43 0.54 3.55 0.55 23 ND-SX23 346 泥岩 36.76 68.15 8.14 31.51 6.06 1.25 5.31 0.93 5.83 36.02 1.22 3.30 0.53 3.35 0.53 24 ND-SX24 362 泥岩 62.08 127.31 14.10 54.83 9.98 2.13 8.32 1.33 7.93 39.95 1.54 4.14 0.63 4.15 0.62 25 ND-SX25 366 中粒砂岩 42.16 81.67 9.58 35.17 6.36 1.35 5.21 0.81 4.29 20.55 0.81 2.18 0.35 2.17 0.35 26 ND-SX26 409 泥岩(煤层顶板) 51.07 97.36 11.08 41.04 7.62 1.55 6.48 1.05 6.31 34.56 1.27 3.45 0.53 3.49 0.53 27 ND-SX27 410 粉砂岩 54.21 105.32 12.11 46.74 8.51 1.84 7.27 1.14 6.61 31.73 1.27 3.40 0.51 3.35 0.51 28 ND-SX28 415 粉砂质泥岩 52.15 100.99 11.78 45.71 8.31 1.74 6.93 1.11 6.40 31.26 1.25 3.37 0.52 3.41 0.52 29 ND-SX29 420 细粒砂岩 44.93 89.00 10.60 40.75 7.92 1.77 6.77 1.13 6.90 35.26 1.37 3.68 0.57 3.72 0.55 30 ND-SX30 493 炭质泥岩(煤层底板) 65.31 125.54 14.02 55.07 9.91 2.03 8.48 1.36 8.23 41.33 1.64 4.36 0.65 4.28 0.64 31 ND-SX31 497 炭质泥岩 48.87 94.56 10.96 41.20 7.68 1.65 6.37 1.01 5.90 29.56 1.22 3.14 0.49 3.21 0.49 32 ND-SX32 516 粉砂质泥岩(煤层底板) 46.26 90.57 10.37 39.00 7.26 1.53 6.20 1.01 6.12 32.61 1.26 3.28 0.52 3.56 0.52 33 ND-SX33 521 粉砂质泥岩 51.47 101.99 11.64 43.13 8.10 1.65 6.80 1.12 6.77 35.14 1.35 3.66 0.56 3.67 0.56 34 ND-SX34 572 粉砂质泥岩(煤层底板) 40.51 79.55 9.20 34.56 6.50 1.39 5.62 0.91 5.43 28.99 1.10 2.97 0.48 3.07 0.48 35 ND-SX35 574 粉砂质泥岩 46.12 89.81 10.29 38.02 7.07 1.48 6.05 0.99 5.77 29.62 1.14 3.03 0.48 3.09 0.47 36 ND-SX36 587 粉砂质泥岩(煤层底板) 50.78 96.84 11.04 40.76 7.62 1.59 6.55 1.05 6.21 32.12 1.23 3.36 0.52 3.39 0.52 37 ND-SX37 596 粉砂质泥岩(煤层底板) 50.26 89.46 11.08 41.68 7.59 1.56 6.35 1.00 5.78 29.02 1.15 3.14 0.49 3.23 0.49 38 ND-SX38 612 细粒砂岩 30.42 56.62 6.77 26.88 5.03 1.10 4.18 0.69 3.88 21.16 0.78 2.20 0.37 2.37 0.38 39 ND-SX39 617 粉砂质泥岩(煤层顶板) 35.90 62.74 6.82 24.83 4.10 0.76 3.63 0.59 3.36 19.32 0.70 2.05 0.36 2.33 0.38 灵武矿区样品元素含量平均值 46.96 90.32 10.39 39.40 7.25 1.54 6.15 0.99 5.82 30.23 1.16 3.13 0.49 3.19 0.49 灵武矿区样品元素平均富集系数 4.27 3.93 2.97 3.28 3.63 3.29 2.28 3.10 2.77 3.60 2.15 3.36 1.59 3.19 2.46 两矿区全部样品元素含量平均值 43.90 84.42 9.72 36.25 6.65 1.44 5.80 0.93 5.33 28.81 1.07 2.91 0.47 3.02 0.46 两矿区全部样品元素平均富集系数 3.99 3.67 2.78 3.02 3.33 3.07 2.15 2.91 2.54 3.44 1.98 3.13 1.50 3.02 2.31 注:表中数据为本次实测结果,富集系数为本次实测元素含量除以世界煤中平均含量得出,世界煤中平均含量引自文献[21]。 表 4 宁东煤田延安组样品稀土和钇元素地球化学参数
Table 4 Geochemical parameters of REEs and yttriumin in samples from Yan'an Formation, Ningdong Coalfield
序号 积家井矿区样品编号 LREY MREY HREY REY (Gd/Lu)N (La/Lu)N (La/Yb)N (La/Sm)N (Gd/Yb)N δEu δCe Ceanom 1 ND-SX01 207.16 47.41 9.16 263.72 1.68 10.42 10.24 4.13 1.65 0.69 1.00 -0.04 2 ND-SX02 209.19 49.29 8.95 267.43 1.93 11.61 11.67 4.03 1.94 0.74 0.99 -0.04 3 ND-SX03 177.68 37.70 6.68 222.05 1.69 10.43 10.04 4.13 1.62 0.73 0.97 -0.05 4 ND-SX04 162.94 38.02 7.10 208.06 1.22 6.63 6.31 3.88 1.16 0.83 0.91 -0.08 5 ND-SX05 103.66 35.05 6.92 145.63 1.60 9.60 9.57 4.06 1.60 0.67 0.97 -0.05 6 ND-SX06 204.75 51.98 9.21 265.94 1.33 7.86 7.79 4.18 1.32 0.84 0.91 -0.07 7 ND-SX07 102.34 27.34 5.65 135.33 1.63 9.84 9.45 4.08 1.56 0.69 1.00 -0.03 8 ND-SX08 202.96 47.42 8.91 259.29 1.52 8.80 8.48 3.89 1.47 0.69 1.00 -0.03 9 ND-SX09 182.60 48.37 8.92 239.89 1.52 8.80 6.54 4.02 1.13 0.69 0.98 -0.04 10 ND-SX10 193.71 54.07 10.67 258.44 1.45 9.80 11.00 4.55 1.63 0.91 0.99 -0.03 11 ND-SX11 77.69 15.74 2.98 96.41 1.70 10.28 9.74 4.15 1.61 0.69 1.00 -0.03 12 ND-SX12 206.47 48.43 8.99 263.89 1.56 9.03 8.81 4.01 1.53 0.71 1.00 -0.03 13 ND-SX13 181.45 45.55 8.56 235.56 1.14 7.38 8.04 4.36 1.24 1.15 0.88 -0.10 14 ND-SX14 48.89 13.90 2.71 65.49 2.26 14.48 13.74 4.27 2.15 0.68 1.03 -0.02 15 ND-SX15 308.50 58.16 9.95 376.61 1.72 10.76 10.56 4.25 1.69 0.71 0.99 -0.04 16 ND-SX16 198.83 50.70 8.68 258.21 1.24 10.07 9.57 5.68 1.18 0.65 0.98 -0.05 17 ND-SX17 174.22 42.04 8.24 224.51 1.12 9.56 10.52 5.52 1.23 1.08 0.87 -0.10 18 ND-SX18 57.11 11.27 2.42 70.81 1.78 11.66 12.00 4.29 1.83 0.66 0.95 -0.06 19 ND-SX19 153.07 31.42 5.72 190.20 1.80 11.99 11.27 4.31 1.69 0.62 0.99 -0.04 20 ND-SX20 211.85 46.42 8.16 266.43 1.57 10.18 9.74 4.42 1.51 0.67 1.01 -0.03 积家井矿区平均值 168.25 40.01 7.43 215.70 1.57 9.96 9.75 4.31 1.54 0.76 0.97 -0.05 序号 灵武矿区样品编号 LREY MREY HREY REY (Gd/Lu)N (La/Lu)N (La/Yb)N (La/Sm)N (Gd/Yb)N δEu δCe Ceanom 21 ND-SX21 129.98 20.08 3.53 153.58 1.84 14.25 17.11 5.03 2.22 0.98 1.00 -0.05 22 ND-SX22 209.36 49.80 9.36 268.52 1.55 9.71 9.49 3.91 1.52 0.73 0.99 -0.04 23 ND-SX23 150.62 49.33 8.92 208.88 1.30 7.50 7.40 3.82 1.28 0.67 0.95 -0.07 24 ND-SX24 268.31 59.67 11.09 339.06 1.71 10.67 10.09 3.91 1.62 0.71 1.04 -0.02 25 ND-SX25 174.95 32.20 5.86 213.02 1.91 12.88 13.09 4.17 1.94 0.72 0.98 -0.04 26 ND-SX26 208.18 49.94 9.27 267.39 1.57 10.32 9.87 4.21 1.50 0.67 0.99 -0.04 27 ND-SX27 226.89 48.59 9.05 284.53 1.82 11.34 10.91 4.01 1.75 0.72 0.99 -0.05 28 ND-SX28 218.94 47.44 9.08 275.46 1.72 10.85 10.30 3.95 1.64 0.70 0.98 -0.05 29 ND-SX29 193.20 51.83 9.90 254.93 1.57 8.71 8.14 3.57 1.47 0.74 0.98 -0.04 30 ND-SX30 269.84 61.43 11.57 342.84 1.71 10.99 10.28 4.14 1.60 0.68 1.00 -0.05 31 ND-SX31 203.26 44.49 8.54 256.29 1.67 10.71 10.28 4.01 1.60 0.72 0.98 -0.04 32 ND-SX32 193.46 47.48 9.15 250.09 1.53 9.52 8.75 4.01 1.40 0.70 1.00 -0.04 33 ND-SX33 216.32 51.48 9.80 277.61 1.56 9.88 9.44 4.00 1.49 0.68 1.00 -0.03 34 ND-SX34 170.31 42.35 8.10 220.76 1.49 8.99 8.88 3.92 1.48 0.70 0.99 -0.04 35 ND-SX35 191.31 43.91 8.22 243.43 1.64 10.48 10.06 4.10 1.58 0.69 0.99 -0.04 36 ND-SX36 207.05 47.51 9.02 263.58 1.61 10.41 10.10 4.19 1.56 0.69 0.98 -0.04 37 ND-SX37 200.07 43.70 8.49 252.27 1.67 11.04 10.51 4.16 1.59 0.69 0.91 -0.08 38 ND-SX38 125.71 31.01 6.09 162.81 1.41 8.59 8.65 3.81 1.42 0.73 0.95 -0.07 39 ND-SX39 134.39 27.66 5.81 167.86 1.22 10.12 10.39 5.50 1.26 0.60 0.97 -0.07 灵武矿区平均值 194.32 44.73 8.47 247.52 1.61 10.37 10.20 4.13 1.57 0.71 0.98 -0.05 两矿区样品平均值 180.95 42.31 7.93 231.20 1.59 10.15 9.97 4.22 1.55 0.73 0.98 -0.05 注:δEu=EuN/(SmN×GdN)0.5;δCe= CeN/(LaN×PrN)0.5;Ce异常指数Ceanom=lg[3CeN/(2LaN+NdN)],式中的CeN、LaN、NdN分别为CeN、LaN、NdN值与北美页岩标准化之后的值;每个矿区平均值为该矿区所采样品的算术平均值,全部样品平均值为两个矿区所有样品的算术平均值。 -
[1] 王登红, 王瑞江, 孙艳, 等. 我国三稀(稀有稀土稀散)矿产资源调查研究成果综述[J]. 地球学报, 2016, 37(5): 569-580. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201605006.htm Wang D H, Wang R J, Sun Y, et al. A review of achievements in the three-type rare mineral resources(rare resources, rare earth and rarely scattered resources) survey in China[J]. Acta Geoscientia Sinica, 2016, 37(5): 569-580. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201605006.htm
[2] Bhatia M R. Rare earth elements geochemistry of Australian Paleozoic graywacks and mudstones: Provenance and tectonic control[J]. Sedimentary Geology, 1985, 45: 97-113. doi: 10.1016/0037-0738(85)90025-9
[3] Sylvestre G, Laure N T E, Djibril K N G, et al. A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong Series, southwestern Cameroon: Constraints from petrography and geochemistry[J]. Ore Geology Reviews, 2017, 80: 860-875. doi: 10.1016/j.oregeorev.2016.08.021
[4] 王旭影, 姜在兴. 苏北东台坳陷古新统阜宁组三段微量、稀土元素地球化学特征及其地质意义[J]. 地质论评, 2021, 67(2): 355-366. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202102007.htm Wang X Y, Jiang Z X. Geochemical characteristics of trace and rare earth elements in the 3rd Member of Paleocene Funing Formation in Dongtai Depression, North Jiangsu Basin, and their geological significance[J]. Geological Review, 2021, 67(2): 355-366. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202102007.htm
[5] 徐波, 胡碧瑶, 顾智鹏, 等. 西湖凹陷平湖斜坡带平湖组微量元素和稀土元素地球化学特征及其地质意义[J]. 西安石油大学学报(自然科学版), 2021, 36(2): 28-37, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY202102004.htm Xu B, Hu B Y, Gu Z P, et al. Geochemical characteristics of trace elements and rare earth elements of Pinghu Formation in Pinghu slope belt of Xihu Sag and their geological significance[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2021, 36 (2): 28-37, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY202102004.htm
[6] 朱文博, 张训华, 曲中党, 等. 赣东-浙西下寒武统荷塘组稀土元素特征及其地质意义[J]. 海洋地质与第四纪地质, 2021, 41(2): 88-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202102009.htm Zhu W B, Zhang X H, Qu Z D, et al. REE composition and its geological implications of the Hetang Formation mudstones in the East Jiangxi and West Zhejiang, China[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 88-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202102009.htm
[7] 张天福, 孙立新, 张云, 等. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义[J]. 地质学报, 2016, 90(12): 3454-3472. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201612013.htm Zhang T F, Sun L X, Zhang Y, et al. Geochemical characteristics of the Jurassic Yan'an and Zhiluo Formations in the northern margin of Ordos Basin and their paleoenvironmental implications[J]. Acta Geologica Sinica, 2016, 90(12): 3454-3472. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201612013.htm
[8] 张茜, 余谦, 王剑, 等. 应用ICP-MS研究川西南龙马溪组泥页岩稀土元素特征及沉积环境[J]. 岩矿测试, 2018, 37(2): 217-224. doi: 10.15898/j.cnki.11-2131/td.201705090078 Zhang Q, Yu Q, Wang J, et al. Application of ICP-MS to study the rare earth element characteristics and sedimentary environment of black shale in the Longmaxi Formation in the southwestern Sichuan Basin[J]. Rock and Mineral Analysis, 2018, 37(2): 217-224. doi: 10.15898/j.cnki.11-2131/td.201705090078
[9] 代世峰, 任德贻, 周义平, 等. 煤型稀有金属矿床: 成因类型、赋存状态和利用评价[J]. 煤炭学报, 2014, 39(8): 1707-1715. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408044.htm Dai S F, Ren D Y, Zhou Y P, et al. Coal-hosted rare metal deposits: Genetic types, modes of occurrence, and utilization evaluation[J]. Journal of China Coal Society, 2014, 39(8): 1707-1715. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408044.htm
[10] Seredin V V, Dai S F, Sun Y Z, et al. Coal deposits as promising sources of rare metals for alternative power and energy efficient technologies[J]. Applied Geochemistry, 2013, 31(2): 1-11.
[11] 王臻, 赵芝, 邹新勇, 等. 赣南浅变质岩岩石地球化学特征及稀土成矿潜力研究[J]. 岩矿测试, 2018, 37(1): 96-107. doi: 10.15898/j.cnki.11-2131/td.201710160167 Wang Z, Zhao Z, Zou X Y, et al. Petrogeochemical characteristics and metallogenetic potential of epimetamorphic rocks in South Jiangxi Province[J]. Rock and Mineral Analysis, 2018, 37(1): 96-107. doi: 10.15898/j.cnki.11-2131/td.201710160167
[12] 代世峰, 任德贻, 李生盛. 内蒙古准格尔超大型镓矿床的发现[J]. 科学通报, 2006, 51(2): 177-185. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200602011.htm Dai S F, Ren D Y, Li S S. Discovery of supermassive gallium deposit in Inner Mongolia[J]. Chinese Science Bulletin, 2006, 51(2): 177-185. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200602011.htm
[13] 刘东娜, 曾凡桂, 赵峰华, 等. 山西省煤系伴生三稀矿产资源研究现状及找矿前景[J]. 煤田地质与勘探, 2018, 46(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201804001.htm Liu D N, Zeng F G, Zhao F H, et al. Status and prospect of research for three type coal-associated rare earth resources in coal measures in Shanxi Province[J]. Coal Geology & Exploration, 2018, 46(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201804001.htm
[14] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
[15] 赵存良. 鄂尔多斯盆地与煤伴生多金属元素的分布规律和富集机理[D]. 北京: 中国矿业大学(北京), 2015. Zhao C L. Distribution and enrichment mechanism of multimetallic elements associated with coal in Ordos Basin[D]. Beijing: China University of Mining and Technology (Beijing), 2015.
[16] 刘亢. 鄂尔多斯盆地西缘煤系矿产资源共生组合特征研究[D]. 北京: 中国矿业大学(北京), 2016. Liu K. Combination characters of coal series mineral resources in the west margin of Ordos Basin[D]. Beijing: China University of Mining and Technology(Beijing), 2016.
[17] 秦国红, 邓丽君, 刘亢, 等. 鄂尔多斯盆地西缘煤中稀土元素特征[J]. 煤田地质与勘探, 2016, 44(6): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201606002.htm Qin G H, Deng L J, Liu K, et al. Characteristics of rare earth elements in coal in western margin of Ordos Basin[J]. Coal Geology & Exploration, 2016, 44(6): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201606002.htm
[18] 宁树正, 邓小利, 李聪聪, 等. 中国煤中金属元素矿产资源研究现状与展望[J]. 煤炭学报, 2017, 42(9): 2214-2225. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201709002.htm Ning S Z, Deng X L, Li C C, et al. Research status and prospect of metal element mineral resources in China[J]. Journal of China Coal Society, 2017, 42(9): 2214-2225. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201709002.htm
[19] 宁夏回族自治区地质调查院. 中国区域地质志——宁夏志[M]. 北京: 地质出版社, 2017. Ningxia Hui Autonomous Region Geological Survey Institute. Regional geology of China-Ningxia[M]. Beijing: Geological Publishing House, 2017.
[20] 曹代勇, 徐浩, 刘亢, 等. 鄂尔多斯盆地西缘煤田构造演化及其控制因素[J]. 地质科学, 2015, 50(2): 410-427. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201502005.htm Cao D Y, Xu H, Liu K, et al. Coalfield tectonic evolution and its controlling factors at the western margin of Ordos Basin[J]. Chinese Journal of Geology, 2015, 50(2): 410-427. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201502005.htm
[21] Mclennan S M, Taylor S R. Sedimentary rocks and crustal evolution revisited: Tectonnic setting and secular trends[J]. The Journal of Geology, 1991, 99: 1-21.
[22] Ketris M P, Yudovich Y E. Estimations of clarkes for Carbonaceous biolithes: World average for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 2009, 78: 135-148.
[23] Seredin V V, Dai S F. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology, 2012, 94(5): 67-93.
[24] 陈健, 陈萍, 刘文中, 等. 淮北煤田煤中镧系元素和钇的地球化学——"岩浆侵入对淮北花沟西煤中稀土元素分布的影响"的商榷[J]. 高校地质学报, 2015, 21(1): 172-176. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201501019.htm Chen J, Chen P, Liu W Z, et al. Geochemistry of lanthanide and yttrium in coals from the Huaibei coalfield: A discussion on influence of magmatic intrusion on the distribution of REE in coals at western Huagou, Huaibei[J]. Geological Journal of China Universities, 2015, 21(1): 172-176. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201501019.htm
[25] 郭东旭, 刘琰, 李自静, 等. 应用电感耦合等离子体质谱技术研究牦牛坪矿床霓长岩化蚀变矿物微量元素特征[J]. 岩矿测试, 2020, 39(6): 896-907. doi: 10.15898/j.cnki.11-2131/td.202005060003 Guo D X, Liu Y, Li Z J, et al. Determination of trace element compositions of altered minerals in fenitization veins by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(6): 896-907. doi: 10.15898/j.cnki.11-2131/td.202005060003
[26] 蒋赟, 潘世乐, 秦彩虹, 等. 柴达木盆地北缘平台地区下干柴沟组下段稀土元素特征及物源分析[J]. 天然气地球科学, 2020, 31(11): 1537-1547. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202011003.htm Jiang Y, Pan S L, Qin C H, et al. Characteristics and provenance analysis of rare earth elements in the lower section of Xiaganchaigou Formation in the platform area of the northern margin of Qaidam Basin[J]. Natural Gas Geoscience, 2020, 31(11): 1537-1547. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202011003.htm
[27] 史冀忠, 牛亚卓, 许伟, 等. 银额盆地石板泉西石炭系白山组碳酸盐岩地球化学特征及其环境意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 680-693. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202103004.htm Shi J Z, Niu Y Z, Xu W, et al. Geochemical charact-eristics and sedimentary environment of Carboniferous Baishan Formation carbonate in Shibanquanxi of Yingen-Ejin Banner Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3): 680-693. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202103004.htm
[28] 马风华, 张勇, 潘进礼, 等. 六盘山盆地白垩系马东山组泥页岩稀土元素地球化学特征及地质意义[J]. 地质论评, 2021, 67(1): 209-217. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202101021.htm Ma F H, Zhang Y, Pan J L, et al. Geochemical characteristics of rare earth element and their geological significance of mud-shale in Cretaceous Madongshan Formation, Liupanshan Basin[J]. Geological Review, 2021, 67(1): 209-217. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202101021.htm
[29] 田景春, 张翔. 沉积地球化学[M]. 北京: 地质出版社, 2016. Tian J C, Zhang X. Sedimentary geochemistry[M]. Beijing: Geological Publishing House, 2016.
[30] 邓宏文, 钱凯. 沉积地球化学与环境分析[M]. 兰州: 甘肃科学技术出版社, 1993. Deng H W, Qian K. Sedimentary geochemistry and environmental analysis[M]. Lanzhou: Gansu Science and Technology Press, 1993.
[31] 郑荣才, 柳梅青. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质, 1999, 20(1): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT901.019.htm Zheng R C, Liu M Q. Study on paleosalinity of Chang 6 oil reservoir set in Ordos Basin[J]. Oil & Gas Geology, 1999, 20(1): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT901.019.htm
[32] 文华国, 郑荣才, 唐飞, 等. 鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析[J]. 矿物岩石, 2008, 28(1): 114-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200801016.htm Wen H G, Zheng R C, Tang F, et al. Reconstrution and analysts of palaeosalinity and paleo-environment of the Chang 6 Member in the Gengwan region, Ordos Basin[J]. Journal of Mineralogy and Petrology, 2008, 28(1): 114-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200801016.htm
[33] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1-2): 12-32.
[34] 熊小辉, 王剑, 余谦, 等. 富有机质黑色页岩形成环境及背景的元素地球化学反演: 以渝东北地区田坝剖面五峰组-龙马溪组页岩为例[J]. 天然气工业, 2015, 35(4): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201504005.htm Xiong X H, Wang J, Yu Q, et al. Element geochemistry inversion of the environment and background of organic-rich black shale formations: A case study of the Wufeng-Longmaxi black shale in the Tianba Section in northeastern Chongqing[J]. Natural Gas Industry, 2015, 35(4): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201504005.htm
[35] 万秋, 李延河, 王利民, 等. 北淮阳晓天火山岩盆地片麻状花岗岩成岩年代学及地球化学特征[J]. 岩矿测试, 2020, 39(4): 620-630. doi: 10.15898/j.cnki.11-2131/td.201908120125 Wan Q, Li Y H, Wang L M, et al. The age and geochemical characteristics of neoproterozoic gneissic moyite in the Xiaotian Basin[J]. Rock and Mineral Analysis, 2020, 39(4): 620-630. doi: 10.15898/j.cnki.11-2131/td.201908120125
[36] 李欣尉, 李超, 周利敏, 等. 贵州正安县奥陶系-志留系界线碳质泥岩Re-Os同位素精确厘定及其古环境反演[J]. 岩矿测试, 2020, 39(2): 251-261. doi: 10.15898/j.cnki.11-2131/td.201907310116 Li X W, Li C, Zhou L M, et al. Accurate determination of the age of the carbonaceous mudstone of the Ordovician-Silurian boundary in Zheng'an County, Guizhou Province by Re-Os isotope dating method and its application in paleoenvironmental inversion[J]. Rock and Mineral Analysis, 2020, 39(2): 251-261. doi: 10.15898/j.cnki.11-2131/td.201907310116
[37] 李娟, 于炳松, 郭峰. 黔北地区下寒武统底部黑色页岩沉积环境条件与源区构造背景分析[J]. 沉积学报, 2013, 31(1): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201301004.htm Li J, Yu B S, Guo F. Depositional setting and tectonic background analysis on lower Cambrian black shales in the north of Guizhou Province[J]. Acta Sedimentologica Sinica, 2013, 31(1): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201301004.htm
[38] Cullers R L. The geochemistryof shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies[J]. Lithos, 2000, 51(3): 181-203.
[39] 李振宏, 董树文, 渠洪杰, 等. 宁武-静乐盆地侏罗系碎屑岩地球化学特征及地质意义[J]. 地质论评, 2013, 59(4): 637-655. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201304007.htm Li Z H, Dong S W, Qu H J, et al. Geochemistry of Jurassic detrital rocks and geological significance in Ningwu Jingle Basin[J]. Geological Review, 2013, 59(4): 637-655. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201304007.htm
[40] 陈兴, 彭成龙, 陈建书, 等. 右江盆地中三叠世碎屑岩地球化学特征及其物源分析: 以贵州册亨地区为例[J]. 高校地质学报, 2020, 26(6): 639-655. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202006004.htm Chen X, Peng C L, Chen J S, et al. Geochemistry and provenance of the middle Triassic clastic rocks in the Youjiang Basin, Ceheng, Guizhou[J]. Geological Journal of China Universities, 2020, 26(6): 639-655. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202006004.htm
[41] 雒昆利, 潘云唐, 王五一, 等. 南秦岭早古生代地层含硒量及硒的分布规律[J]. 地质论评, 2001, 47(2): 211-217. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200102018.htm Luo K L, Pan Y T, Wang W Y, et al. Selenium content and distribution pattern in the Palaeozoic strata in the southern Qinling Mountains[J]. Geological Review, 2001, 47(2): 211-217. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200102018.htm
[42] 吴赛赛, 赵省民, 邓坚. 漠河盆地中侏罗统漠河组泥岩元素地球化学特征及其地质意义: 以MK-3井为例[J]. 地质科技情报, 2016, 35(3): 17-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201603003.htm Wu S S, Zhao X M, Deng J. Geochemical characteristics of elements of the mudstones in middle Jurassic Mohe Formaiton in the Mohe Basin and their geological implications: A case from drilling hole MK-3[J]. Geological Science and Technology Information, 2016, 35(3): 17-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201603003.htm
[43] 张参, 刘池洋, 王建强, 等. 中侏罗世延安期汝箕沟地区与鄂尔多斯盆地沉积关系探讨[J]. 石油地质与工程, 2010, 24(2): 13-16, 20. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201002005.htm Zhang C, Liu C Y, Wang J Q, et al. Discussion on sedimentary relationship between Rujigou area and Ordos Basin in Yan'an age of mid-Jurassic[J]. Petroleum Geology and Engineering, 2010, 24(2): 13-16, 20. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201002005.htm