中文核心期刊

中国科技核心期刊

CSCD来源期刊

DOAJ 收录

Scopus 收录

王冠, 董俊, 徐国栋, 胡志中. 偏硼酸锂熔融-电感耦合等离子体发射光谱法结合扫描电镜-能谱测定锡矿石中锡钨锌铜铁锰[J]. 岩矿测试, 2023, 42(1): 114-124. DOI: 10.15898/j.cnki.11-2131/td.202102100023
引用本文: 王冠, 董俊, 徐国栋, 胡志中. 偏硼酸锂熔融-电感耦合等离子体发射光谱法结合扫描电镜-能谱测定锡矿石中锡钨锌铜铁锰[J]. 岩矿测试, 2023, 42(1): 114-124. DOI: 10.15898/j.cnki.11-2131/td.202102100023
WANG Guan, DONG Jun, XU Gongdong, HU Zhizhong. Determination of Tin, Tungsten, Zinc, Copper, Iron, and Manganese in Tin Ore by Lithium Metaborate Fusion-Inductively Coupled Plasma-Optical Emission Spectrometry Combined with Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(1): 114-124. DOI: 10.15898/j.cnki.11-2131/td.202102100023
Citation: WANG Guan, DONG Jun, XU Gongdong, HU Zhizhong. Determination of Tin, Tungsten, Zinc, Copper, Iron, and Manganese in Tin Ore by Lithium Metaborate Fusion-Inductively Coupled Plasma-Optical Emission Spectrometry Combined with Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(1): 114-124. DOI: 10.15898/j.cnki.11-2131/td.202102100023

偏硼酸锂熔融-电感耦合等离子体发射光谱法结合扫描电镜-能谱测定锡矿石中锡钨锌铜铁锰

Determination of Tin, Tungsten, Zinc, Copper, Iron, and Manganese in Tin Ore by Lithium Metaborate Fusion-Inductively Coupled Plasma-Optical Emission Spectrometry Combined with Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry

  • 摘要: 锡石不溶于盐酸、硝酸及王水,测定其中元素含量时通常采用碱熔融分解样品,电感耦合等离子体发射光谱法(ICP-OES)测定。而传统的过氧化钠或其他氧化性熔剂会引入大量的盐类,酸化提取后的溶液需要进一步分离或稀释,这样不仅影响分析的准确度及较低含量元素的测定限,长时间测定还会引起等离子体信号降低,造成仪器损伤。本文将锡矿石经偏硼酸锂熔融,超声波水浴处理,用ICP-OES法同时测定锡、钨、铁、锰、铜、锌元素含量,在标准溶液中匹配等量锂盐,各待测元素之间无明显干扰,操作简单快捷,环境污染小。实验过程中结合扫描电镜-能谱(SEM-EDX)微区分析技术,观察和分析不同熔剂量下样品熔珠的形貌特征和成分差异,发现随着熔剂与样品比例从小至大,熔珠表面结构呈现由松散、易碎向细粒、致密均匀的规律性变化,当熔剂与样品的比例达到7∶1后,熔珠表面形态无明显变化,当熔剂与样品的比例为8∶1时,熔珠表面能明显检测出硼元素的存在,说明此时的熔剂过量,从而实现了应用SEM-EDX技术来确定ICP-OES法分析中熔剂与样品的最佳配比。本研究还探讨了锡矿石样品的熔融温度和时间、介质酸度,对锡矿石标准物质GBW07281进行分析测定,方法精密度(RSD)为1.20%~8.06%,方法检出限为0.0012%~0.0098%,满足了样品中元素定量分析的要求。

     

    Abstract:
    BACKGROUND Tin is widely distributed in the crust, and more than 20 kinds of tin minerals are known, mainly in the form of cassiterite SnO2.Cassiterite is insoluble in hydrochloric acid, nitric acid and aqua regia.Even when sulfuric acid is heated for a long time or treated with hydrofluoric acid-sulfuric acid, only a small part of it is dissolved.Therefore, for the analysis of tin ore, the alkali fusion method is usually used for sample pretreatment.The determination methods of tin in ore include polarography, spectrophotometry, hydride generation atomic fluorescence spectrometry, emission spectrometry, inductively coupled plasma-optical emission spectrometry (ICP-OES), and inductively coupled plasma-mass spectrometry (ICP-MS).The selection of these methods mainly depends on the characteristics of the ore itself and the content of tin, but also depends on the operating conditions, the selection of reagents and other objective factors.The ICP-OES has high sensitivity, a wide linear range and low matrix effect, which can not only be used to simultaneously determine the main and secondary elements of tin ore, but also has good precision and reproducibility, and can greatly improve the test efficiency.However, when the elemental contents are determined by ICP-OES, traditional sodium peroxide or other oxidizing fluxes introduce a large amount of salts, and the solution after acidification and extraction needs to be further separated or diluted, which not only affects the accuracy of the analysis and the determination limit of lower content elements, but also causes the signal to decrease and cause damage to the instrument during the long-term determination.Lithiummetaborate is a non-oxidizing flux with high melting point and has strong resolution.Since Ingamells reported in 1964 that lithium metaborate is a good flux, it has been successfully applied in the decomposition of soil, silicate rocks, and even some refractory rock and mineral samples.In this study, the analysis of the elemental contents of tin ores are attempted, which are fused by lithium metaborate and measured by ICP-OES.
    OBJECTIVES To develop a method for simultaneous determination of Sn, W, Zn, Cu, Fe and Mn in tin ores which is decomposed by lithium metaborate and determined by ICP-OES.
    METHODS Lithium metaborate, a non-oxidizing flux with a high melting point, was used to replace the traditional sodium peroxide and other oxidizing fluxes to melt the sample.After ultrasonic water treatment, Sn, W, Zn, Cu, Fe and Mn of tin ores were determined by ICP-OES.Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) was used to observe the morphological characteristics of the sample molten beads under different flux amounts and analyze the elemental content in the molten beads.It was found that the surface structure of molten beads changed from loose and brittle to fine and compact with the proportion of flux to sample from small to large.When the ratio of flux to sample reached 7:1, the surface morphology of the molten bead had no obvious change.When the ratio of flux to sample was 8:1, the Boron element was detected on the surface of the molten bead, indicating that the flux was excessive at this time.In this way the optimal ratio of flux and sample was finally determined.
    RESULTS The optimal ratio of flux to sample was 7:1, the sample was melted at 1000℃ and extracted by 5% nitric acid solution.The method precision (RSD) was 1.20%-8.06% by determination of tin ore standard substance GBW07281.The method detection limit was 0.0012%-0.0098%.Each element was compared by this method with classical chemical analysis methods and the relative error was within 7%.
    CONCLUSIONS The content of tin, tungsten, zinc, copper, iron and manganese in tin ore is determined by ICP-OES method by means of matrix matching.There is no obvious interference between the elements to be measured.The sample pretreatment is simple, the molten salt extraction is fast, the analysis cost is low, and the environmental pollution is small.The method meets the requirement of content analysis of tin, tungsten, zinc, copper, iron and manganese in tin ore.Compared with the traditional chemical analysis method, this method is more convenient, saves a lot of time and cost, and is easy to master.SEM-EDX is used to observe and analyze the morphology characteristics and composition content of sample residue and bead under different flux amounts, which provides a theoretical basis for determining the optimal ratio of flux and sample.The low result of lead in the experiment may be due to the high melting temperature of lithium metaborate and the low melting point of lead oxide, which can be further studied in future work.The limitations of a single instrument in detection sensitivity, resolution, analysis rate and efficiency can be solved by the combination of a variety of analysis means, to obtain more abundant information and accurate results, which is one of the most important directions in the development of modern instrument technology.

     

/

返回文章
返回