Content Characteristics and Influencing Factors of Soil Selenium in Western Muchuan County, Sichuan Province
-
摘要: 硒是人体和动物必需的微量有益元素,摄入适量硒是提高人群生活质量的重要标志。食用富硒农产品是缺硒地区人体获取和补充硒元素的重要途径。调查土壤硒的含量特征、圈定富硒土壤资源分布区、查明土壤硒迁移富集的影响因素,是高效利用富硒土壤资源和科学开发富硒农产品的重要依据。本文选择四川省沐川县西部地区采集土壤样品,采用原子荧光光谱法、X射线荧光光谱法、电感耦合等离子体质谱/发射光谱法等方法测定土壤中Se、Al2O3、TFe2O3、OrgC、Cd等元素含量和pH值,利用统计学及相关分析等方法研究了土壤硒等元素含量和分布特征,并对土壤硒含量的主要影响因素进行探讨。结果表明:①研究区表层土壤硒含量范围为0.08~1.30mg/kg,平均含量为0.39±0.15mg/kg,满足富硒土壤条件的土壤面积为112km2,占研究区总面积的52%,其中无公害富硒土壤面积为35km2。土壤Cd含量是造成富硒土壤和无公害富硒土壤面积具有较大差异性的主要因素。②地质背景与土壤硒含量密切相关,富硒土壤主要受含碳酸盐岩及夹碳质地层的砂岩、粉砂岩等地层控制,土壤硒来源稳定;③土壤硒含量随pH值、风化程度的降低而升高,随有机质、TFe2O3、S含量的升高而升高,其中有机质对土壤硒的影响显著大于TFe2O3,表明该区域铁氧化物对硒的吸附能力低于有机质。综上所述,研究区富硒土壤资源丰富,建议当地充分利用相关资源开发富硒农产品,同时应注重有机肥的平衡施肥,并进一步加强土壤-作物系统中硒迁移富集影响因素的协同分析。要点
(1) 研究区富硒土壤面积为112km2,其中无公害富硒土壤面积为35km2,富硒土壤资源丰富。
(2) 地质背景与土壤硒含量密切相关,富硒土壤主要受含碳酸盐岩及夹碳质地层的砂岩、粉砂岩等地层控制。
(3) 土壤pH、有机质、TFe2O3、S及土壤风化程度均对土壤硒的富集活化产生影响,其中铁氧化物对硒的吸附能力低于有机质。
HIGHLIGHTS(1) The selenium-rich land covers 112km2, including 35km2 nuisanceless selenium-rich land. The selenium-rich land resources are abundant in the study area.
(2) The geological background is closely related to the soil selenium contents, which is mainly controlled by carbonate rocks, sandstone and siltstone intercalated with carbonaceous strata.
(3) Soil pH, organic matter, TFe2O3, S and weathering degree are important factors affecting the enrichment and activation of soil selenium. The effect of organic matter on soil selenium is significantly greater than TFe2O3.
Abstract:BACKGROUNDSelenium (Se) is an essential beneficial trace element for human and animals; taking an appropriate amount of selenium is an important sign to improve the quality of life. Eating selenium-rich agricultural products is an important way for humans to obtain and supplement selenium in low-Se regions. Investigating the content characteristics of soil selenium, delineating the distribution of selenium-enriched soil resources and identifying the influencing factors of soil selenium migration and enrichment can provide a sound basis for the efficient utilization of selenium-enriched soil resources and scientific development of selenium-enriched agricultural products.OBJECTIVESTo reveal the content, distribution characteristics and influencing factors of selenium in soils from the study area.METHODSSoil samples were collected from the western area of Muchuan County, Sichuan Province. AFS, ICP-MS and XRF were used to determine the elemental content (Se, Al2O3, TFe2O3, OrgC, Cd) and pH values. The content, distribution and influencing factors of soil selenium in the study area were evaluated using statistical and correlation analysis.RESULTSThe results showed that: (1) The content of selenium in the study area ranged from 0.08 to 1.30mg/kg, with an average value of 0.39±0.15mg/kg. The selenium-rich land was 112km2, accounting for 52% of the total area, of which the nuisanceless selenium-rich land was 35km2. Soil Cd content was the main factor causing the great difference between selenium-enrich soil and nuisanceless selenium-rich soil. (2) The geological background was closely related to the soil selenium content, which was mainly controlled by carbonate rocks, sandstone and siltstone intercalated with carbonaceous strata. The source of soil selenium was stable. (3) The soil selenium content decreased with pH and ba value, meanwhile, they increased with TFe2O3 and S content. The effect of organic matter on soil selenium was significantly greater than TFe2O3, indicating that the adsorption capacity of TFe2O3 for selenium in this area was lower than organic matter.CONCLUSIONSSelenium-enriched land resources are abundant in the study area. The content of soil selenium is affected by geological background and physical and chemical properties. It is suggested that local governments make full use of relevant resources to develop selenium-enriched agricultural products. At the same time, attention should be paid to the balanced fertilization of organic fertilizers. The collaborative analysis of factors affecting the migration and enrichment of selenium in the soil-crop system should be further strengthened. -
电气石是一类化学成分、晶体结构复杂的,以含硼为特征的铝、钠、铁、锂环状结构的硅酸盐矿物的总称,主要有镁电气石、黑电气石和锂电气石等三种端员矿种。电气石具有热电性、压电性、表面活性和吸附性等性质,作为一种新型工业矿物广泛应用于环境保护、电子电器、化工建材等领域[1]。此外,电气石矿物能记录其形成时岩石与矿床的化学组成与结构特征,对成岩成矿过程的研究具有重要的示踪意义,可用来指导重要经济矿床的勘探工作[2-3]。因此,快速、准确地测定电气石的化学组成对其质量评价、资源利用、矿床勘探等方面的研究具有重要意义。
与一般硅酸盐矿物相比,电气石的化学性质稳定,不易分解,B2O3含量一般在10%以上,这使其主次量成分的测定有一定困难。例如,采用动物胶凝聚重量法测定电气石中SiO2时,在硅酸凝聚过程中硼被硅酸吸附,与SiO2同时产生沉淀,使测定结果偏高,因此需要反复多次用甲醇以硼甲基醚的形式蒸发除去硼[4]。采用中子活化分析法(INAA)测定电气石中的主次量元素时[5-7],由于10B的中子俘获截面积大,会降低待测元素的放射性活度,需要采用挥发除硼[5]或绘制干扰曲线[6]等方法消除或减弱硼的干扰,实验操作繁琐,且仪器设备昂贵,需要特殊的辐射防护措施,限制了其推广应用。采用电感耦合等离子体发射光谱法(ICP-OES)测定时,由于电气石化学性质稳定,敞开酸溶法难以完全分解样品,需要用高压密闭酸溶法[8]或碳酸钠-氧化锌熔融法[9]等进行样品分解。高压密闭酸溶法耗时很长,由于使用氢氟酸,一般不能准确测定样品中的SiO2;碱熔法的试液盐分高,测定时易堵塞雾化器,空白值较高。由于硼属于超轻元素,X射线荧光产额很低,荧光强度弱,如果使用X射线荧光光谱法(XRF)可以有效避免硼的干扰,也能克服样品不易湿法分解的问题。但也存在一些不足,如Tamer等[10]、Gullu等[11]采用XRF法测定电气石中SiO2、Al2O3、Fe2O3、MgO等主次微量元素,由于采用粉末压片法制样,在缺乏电气石标准物质的情况下,难以消除粒度效应和矿物效应,对测定结果的精密度和准确度会造成一定影响。
本文采用熔融玻璃片法制备电气石样品,对熔剂和稀释比的选择进行了考察,选择适当氧化剂及脱模剂制备玻璃熔片,消除了粒度效应和矿物效应,在缺少电气石标准物质的情况下,选择常用的土壤、水系沉积物及多种类型的岩石等标准物质建立校准曲线,扩大校准曲线的线性范围,建立了熔融制样-XRF法同时测定电气石中Na2O、MgO、Al2O3、SiO2、P2O5、K2O、CaO、TiO2、V2O5、Cr2O3、MnO、TFe2O3等主次量元素的分析方法。
1. 实验部分
1.1 仪器和工作条件
ZSX PrimusⅡ型X射线荧光光谱仪(日本理学公司),功率4 kW,端窗铑靶X光管,最大工作电压60 kV,最大工作电流130 mA,真空光路(真空度小于10 Pa),视野光栏Φ30 mm。分析元素的测量条件见表 1。Lifumat-2.0-Ox型高频熔样机(德国利恒热工有限公司)。
表 1 XRF仪器分析条件Table 1. Working conditions of the XRF instrument元素 分析线 分析晶体 准直器 探测器 电压(kV) 电流(mA) 2θ (°) 背景(°) PHA LL UL Na Kα RX25 S4 PC 55 60 47.492 48.900 100 350 Mg Kα RX25 S4 PC 55 60 39.060 40.500 100 350 Al Kα PET S4 PC 55 60 144.730 147.000 100 330 Si Kα PET S4 PC 55 60 109.042 111.000 100 320 P Kα Ge S4 PC 55 60 141.042 143.300 80 300 K Kα LiF1 S4 PC 55 60 136.588 139.500 100 300 Ca Kα LiF1 S4 PC 55 60 113.062 115.000 100 300 Ti Kα LiF1 S4 PC 55 60 86.106 88.500 100 320 V Kα LiF1 S4 PC 55 60 77.002 74.000 100 320 Cr Kα LiF1 S4 PC 55 60 69.306 74.000 130 320 Mn Kα LiF1 S4 SC 55 60 62.944 63.700 100 350 Fe Kα LiF1 S2 SC 55 60 57.476 58.800 80 350 Br Kα1 LiF1 S2 SC 55 60 29.928 31.000 100 300 Rh Rh-Kα1 LiF1 S2 SC 55 60 17.518 - 100 300 Rh Rh-KαC LiF1 S2 SC 55 60 18.442 - 100 300 注:均未使用滤光片, 衰减器均为1/1;Br用于校正Al的谱线重叠干扰;Rh为内标元素。 1.2 标准物质
XRF定量分析时,需要一组与待测样品化学组成类似、各元素具有足够宽含量范围及适当的含量梯度的标准物质来建立校准曲线。
在缺乏电气石标准物质的情况下,为满足样品测试的需要,本实验选择了土壤(GBW07401~GBW07408,GBW07423~GBW07430),水系沉积物(GBW07301~GBW07312),岩石(GBW 07101~GBW07114,GBW07120~GBW07125);硅质砂岩(GBW03112~GBW03114),软质黏土(GBW03115),钾长石(GBW03116),钠钙硅玻璃(GBW03117),高岭土(GBW03121~GBW03122),硅灰石(GBW03123),霞石正长岩(GBW03124~GBW03125),叶腊石(GBW03126~GBW03127),水镁石(GBW03128~GBW03129),滑石(GBW03130),硼硅酸盐玻璃(GBW03132)等国家一级标准物质,使各元素形成既有一定含量范围又有适当梯度的标准系列。各标准物质含量范围见表 2。
表 2 标准物质各元素含量范围Table 2. Content range of elements in the certified reference materials元素 含量范围(%) Na2O 0.0066~13.77 MgO 0.041~61.43 Al2O3 0.053~38.62 SiO2 0.62~98.51 P2O5 0.0030~0.92 K2O 0.0041~9.6 CaO 0.052~40.39 TiO2 0.0040~7.69 V2O5 0.0004~0.14 Cr2O3 0.0004~1.57 MnO 0.0015~0.32 TFe2O3 0.093~24.75 1.3 主要试剂
四硼酸锂+偏硼酸锂+氟化锂混合熔剂(质量比为4.5:1:0.4):优级纯,使用前经700℃灼烧2 h后备用。
溴化锂、硝酸锂:优级纯。
1.4 实验方法
称取样品0.7000 g(预先经105℃干燥2 h)和7.0000 g四硼酸锂-偏硼酸锂-氟化锂混合熔剂于瓷坩埚中,搅拌均匀,全部转入铂黄合金坩埚(95%铂+5%金)中,加入1 mL饱和硝酸锂溶液和1滴溴化锂溶液(1 g/mL),将坩埚置于熔样机上,在800℃预氧化2 min,升温至1050℃保持9 min(熔样同时充分摇动坩埚、赶尽气泡),再将熔融物倒入铸模中成型并与铸模脱离。放入干燥器中密闭保存,待测。
2. 结果与讨论
2.1 熔剂的选择
XRF分析中熔剂的选择要遵循酸碱平衡的原则,适宜的熔剂可使样品熔融后具有较好的流动性,并形成均匀、透明的样片[12]。硼酸盐类熔剂在XRF熔融制样中应用最广泛,常用的熔剂有四硼酸锂、偏硼酸锂及二者的混合物等[13]。本实验选择电气石实际样品,对几种常用熔剂进行熔片试验。结果表明,使用偏硼酸锂或四硼酸锂-偏硼酸锂(质量比为12:22)熔剂时,玻璃熔片在冷却过程中出现结晶、炸裂现象;使用四硼酸锂或四硼酸锂-偏硼酸锂(质量比为67:33)熔剂时,能制成透明的玻璃熔片,但熔体的流动性较差,不易混匀;使用四硼酸锂-偏硼酸锂-氟化锂(质量比为4.5:1:0.4)熔剂时,能制成均匀、透明的玻璃熔片,没有出现含不溶物、结晶或炸裂等现象。因此,本文选择四硼酸锂-偏硼酸锂-氟化锂(质量比为4.5:1:0.4)熔剂进行电气石样品熔融片的制备。
2.2 样品与熔剂的稀释比例
选择电气石实际样品,分别按稀释比1:2、1:3、1:5、1:10、1:15称取样品与熔剂混匀,进行熔片试验,比较不同稀释比对于熔片效果的影响。实验结果表明,稀释比为1:2、1:3时,熔体流动性不佳,所得玻璃熔片中有絮状物;稀释比为1:5、1:10、1:15时,熔体流动性较好,可以制备均匀、透明的玻璃熔片。考虑到电气石的种类较多、化学组成复杂、含量范围较广,采用低稀释比可能会降低方法的适应性。而稀释比过大又会使得元素分析强度下降,对Na、K等轻元素和V、Cr等低含量元素测定有影响,因此最终选择样品与熔剂的稀释比为1:10。
2.3 校准曲线方程和基体校正
采用玻璃熔片法制备样品,由于样品完全熔解,可以有效地消除粉末压片所具有的粒度效应和矿物效应,也降低了基体效应。本文用经验系数法进行基体校正和谱线重叠校正,各组分的校准曲线、相关系数及基体校正与重叠校正项见表 3。各组分的线性相关系数均为0.99以上,能够满足分析的要求。
表 3 各组分校准曲线及基体校正Table 3. Calibration curves of the components and matrix effect correction元素 校准曲线方程 相关系数 基体校正项 重叠校正项 Na2O y=2.64274x-0.114574 0.9999 - - MgO y=0.930348x+0.0357911 0.9998 - - Al2O3 y=0.420649x-0.0226954 0.9999 Fe Br SiO2 y=0.423045x-2.27949 0.9992 Na, Mg, Ca - P2O5 y=0.144936x-0.000210712 0.9987 - - K2O y=0.0585628x-0.0343324 0.9997 - - CaO y=0.0650356x-0.001972964 0.9999 Mg Ti TiO2 y=0.0757955x-0.00999133 0.9997 Al - V2O5 y=0.0567832x+0.0102023 0.9976 - Ti Cr2O3 y=0.0296265x-0.0221646 0.9999 - V MnO y=0.0234417x-0.0037977 0.9966 Mg - TFe2O3 y=22.2998x-0.0147243 (0%~0.5%) 0.9908 Si, Al - y=20.5091x+0.128553 (0.5%~30%) 0.9997 Si, Al - 注:y为组分含量(%),x为经校正后的计数率(kcps)或内标比;TFe2O3校准曲线是以Rh-KαC作内标,依据不同含量范围分段绘制校准曲线;“-”表示未作校正。 2.4 方法检出限
根据表 1的测量条件,首先按照文献[14]中的公式计算各元素的检出限,计算结果见表 4(计算值)。由于熔片制样本身存在的稀释效应及样品基体的影响,有研究者认为用上述理论公式计算出来的检出限通常偏低,无法反映出方法的真实检出限[14-15]。因此在确定本法检出限时,本文采取文献[14]的方法,选择4个标准物质GBW07106(石英砂岩)、GBW07109(霓霞正长岩)、GBW07114(白云岩)和GBW07127(碳酸盐岩石)各制备一个样片,按照表 1中的仪器工作条件重复测定12次,依据测定结果计算出每个标准物质中含量最低的元素对应的标准偏差σ,然后将3倍标准偏差(3σ)作为本方法的检出限,获得的检出限(测定值)见表 4。可见采用此法得出的检出限与实际能报出的结果基本相同。除Na2O外,本方法的检出限均低于或接近于文献[14]类似研究中报道的数据。
表 4 方法检出限Table 4. Detection limits of the method元素 方法检出限(μg/g) 计算值 测定值 Na2O 102 426 MgO 66 192 Al2O3 103 156 SiO2 21 180 P2O5 16 25 K2O 10 21 CaO 13 21 TiO2 9 27 V2O5 5 23 Cr2O3 3 15 MnO 5 17 TFe2O3 8 21 2.5 方法精密度和准确度
取1个电气石实际样品按1.4节实验方法制成11个样片,在选定的实验条件下进行测定,评价方法精密度。各元素测定结果的相对标准偏差(RSD)分别为Na2O(0.63%)、MgO(0.28%)、Al2O3(0.12%)、SiO2(0.19%)、P2O5(0.68%)、K2O(1.93%)、CaO(3.69%)、TiO2(0.24%)、V2O5(2.85%)、Cr2O3(4.18%)、MnO(3.39%)和TFe2O3(0.52%)。与文献[16]报道的采用四硼酸锂熔片-XRF测定电气石中的主次量元素得出的RSD数据相比,本文测量Na2O、MgO、Al2O3、SiO2和P2O5的RSD低于文献数据,TFe2O3的RSD与文献数据相当,K2O、CaO、TiO2和MnO的RSD比文献数据略差,但也能够满足《地质矿产实验室测试质量管理规范》(DZ/T 0130—2006)的要求。
由于目前缺少电气石国家标准物质,本实验选择了Si、Al等元素含量与电气石类似的GBW07180(铝土矿标准物质)、GBW07177(铝土矿标准物质)与GBW07103(岩石标准物质),按质量比5:9混合(校准样品1)及按质量比3:4混合(校准样品2),进行方法准确度验证。由表 5可见,测定结果与校准样品的理论值基本相符,表明本方法的准确度较好。
表 5 方法准确度Table 5. Accuracy tests of the method元素 GBW07180 校准样品1 校准样品2 本法(%) 推荐值(%) 本法(%) 推荐值(%) 本法(%) 推荐值(%) Na2O 0.034 0.040 2.03 2.03 1.83 1.81 MgO 0.36 0.31 0.34 0.32 0.31 0.30 Al2O3 43.37 42.97 33.91 33.99 38.02 38.11 SiO2 38.89 39.03 49.86 49.61 45.19 44.96 P2O5 0.14 0.14 0.15 0.15 0.16 0.16 K2O 0.22 0.19 3.28 3.29 2.95 2.95 CaO 0.096 0.12 1.15 1.14 1.07 1.06 TiO2 1.83 2.06 1.17 1.29 1.32 1.49 V2O5 0.011 0.013 - - - - Cr2O3 0.012 0.011 - - - - MnO 0.0016 0.0020 0.046 0.048 0.043 0.045 TFe2O3 0.35 0.41 1.80 2.03 1.75 2.00 注:“-”表示标准物质中该元素缺乏定值,未检测。 2.6 本法(熔融制样-XRF)与其他方法的比较
2.6.1 与粉末压片制样-XRF法的比较
选取电气石实际样品DQS-1(花岗伟晶岩型镁电气石,产自新疆阿尔泰矿区),分别采用本法和粉末压片-XRF法进行主次量元素的测定,并与样品推荐值进行比较(推荐值为多家不同实验室测定结果的平均值),粉末压片法的样品制备和测定方法参照文献[17]进行。实验结果(表 6)表明,本方法由于采用熔融法制样,消除了样品的粒度效应和矿物效应,与粉末压片法制样相比,相对误差较小,测量准确度更高。对于粉末压片法,由于其制样更加快速、简便,绿色环保,还可同时测定多种微量元素,对测定结果要求不高时可采用。
表 6 XRF分析不同制样方法的分析结果比对Table 6. A comparison of analytical results of tourmaline samples measured by fusion and powder pellet preparation in XRF method元素 推荐值(%) 粉末压片法 本法(熔融法) 测定值(%) 相对误差(%) 测定值(%) 相对误差(%) Na2O 2.43 2.22 -8.5 2.27 -6.6 MgO 8.40 8.34 -0.8 8.49 1.1 Al2O3 32.60 31.84 -2.3 32.76 0.5 SiO2 36.24 35.36 -2.4 36.07 -0.5 P2O5 0.14 0.19 35.7 0.15 7.1 K2O 0.11 0.13 18.2 0.12 9.1 CaO 0.55 0.72 30.2 0.59 7.3 TiO2 0.62 0.59 -4.8 0.61 -1.6 V2O5 0.027 0.036 32.0 0.026 -3.7 Cr2O3 0.012 0.014 16.7 0.014 16.7 MnO 0.024 0.030 20.8 0.025 4.2 TFe2O3 5.07 5.32 4.9 5.16 1.8 2.6.2 与化学法的比较
选取三种不同类型和产地的电气石实际样品DQS-2(岩浆热型铁镁电气石,产自山东邹城矿区)、DQS-3(岩浆热型铁电气石,产自广西恭城矿区)和DQS-4(花岗伟晶岩型锂电气石,产自河南卢氏矿区),采用本方法进行主次量元素的测定,并与化学法测定结果进行比对。化学法中,SiO2采用重量法测定,MgO、Al2O3、CaO采用容量法测定,TFe2O3、TiO2采用分光光度法测定,Na2O、K2O、MnO、V2O5、Cr2O3和P2O5采用高压密闭酸溶-电感耦合等离子体发射光谱法(ICP-OES)测定。实验结果(表 7)表明本法的测定值与化学法基本吻合,适用于测定不同类型电气石中的主次量元素。
表 7 本法与化学法的分析结果比对Table 7. A comparison of analytical results of tourmaline samples measured by this method with chemical method元素 DQS-2 DQS-3 DQS-4 本法(%) 化学法(%) 本法(%) 化学法(%) 本法(%) 化学法(%) Na2O 1.61 1.59 2.03 2.04 1.71 1.73 MgO 5.65 5.58 0.60 0.52 0.078 0.070* Al2O3 19.63 19.48 27.89 27.99 29.92 29.77 SiO2 40.79 40.65 39.57 39.69 52.99 52.74 P2O5 0.21 0.19 0.009 0.011 0.13 0.12 K2O 0.18 0.17 0.064 0.050 0.54 0.57 CaO 7.47 7.38 0.57 0.49 1.19 1.10 TiO2 0.47 0.45 0.18 0.18 0.010 0. 013* V2O5 0.033 0.034 - - - - Cr2O3 0.023 0.024 - - - - MnO 0.13 0.13 0.26 0.24 0.035 0.031 TFe2O3 8.77 8.64 17.71 17.52 0.10 0.10 注:标注“*”的数据表示该数据为高压密闭酸溶,ICP-OES法测定值;“-”表示低于检出限,没有提供测定值。 3. 结论
本文以四硼酸锂-偏硼酸锂-氟化锂混合熔剂(质量比为4.5:1:0.4)作为熔剂,采用熔融片法进行样品制备,建立了应用XRF法同时测定电气石中Na2O、MgO、Al2O3、SiO2、P2O5、K2O、CaO、TiO2、V2O5、Cr2O3、MnO、TFe2O3等12种主次量元素的分析方法。本法解决了电气石不易湿法分解和硼的干扰问题,克服了粉末压片制样无法消除的粒度效应和矿物效应,提高了测量准确度,精密度和检出限与前人方法相比也有一定改进;与高压密闭酸溶法相比,简化了样品前处理步骤,缩短了前处理时间,具有简便、快速的优势,适用于多种不同类型电气石样品的测定,有一定的推广应用价值。
本法由于使用硼酸盐作为熔剂,不能完成电气石重要组分B2O3的检测。选择适宜的非硼酸盐熔剂进行样品制备,实现XRF法测定电气石中的B2O3,还需进一步研究。
-
表 1 各指标分析测试的检出限
Table 1 Detection limit of analyzed indicators
分析项目 检出限 分析项目 检出限 As 0.3mg/kg Al2O3 0.05% Cd 0.03mg/kg TFe2O3 0.05% Cr 3mg/kg S 30mg/kg Hg 0.0005mg/kg pH 0.1 Pb 2mg/kg OrgC 0.1% Se 0.01mg/kg 表 2 土壤硒含量划分界限值
Table 2 Threshold between abundance and deficiency of soil selenium
土壤硒等级 硒含量(mg/kg) 硒总体情况 缺乏 ≤0.125 缺硒 边缘 0.125~0.175 硒潜在不足 适量 0.175~0.40 足硒 高 0.4~3.0 富硒 过剩 >3.0 硒中毒 表 3 主要成土母岩区土壤硒地球化学参数
Table 3 Geochemical parameters of selenium concentration in soils derived from different parent rocks
地层 样本数(件) Se含量(mg/kg) 标准偏差(mg/kg) 变异系数 最大值 最小值 平均值 白垩系 K1w 26 0.65 0.30 0.38 0.07 0.19 侏罗系 J3p 87 0.52 0.15 0.33 0.07 0.22 J3sn 90 0.66 0.14 0.33 0.09 0.28 J2s 383 0.67 0.08 0.32 0.08 0.25 J1z 243 1.13 0.09 0.39 0.11 0.28 三叠系 T3x 138 1.08 0.12 0.46 0.14 0.31 T3k-x 170 0.78 0.25 0.47 0.09 0.20 T2l 79 0.78 0.35 0.53 0.11 0.21 T1-2f-l 52 1.30 0.31 0.63 0.20 0.31 T1f-j 27 0.70 0.32 0.48 0.09 0.18 二叠系 P2x 27 1.16 0.33 0.67 0.25 0.37 表 4 不同土地利用方式土壤硒地球化学参数
Table 4 Geochemical parameters of selenium concentration in soils with different land use types
土地利用方式 样本数(件) Se含量(mg/kg) 标准偏差(mg/kg) 变异系数 最大值 最小值 平均值 水田 386 0.73 0.13 0.39 0.10 0.26 旱地 798 1.30 0.09 0.41 0.16 0.38 茶园 108 1.20 0.24 0.47 0.19 0.39 -
Shi Z M, Pan P J, Feng Y W, et al. Environmental water chemistry and possible correlation with Kaschin-Beck Disease (KBD) in northwestern Sichuan, China[J]. Environment International, 2017, 99: 282-292. doi: 10.1016/j.envint.2016.12.006
Navarro-Alarcon M, Cdbrera-Vique C. Selenium in food and the human body: A review[J]. Science of the Total Environment, 2008, 400(1-3): 115-141. doi: 10.1016/j.scitotenv.2008.06.024
Li Z, Liang D L, Peng Q, et al. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review[J]. Geoderma, 2017, 295(1): 69-79. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0016706116305018&originContentFamily=serial&_origin=article&_ts=1488279631&md5=4540f124bd4f6db999b22a7874f67982
Fordyce F M, Zhang G D, Green K, et al. Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi District, China[J]. Applied Geochemistry, 2000, 15: 117-132. doi: 10.1016/S0883-2927(99)00035-9
Dinh Q T, Cui Z W, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health: A review[J]. Environment International, 2018, 112: 294-309. doi: 10.1016/j.envint.2017.12.035
王学求, 柳青青, 刘汉粮, 等. 关键元素与生命健康: 中国耕地缺硒吗?[J]. 地学前缘, 2021, 28(3): 412-423. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103035.htm Wang X Q, Liu Q Q, Liu H L, et al. Key elements and human health: Are selenium deficient in cultivated soils in China?[J]. Earth Science Frontiers, 2021, 28(3): 412-423. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103035.htm
Wang J, Li H R, Yang L S, et al. Distribution and trans-location of selenium from soil to highland barley in the Tibetan Plateau Kashin-Beck disease area[J]. Environmental Geochemistry and Health, 2017, 39: 221-229. doi: 10.1007/s10653-016-9823-3
Rayman M P. Food-chain selenium and human health: Emphasis on intake[J]. British Journal of Nutrition, 2008, 100: 254-268. doi: 10.1017/S0007114508939830
王锐, 邓海, 贾中民, 等. 硒在土壤-农作物系统中的分布特征及富硒土壤阈值[J]. 环境科学, 2020, 41(12): 5571-5578. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202012043.htm Wang R, Deng H, Jia Z M, et al. Distribution characteristics of selenium in a soil-crop system and the threshold of selenium-rich soils[J]. Environmental Science, 2020, 41(12): 5571-5578. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202012043.htm
Liu H L, Wang X Q, Zhang B M, et al. Concentration and distribution of selenium in soils of mainland China, and implications for human health[J]. Journal of Geochemical Exploration, 2021, 220: 1-14.
余涛, 杨忠芳, 王锐, 等. 恩施典型富硒区土壤硒与其他元素组合特征及来源分析[J]. 土壤, 2018, 50(6): 1119-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806010.htm Yu T, Yang Z F, Wang R, et al. Characteristics and sources of soil selenium and other elements in typical high selenium soil area of Enshi[J]. Soils, 2018, 50(6): 1119-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806010.htm
时章亮, 金立新, 廖超, 等. 四川雷波县重点耕地区土壤硒含量特征及其成因分析[J]. 物探与化探, 2020, 44(5): 1253-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005036.htm Shi Z L, Jin L X, Liao C, et al. Content characteristics and genesis of soil selenium in important cultivated areas of Leibo County, Sichuan Province[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 1253-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005036.htm
任海利, 高军波, 龙杰, 等. 贵州开阳地区富硒地层及风化土壤地球化学特征[J]. 地球与环境, 2012, 40(2): 161-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201202006.htm Ren H L, Gao J B, Long J, et al. Geochemical characteristics of selenium-rich strata and weathered soil from Kaiyang County, Guizhou Province[J]. Earth and Environment, 2012, 40(2): 161-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201202006.htm
刘才泽, 王永华, 曾琴琴, 等. 成渝典型地区土壤硒地球化学特征及其成因分析[J]. 物探与化探, 2018, 42(6): 1289-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201806026.htm Liu C Z, Wang Y H, Zeng Q Q, et al. The distribution and source of soil selenium in typical areas of Chengdu-Chongqing region[J]. Geophysical and Geochemical Exploration, 2018, 42(6): 1289-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201806026.htm
宋明义, 李恒溪, 魏迎春, 等. 浙江省龙游志棠地区硒的地球化学研究[J]. 贵州地质, 2005, 22(3): 176-180. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200503005.htm Song M Y, Li H X, Wei Y C, et al. Geochemistry of the selenium, Zhitang Town, Longyou County, Zhejiang Province[J]. Guizhou Geology, 2005, 22(3): 176-180. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200503005.htm
吴兴盛. 福建省武平县富硒土壤特征及成因分析[J]. 物探与化探, 2021, 45(3): 778-784. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202103027.htm Wu X S. Characteristics and genesis of selenium-rich soil in Wuping area, Fujian Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 778-784. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202103027.htm
Blazina T, Sun Y B, Voegelin A, et al. Terrestrial selenium distribution in China is potentially linked to monsoonal climate[J]. Nature Communications, 2014, 5: 4717. doi: 10.1038/ncomms5717
冯辉, 张学君, 张群, 等. 北京大清河流域生态涵养区富硒土壤资源分布特征和来源解析[J]. 岩矿测试, 2019, 38(6): 693-704. doi: 10.15898/j.cnki.11-2131/td.201905270071 Feng H, Zhang X J, Zhang Q, et al. Distribution characteristics and sources identification of selenium-rich soils in the ecological conservation area of the Daqinghe River watershed, Beijing[J]. Rock and Mineral Analysis, 2019, 38(6): 693-704. doi: 10.15898/j.cnki.11-2131/td.201905270071
周殷竹, 刘义, 王彪, 等. 青海省囊谦县农耕区土壤硒的富集因素[J]. 地质通报, 2020, 39(12): 1952-1959. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012011.htm Zhou Y Z, Liu Y, Wang B, et al. Influence factors of soil selenium in cultivated area of Nangqian County, Qinghai Province[J]. Geological Bulletin of China, 2020, 39(12): 1952-1959. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012011.htm
张立, 刘国栋, 吕石佳, 等. 黑龙江省海伦市农耕区土壤硒分布特征及影响因素[J]. 现代地质, 2019, 33(5): 1046-1054. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905012.htm Zhang L, Liu G D, Lv S J, et al. Distribution characteristics of selenium cultivated soil and its influencing factors in Hailun County of Heilongjiang Province[J]. Geoscience, 2019, 33(5): 1046-1054. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905012.htm
周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158 Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158
谭建安. 中华人民共和国地方病与环境图集[M]. 北京: 科学出版社, 1989. Tan J A. The atlas of endemic diseases and their environments in the People's Republic of China[M]. Beijing: Science Press, 1989.
迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007. Chi Q H, Yan M C. Applied geochemistry data book of element abundance[M]. Beijing: Geological Publishing House, 2007.
侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020. Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical parameters in China[M]. Beijing: Geological Publishing House, 2020.
韩伟, 王成文, 彭敏, 等. 川南山区土壤与农作物重金属特征及成因[J]. 环境科学, 2021, 42(5): 2480-2489. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202105046.htm Han W, Wang C W, Peng M, et al. Characteristics and origins of heavy metals in soil and crops in mountain area of southern Sichuan[J]. Environmental Science, 2021, 42(5): 2480-2489. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202105046.htm
贺灵, 吴超, 曾道明, 等. 中国西南典型地质背景区土壤重金属分布及生态风险特征[J]. 岩矿测试, 2021, 40(3): 395-407. doi: 10.15898/j.cnki.11-2131/td.202101260016 He L, Wu C, Zeng D M, et al. Distribution of heavy metals and ecological risk of soils in typical geological background region of southwest China[J]. Rock and Mineral Analysis, 2021, 40(3): 395-407. doi: 10.15898/j.cnki.11-2131/td.202101260016
唐瑞玲, 王惠艳, 吕许朋, 等. 西南重金属高背景区农田系统土壤重金属生态风险评价[J]. 现代地质, 2020, 34(5): 917-927. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202005005.htm Tang R L, Wang H Y, Lv X P, et al. Ecological risk assessment of heavy metals in farmland system from an area with high background of heavy metals, southwestern China[J]. Geoscience, 2020, 34(5): 917-927. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202005005.htm
马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001054.htm Ma H H, Peng M, Liu F, et al. Bioavailability, translocation, and accumulation characteristics of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China[J]. Environmental Science, 2020, 41(1): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001054.htm
杨忠芳, 汤奇峰, 成杭新, 等. 爱恨交织的化学元素[M]. 北京: 地质出版社, 2019. Yang Z F, Tang Q F, Cheng H X, et al. The chemical elements of love-hate[M]. Beijing: Geological Publishing House, 2019.
Fang W X, Wu P W. Elevated selenium and other mine-ral element concentrations in soil and plant tissue in bone coal sites in Haoping area, Ziyang County, China[J]. Plant and Soil, 2004, 261: 135-146. doi: 10.1023/B:PLSO.0000035580.32406.e3
蒋慧豪, 罗杰, 蔡立梅, 等. 广东省普宁市土壤硒的分布特征及影响因素研究[J]. 现代地质, 2019, 33(1): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201901015.htm Jiang H H, Luo J, Cai L M, et al. Distribution of selenium and its influencing factors in soils of Puning City, Guangdong Province[J]. Geoscience, 2019, 33(1): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201901015.htm
韩伟, 王乔林, 宋云涛, 等. 四川省沐川县北部土壤硒地球化学特征与成因探讨[J]. 物探与化探, 2021, 45(1): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202101026.htm Han W, Wang Q L, Song Y T, et al. Geochemical characteristics and genesis of selenium in soil in northern Muchuan County, Sichuan Province[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202101026.htm
曹荣浩. 福建省龙海市表层土壤硒含量及影响因素研究[J]. 岩矿测试, 2017, 36(3): 282-288. doi: 10.15898/j.cnki.11-2131/td.201606130084 Cao R H. Study on selenium content of surface soils in Longhai, Fujian and its influencing factors[J]. Rock and Mineral Analysis, 2017, 36(3): 282-288. doi: 10.15898/j.cnki.11-2131/td.201606130084
黄春雷, 魏迎春, 简中华, 等. 浙中典型富硒区土壤硒含量及形态特征[J]. 地球与环境, 2013, 41(2): 155-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201302011.htm Huang C L, Wei Y C, Jian Z H, et al. Study on selenium contents and combined forms of typical selenium-rich soil in the central part of Zhejiang Province[J]. Earth and Environment, 2013, 41(2): 155-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201302011.htm
周墨, 陈国光, 张明, 等. 赣南地区土壤硒元素地球化学特征及其影响因素研究: 以青塘-梅窖地区为例[J]. 现代地质, 2018, 32(6): 1292-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201806017.htm Zhou M, Chen G G, Zhang M, et al. Geochemical characteristics and influencing factors of selenium in soils of south Jiangxi Province: A typical area of Qingtang-Meijiao[J]. Geoscience, 2018, 32(6): 1292-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201806017.htm
朱建明, 梁小兵, 凌宏文, 等. 环境中硒存在形式的研究现状[J]. 矿物岩石地球化学通报, 2003, 22(1): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200301015.htm Zhu J M, Liang X B, Ling H W, et al. Advances in studying occurrence modes of selenium in environment[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(1): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200301015.htm
Fordyce F M. Selenium deficiency and toxicity in the envir-onment[M]//Selinus O. Essentials of medical geology (Revised Edition). British Geological Survey, 2013.
董旭, 姜明亮, 汤明. 安徽省金寨县土壤硒分布特征及影响因素研究[J]. 东华理工大学学报(自然科学版), 2021, 44(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ202101006.htm Dong X, Jiang M L, Tang M. Distribution characteristics and influencing factors of selenium content in soil in Jinzhai County, Anhui Province[J]. Journal of East China University of Technology (Natural Science), 2021, 44(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ202101006.htm
杨志忠, 周文龙, 罗勇军, 等. 贵州镇远县耕地土壤中硒的分布特征及控制因素[J]. 现代地质, 2021, 35(2): 434-442. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202102013.htm Yang Z Z, Zhou W L, Luo Y J, et al. Distribution of soil selenium of cultivated land and its controlling factors in Zhenyuan of Guizhou Province[J]. Geoscience, 2021, 35(2): 434-442. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202102013.htm
成晓梦, 吴超, 孙彬彬, 等. 浙江中部典型黑色岩系分布区土壤-作物富硒特征与重金属风险评价[J]. 现代地质, 2021, 35(2): 425-433. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202102012.htm Cheng X M, Wu C, Sun B B, et al. Selenium-rich characteristics and risk assessment of heavy metals in soil and crop in a typical black shale area of the central part of Zhejiang Province, China[J]. Geoscience, 2021, 35(2): 425-433. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202102012.htm
Tullo P D, Pannier F, Thiry Y, et al. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer[J]. Science of the Total Environment, 2016, 562: 280-288. http://www.onacademic.com/detail/journal_1000038952396710_6cda.html
瞿建国, 徐伯兴, 龚书椿. 上海不同地区土壤中硒的形态分布及其有效性研究[J]. 土壤学报, 1998, 35(3): 398-403. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199803014.htm Qu J G, Xu B X, Gong S C. Study of speciation distribution and availability of selenium in different soils of Shanghai[J]. Acta Pedologica Sinica, 1998, 35(3): 398-403. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199803014.htm
Goldberg S. Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple layer model[J]. Soil Science Society of America Journal, 2014, 77: 64-71. http://www.onacademic.com/detail/journal_1000041679656899_8249.html
Selinus O, Alloway B, Centeno J, et al. Essentials of medical geology: Impacts of the natural environment on public health[M]. Elsevier Academic Press, 2005.
Coppin F, Chabroullet C, Martin-Garin A. Selenite interactions with some particulate organic and mineral fractions isolated from a natural grassland soil[J]. European Journal of Soil Science, 2009, 60: 369-376. http://europepmc.org/abstract/AGR/IND44204811
牛雪, 何锦, 庞雅婕, 等. 三江平原西部土壤硒分布特征及其影响因素[J]. 物探与化探, 2021, 45(1): 223-229. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202101027.htm Niu X, He J, Pang Y J, et al. Distribution feature of soil selenium in west Sanjiang Plain and its influencing factors[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 223-229. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202101027.htm
朱建明, 郑宝山, 苏宏灿, 等. 恩施渔塘坝自然硒的发现及其初步研究[J]. 地球化学, 2001, 30(3): 236-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200103005.htm Zhu J M, Zheng B S, Su H C, et al. New occurrence of native selenium and its preliminary investigation[J]. Geochimica, 2001, 30(3): 236-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200103005.htm
韩文亮, 朱建明, 秦海波, 等. 恩施渔塘坝富硒碳质岩石中硒的形态分析[J]. 矿物学报, 2007, 27(1): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200701014.htm Han W L, Zhu J M, Qin H B, et al. Selenium speciation in Se-rich rocks at Yutangba[J]. Acta Pedologica Sinica, 2007, 27(1): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200701014.htm
黄昌勇, 徐建明. 土壤学[M]. 北京: 中国农业出版社, 2010. Huang C Y, Xu J M. Pedology[M]. Beijing: China Agriculture Press, 2010.
余飞, 张风雷, 张永文, 等. 重庆典型农业区土壤硒地球化学特征及影响因素[J]. 物探与化探, 2020, 44(4): 830-838. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202004019.htm Yu F, Zhang F L, Zhang Y W, et al. Geochemical characteristics and influential factors of soil selenium in typical agricultural area, Chongqing[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 830-838. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202004019.htm
-
期刊类型引用(11)
1. 夏涵,李霞,罗丽卉,王棚,游蕊. 王水提取ICP-OES法测定土壤全硫含量的不确定度评定. 四川农业科技. 2025(02): 47-51 . 百度学术
2. 卢志琴,姚洵,顾佳旺. 红外吸收光谱法测定复合肥中总硫含量. 磷肥与复肥. 2024(02): 38-40 . 百度学术
3. 王勇,李子敬,刘林,李国伟. 攀西地区钒钛磁铁矿中硫含量测定方法优化. 岩矿测试. 2024(03): 524-532 . 本站查看
4. 张世涛,许刚,宋帅娣,徐晓欣,王俊龙. 燃烧-碘酸钾吸收-ICP-OES测定地质样品中的微量硫. 化学与粘合. 2024(04): 420-423 . 百度学术
5. 王斌,毛静,张勇,巩琪. 电感耦合等离子体光谱法测定土壤中的全硫. 中国土壤与肥料. 2024(05): 227-231 . 百度学术
6. 张玲玲. 三种分析方法测定锡铜矿石中硫的对比. 化工设计通讯. 2024(09): 12-14 . 百度学术
7. 蒲景阳,李根生,宋先知,罗嗣慧,王斌. 温控型过硫酸铵纳米胶囊的构筑及对滑溜水残留堵塞物的降解性能. 油田化学. 2024(04): 602-609 . 百度学术
8. 茅昌平,杜苏明,贾志敏,于刚,王耀,饶文波. 快速连续提取沉积物中还原性无机硫的实验方法与应用. 岩矿测试. 2023(03): 576-586 . 本站查看
9. 王莹. 电感耦合等离子体发射光谱法测定生态地质样品中的有效硅. 现代盐化工. 2023(03): 27-29 . 百度学术
10. 聂高升,石友昌,阿米娜·胡吉,孙阳阳,贠庥宇,陈林. 高频红外碳硫仪测定区域地球化学样品中的硫. 中国无机分析化学. 2023(11): 1215-1220 . 百度学术
11. 何雨珊. 利用高频碳硫分析仪测定合金钢中的硫. 化学分析计量. 2023(11): 53-56 . 百度学术
其他类型引用(1)