• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素

王佳翰, 李正鹤, 杨峰, 杨秀玖, 黄金松

王佳翰, 李正鹤, 杨峰, 杨秀玖, 黄金松. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 306-315. DOI: 10.15898/j.cnki.11-2131/td.202006050085
引用本文: 王佳翰, 李正鹤, 杨峰, 杨秀玖, 黄金松. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 306-315. DOI: 10.15898/j.cnki.11-2131/td.202006050085
WANG Jia-han, LI Zheng-he, YANG Feng, YANG Xiu-jiu, HUANG Jin-song. Simultaneous Determination of 48 Elements in Marine Sediments by ICP-MS with Lithium Metaborate Fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306-315. DOI: 10.15898/j.cnki.11-2131/td.202006050085
Citation: WANG Jia-han, LI Zheng-he, YANG Feng, YANG Xiu-jiu, HUANG Jin-song. Simultaneous Determination of 48 Elements in Marine Sediments by ICP-MS with Lithium Metaborate Fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306-315. DOI: 10.15898/j.cnki.11-2131/td.202006050085

偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素

基金项目: 

中国地质调查局地质调查项目(DD20191027)

中国地质调查局地质调查项目 DD20191027

详细信息
    作者简介:

    王佳翰, 硕士, 工程师, 从事地质样品分析研究工作。E-mail: wangjiahanhao@163.com

  • 中图分类号: O657.63

Simultaneous Determination of 48 Elements in Marine Sediments by ICP-MS with Lithium Metaborate Fusion

  • 摘要: 海洋沉积物常用的分析方法如敞开消解或高压密闭消解结合电感耦合等离子体质谱(ICP-MS)或电感耦合等离子体发射光谱(ICP-OES)测定,粉末压片或熔片结合X射线荧光光谱法(XRF)测定,分别存在消解不完全、速度慢、检出限高等缺点,导致样品前处理效率低、待测元素少。针对上述问题,本文采用偏硼酸锂为熔剂分解样品,5%硝酸浸取,用ICP-MS法进行测定,建立了一种快速分析海洋沉积物中48种元素的方法。使用海洋沉积物国家标准物质作为高点绘制标准工作曲线,确定了助熔剂偏硼酸锂用量、稀释倍数、各待测元素的分析同位素及内标元素、仪器测定模式及个别元素的干扰校正方程等,得到最佳分解条件及测定条件。结果表明:由于高温损失,P、As、Se、Cd、Hg等元素无法得到准确结果,可改用微波消解等方式前处理后再进行测定;Cu、Zn、Cr、Ni、Co等共计48种元素使用本法均能得到准确结果,各元素方法精密度(RSD)均小于9.7%。本方法应用于分析海洋沉积物国家标准物质GBW07333、GBW07314、GBW07335、GBW07336,测定值和认定值相符;分析海洋沉积物实际样品,各元素加标回收率介于83.6%~118.6%。本方法可测定元素多,极大提高了分析效率,适合大批量样品分析。
    要点

    (1) 海洋沉积物多元素分析常用的技术手段很难在兼顾前处理效率的同时,得到各元素足够低的检出限。

    (2) 碱熔法处理海洋沉积物样品,缩短了前处理时间,且分解完全,结合ICP-MS实现48种元素的同时测定。

    (3) 通过优化实验流程和仪器条件,为海洋沉积物中多元素测定提供了一种快速准确的方法。

    HIGHLIGHTS

    (1) It was difficult to obtain a low detection limit of each element in marine sediment by the common analysis methods of multi-element analysis when the efficiency of pretreatment was considered at the same time.

    (2) The pretreatment time could be shortened and the decomposition of marine sediment was complete by alkali fusion. The simultaneous determination of 48 elements in marine sediments has been realized by ICP-MS.

    (3) The optimization of experimental procedure and instrument conditions was carried out, which provided a rapid and accurate method for the determination of multiple elements in marine sediments.

  • 硫是地壳中含量最丰富的元素之一,也是一切生物必需的营养元素。硫通过在水、土壤、生物及大气圈内永不停息地循环,对生态环境和植物生长产生一系列的影响。土壤是水、生物和大气圈的交汇中心,并且硫与土壤环境和肥力、植物生长和地球变化有着密切联系,对土壤中硫的快速、准确分析具有非常重要的指导意义。土壤中的硫含量变化较大,一般在30~10000 μg/g之间,其平均值约700 μg/g[1]。土壤是一个复杂而多相的物质系统,它主要由硅酸盐颗粒和有机物组成,硫在土壤中的形态多样。据报道,在干旱土壤中,硫以水溶性硫酸盐和不溶性的硫化物(CaSO4·2H2O、MgSO4·7H2O、ZnSO4、CaFeS2和FeS2等)为主;在排水良好的温带农用土壤中,硫以有机束缚态为主;在温润、半温润的牧场和草原土壤中,绝大多数的硫为有机态[2]

    测定样品中的全硫主要采用管式炉燃烧法[3-4]、X射线荧光光谱法(XRF)[5-10]、硫酸钡重量法[11-12]、离子色谱法[13-15]等。其中重量法和离子色谱法因流程长、流程繁琐,难以满足行业大批量样品的快速分析需求;应用燃烧法测定低含量的硫,精密度、准确度较差;XRF法虽然可以同时测定二氧化硅、氧化钾、氧化钠及硫等主次量元素,但对于土壤样品中硫的分析结果不令人满意[16],并且分析速度较慢[17]。电感耦合等离子体发射光谱法(ICP-OES)具有灵敏度高、检出限低、精密度好、线性范围广的特点,适合大批量样品的分析。目前已经建立了多种应用酸溶或碱熔分解样品,ICP-OES测定不同样品中硫含量的方法[18-28]。例如,马生凤等[26]用四酸溶样测定铁铜锌铅矿石中的硫等22个元素;苏凌云[18]在低温下用逆王水和溴水溶解测定铁矿石中的硫磷;李清彩等[22]以高氯酸、硝酸和氢氟酸溶解试样测定多金属矿中的砷铬铟硫锑;高小山等[23]用过氧化钠熔融测定黑钨矿中的硫;胡璇等[25]用过氧化钠熔融测定高硫铝土矿中的硫。上述方法中,分析对象均以矿石和矿物为主,其中一些方法采用了不完全分解法。由此可见,样品前处理是准确测定硫的前提条件。

    本文试验了王水、王水水浴和盐酸-硝酸-氢氟酸-高氯酸(四酸)三种酸溶方法,认为盐酸-硝酸-氢氟酸-高氯酸体系比其他两种方法更具优势,建立了四酸敞口溶解ICP-OES测定硫的方法。

    VISTA-MPX全谱直读电感耦合等离子体发射光谱仪(美国Varian公司)。仪器工作条件为:射频功率1200 W,辅助气(Ar)流量1.5 L/min, 冷却气流量15.0 L/min,雾化器压力200 kPa, 观察高度10 mm,蠕动泵转速15 r/min,清洗时间30 s,进样稳定延时20 s,读数稳定延时10 s,读数时间10 s,读数次数3次。

    CT1461-35智能电热板(天津拓至明实验仪器有限公司)。

    硫标准溶液(1000 mg/L):准确称取2.2139 g于105℃干燥2 h的基准无水硫酸钠于100 mL烧杯中,加适量水溶解完全,加5 mL盐酸,转移至500 mL容量瓶中,定容。

    硫标准溶液:由硫标准溶液用10%盐酸逐级稀释至所需浓度。

    所需的盐酸、硝酸、氢氟酸、高氯酸均为优级纯(国药集团化学试剂有限公司)。

    实验用水为二次去离子水(电阻率≥18 MΩ·cm)。

    将土壤样品中各种形态的硫定量转入溶液是样品前处理的关键,本研究首先借鉴了苏凌云[18]采用王水溶矿的方案(方法1),实验发现样品在最后蒸干阶段易跳溅;进而对上述方法进行了改进,试验了王水水浴溶矿方法(方法2),部分土壤标准物质的测定结果偏低比较严重,并且样品溶液需放置、澄清较长时间才能上机测定。可见,上述两种前处理方法对有些土壤样品不太适用。

    本研究拟定了四酸全溶方法(方法3),土壤中的二氧化硅是主量元素,在二氧化硅晶格中经常包裹着一些元素,可以通过加入氢氟酸打开晶格并挥发除去硅来解决。土壤中大部分硫为有机硫,加入高氯酸可以分解破坏有机物且将低价硫氧化为硫酸根。

    准确称取0.2500 g样品置于100 mL玻璃烧杯中,用少量去离子水润湿样品,加入5 mL硝酸和15 mL盐酸,将烧杯放置于电热板上,盖上表面皿,于150℃加热分解,蒸至湿盐状,取下加入15 mL盐酸,微热溶解盐类,用少量水冲洗杯壁和表面皿,取下烧杯,冷却,并将溶液转移至25 mL聚乙烯比色管中,去离子水定容至25 mL,静置8 h后测定。

    准确称取0.2500 g样品置于25 mL比色管中,加入新配制的王水25 mL,沸水浴2 h, 取出比色管,冷却,去离子水定容至25 mL,静置8 h后测定。

    准确称取0.2500 g样品置于50 mL聚四氟乙烯烧杯中,用少量去离子水润湿样品,加入2.5 mL硝酸、2.5 mL盐酸、5 mL氢氟酸和1 mL高氯酸,盖好盖子,轻轻摇动,置于排风橱中放置过夜。将聚四氟乙烯烧杯放置于电热板上, 取下盖子,用少量水冲洗,于190~210℃加热分解,蒸干至白烟冒尽(若样品分解不完全,可在未蒸干之前补加硝酸、氢氟酸继续蒸干);关闭电源,然后加入5 mL 50%的盐酸,在电热板上利用余温继续加热至固体盐类完全溶解,用大约5 mL的去离子水冲洗杯壁,继续加热5~10 min至溶液清亮;取下烧杯冷却,并将溶液转移至25 mL聚乙烯比色管中,去离子水定容至25 mL,静置4 h后测定。

    王水溶解、王水水浴溶解和四酸敞口溶解三种前处理方法的测定结果见表 1。王水溶样和王水水浴溶样的测定结果系统偏低,对于个别标准样品的相对误差甚至达到27%, 可能与王水不能完全破坏硅酸盐晶格造成样品分解不完全及硫元素不能全部进入溶液有关。刘峰等[29]研究了不同混合酸消解土壤样品对土壤中重金属含量测定的影响,认为完全消解体系(盐酸、硝酸、氢氟酸和高氯酸)的测定结果高于不完全消解体系。四酸溶样测定结果优于王水溶解、王水水浴溶解,所以本文采用四酸溶解。

    表  1  四酸、王水、王水水浴溶解结果
    Table  1.  Analytical results of samples disoluted with four acids, aqua regia and aqua waterbath methods
    标准物质编号 硫含量(μg/g) 三种溶解方法测定值与标准值的相对误差(%)
    标准值 四酸溶解测定值 王水溶解测定值 王水水浴溶解测定值 四酸溶解 王水溶解 王水水浴溶解
    GBW07446 108±14 112 99 103 3.70 -8.33 -4.63
    GBW07451 440±42 436 390 410 -0.91 -11.36 -6.82
    GBW07456 254±12 257 238 246 1.18 -6.30 -3.15
    GBW07457 281±26 279 203 214 -0.71 -27.76 -23.84
    下载: 导出CSV 
    | 显示表格

    用国家标准物质GBW07446和GBW07453加入四酸溶样,考察了11种电热板温度(表面温度)对测定结果的影响。表 2测定结果表明,电热板的温度低于140℃,硫的溶出率最低为68.52%;电热板的温度高于220℃,硫的溶出率最低为70.37%;电热板的最佳温度在150~210℃。考虑到温度过低,溶解时间较长并且不利于赶除氟离子,所以温度选择190~210℃。

    表  2  电热板温度的影响
    Table  2.  Effect of electric heating plate temperature
    电热板表面温度(℃) GBW07446 GBW07453
    硫标准值(μg/g) 硫测定值(μg/g) 硫溶出率(%) 硫标准值(μg/g) 硫测定值(μg/g) 硫溶出率(%)
    130 108±14 74 68.52 2000±300 1632 81.60
    140 108±14 98 90.74 2000±300 1730 86.50
    150 108±14 113 104.63 2000±300 1977 98.85
    160 108±14 107 99.07 2000±300 1993 99.65
    170 108±14 110 101.85 2000±300 1998 99.90
    180 108±14 116 107.41 2000±300 2013 100.65
    190 108±14 112 103.70 2000±300 2007 100.35
    200 108±14 110 101.85 2000±300 1987 99.35
    210 108±14 104 96.30 2000±300 1965 98.25
    220 108±14 87 80.56 2000±300 1891 94.55
    230 108±14 76 70.37 2000±300 1874 93.70
    下载: 导出CSV 
    | 显示表格

    为减少试剂用量,降低空白值,减少对环境的污染,本文根据二氧化硅含量选取了4个有代表性的土壤标准样品,用少量去离子水润湿样品,加入2.5 mL硝酸、2.5 mL盐酸、5 mL氢氟酸和1 mL高氯酸,盖好盖子,轻轻摇动,置于排风橱中,分别进行了0、4、8、12 h酸溶浸泡试验。表 3测定结果表明,浸泡12 h,一般样品基本溶解清亮,本文选择浸泡过夜。

    表  3  浸泡时间的选择
    Table  3.  Choice of soaking time
    标准物质编号 粗粒级主要矿物 不同浸泡时间下溶解情况
    0 h 4 h 8 h 12 h
    GBW07401 石英、长石 反应,冒泡 有少量固体 有极少量固体 基本清亮
    GBW07403 石英、长石 无明显反应 有少量固体 基本清亮 基本清亮
    GBW07407 褐铁矿、石英、高岭土 无明显反应 有少量固体 基本清亮 基本清亮
    GBW07408 碳酸盐物质、长石、石英、黑云母、白云母、褐铁矿、贝壳 反应剧烈,大量冒泡 有少量白色、黑色固体 有极少量固体 基本清亮
    下载: 导出CSV 
    | 显示表格

    实验配制了与样品浓度相近的硫、钾、钠、钙、镁、铁、锰、铍、锂、镧、铈、钪、钒、钴、镍、钛标准溶液,酸介质分别为10%的盐酸和硝酸,实验发现硝酸介质中大部分元素的谱线强度略高于盐酸介质,但锰、钛谱线除外。为了能在一份溶液中同时测定硫、钾、钠、钙、镁、铁、锰、铍、锂、镧、铈、钪、钒、钴、镍、钛等多个元素,本文采用10%的盐酸介质。

    硫元素主要分析谱线有两条,分别是180.669 nm和181.972 nm。在180.669 nm处,基体元素钙(180.672 nm)会对硫产生正干扰,181.972 nm的谱线没有干扰,并且其信背比高出180.669 nm谱线将近一倍,所以选择181.972 nm作为分析线。

    波长在10~200 nm远紫外光能被光路中的空气(氧、氮、二氧化碳和水气)所吸收,波长越短的远紫外光越容易被空气吸蚀[30],本文选定的硫的分析谱线181.972 nm处于远紫外区,需要用氩气对光路和接口进行吹扫。在VISTA-MPX光谱仪仪器说明书中推荐氩气吹扫时间不小于30 min,本文通过试验发现氩气吹扫50 min后,同一浓度硫标准的谱线强度在1 h内变化小于1%,所以氩气吹扫时间定在50 min。

    几乎所有的谱线强度随功率的增大而增大,但背景值也会增大,造成信背比变差,本文综合考虑采用功率1200 W。

    在仪器最佳实验条件下测定标准曲线溶液,硫的质量浓度在0~500 μg/mL范围内,硫标准曲线呈线性关系,相关系数为0.9993。

    在仪器最佳实验条件下连续测定12次试验空白溶液,检出限为0.1 μg/mL(3倍测量值的标准偏差),乘以稀释因子100,方法检出限为10 μg/g,方法测定下限(k=10)为33.3 μg/g,方法的最佳测量范围33.3~50000 μg/g。本方法的检出限0.1 μg/mL略高于马生凤等[26]获得的检出限0.04 μg/mL。其原因可能与曝光时间有关,马生凤等[26]采用的曝光时间为20 s,本文曝光时间为10 s。

    按照1.3.3节分析方法和1.1节仪器条件测定了GBW07446~GBW07457中的硫含量,测定结果见表 4,12次测定平均值与标准值的相对误差的绝对值在0.00%~2.93%,12次测定平均值与标准值的对数偏差小于0.01,相对标准偏差(RSD)在0.47%~4.05%,方法的精密度和准确度完全满足DZ/T 0258—2014《多目标区域地球化学调查规范》要求(规范要求土壤中硫的检出限为50 μg/g;硫含量在三倍检出限以上的对数值≤0.05,硫含量大于1%的对数值≤0.04;硫含量在三倍检出限以上的RSD≤10%,硫含量大于1%的RSD≤8)。

    表  4  国家标准物质中硫含量的分析结果
    Table  4.  Analytical results of sulfur in national standard references
    标准物质编号 硫含量(μg/g) 相对误差(%) RSD (%)
    标准值 本法测定平均值(n=12)
    GBW07446 108±14 108.4 0.37 4.05
    GBW07447 (7000) 7041.94 0.60 0.50
    GBW07448 (816) 820.06 0.50 2.00
    GBW07449 27000±2900 26995.59 -0.02 0.47
    GBW07450 (167) 171.17 2.50 3.66
    GBW07451 440±42 442.96 0.67 1.12
    GBW07452 (420) 422.02 0.48 1.46
    GBW07453 2000±300 2000.51 0.03 1.63
    GBW07454 170±22 170 0.00 3.02
    GBW07455 162±10 157.25 -2.93 3.59
    GBW07456 254±12 254.93 0.37 2.58
    GBW07457 281±21 281.36 0.13 2.04
    注:括号内数据为参考值。
    下载: 导出CSV 
    | 显示表格

    本文从实际样品中抽取了20件不同土壤类型、硫含量从低到高的土壤样品,分别用XRF法、管式炉燃烧碘量法和本法进行测试比较,每件样品用不同方法独立测定三次,结果见表 5。从分析结果来看,XRF法具有较高的精密度,但低含量和高含量样品与碘量法相比易超差(表 5中标注“*”的数据为超差值);管式炉碘量法的数值波动性较大;本法与碘量法相比有较好的准确度和精密度,并且分析速度和分析效率优于碘量法。

    表  5  三种分析方法的结果比较
    Table  5.  A comparison of the three analytical methods
    样品编号 XRF法 管式炉碘量法 本法(四酸溶样ICP-OES法)
    硫含量三次测定平均值(μg/g) RSD(%) 硫含量三次测定平均值(μg/g) RSD(%) 硫含量三次测定平均值(μg/g) RSD(%)
    1 112* 5.63 83.1 11.46 78.3 6.42
    2 143 2.42 124 8.97 136.7 3.82
    3 266 2.41 270 5.43 274.2 2.33
    4 355 1.62 349 4.32 343.1 2.67
    5 527 1.74 534 3.66 536.3 1.82
    6 832 0.86 827 4.22 816.4 0.69
    7 966 2.42 933 5.21 946.6 1.11
    8 1386 1.57 1276 4.14 1233 0.68
    9 5233 2.44 4320 3.12 4362 2.43
    10 5604* 1.87 7465 4.17 7654 3.26
    11 28335* 1.52 21364 3.13 21362 2.03
    12 55027* 1.62 42187 1.86 43227 2.74
    13 176 2.87 188 7.33 182.4 3.11
    14 256 2.11 263 4.87 261.2 2.46
    15 687 1.14 693 3.22 684.2 2.03
    16 778 1.06 786 4.16 781.4 1.06
    17 1125 1.68 1139 3.55 1132 0.97
    18 7864* 1.93 8546 3.68 8574 1.33
    19 29365* 1.44 24652 4.15 24468 2.36
    20 43225* 1.67 40271 2.87 40298 1.93
    下载: 导出CSV 
    | 显示表格

    本文用盐酸-硝酸-氢氟酸-高氯酸溶解样品,ICP-OES法测定硫含量,解决了采用现有分析方法测定多目标区域地球化学调查样品时,分析效率低和高、低含量段分析质量问题。应用本方法,样品溶解完全,硫没有损失,并且可以在不增加分析成本和分析时间的情况下,在一份溶液中同时测定钾、钠、钙、镁、铁、锰、铍、锂、镧、铈、钪、钒、钴、镍、钛等元素,提高了分析效率,适合于大批量土壤样品中硫及主次量元素的测定。该方法已进行了实际样品测试,硫元素的成图及接图效果良好,外部控制样(256件)合格率为99%。方法上报给中国地质调查局区化样品质量检查组并获得批准,在地质行业进行了推广。

    本方法的不足之处在于某几个岩石标准样品测定结果不尽如人意,其原因需要进一步实验研究。

  • 表  1   不同偏硼酸锂加入量对GBW07314中难溶元素分析结果的影响

    Table  1   Effect of different LiBO2 addition on analysis results of refractory elements in GBW07314

    元素 认定值(μg/g) 测定值(μg/g)
    0.200g偏硼酸锂 0.300g偏硼酸锂 0.400g偏硼酸锂 0.500g偏硼酸锂
    Zr 229 111 172 225 209
    Hf 6.2 2.74 3.04 6.41 6.80
    Nb 19.1 4.25 6.83 18.6 17.2
    Ta 1.2 0.436 0.702 1.23 1.38
    W 2.1 1.24 1.69 2.02 2.14
    Mo 0.64 0.177 0.415 0.603 0.612
    下载: 导出CSV

    表  2   方法检出限

    Table  2   Detection limit of the method

    待测元素 检出限(μg/g) 待测元素 检出限(μg/g)
    Cu 1.479 Tm 0.006
    Zn 11.452 Rb 0.549
    Cr 16.262 Sc 0.330
    Ni 0.995 Th 0.067
    Co 0.236 V 1.168
    Pb 2.955 Nb 0.137
    Sr 0.357 Ta 0.067
    Ba 3.616 Hf 0.021
    Ga 0.466 Cs 0.043
    Mo 0.113 W 0.064
    Zr 0.360 Sb 0.051
    La 0.391 U 0.098
    Ce 0.157 Tb 0.015
    Nd 0.267 Bi 1.096
    Sm 0.064 Be 0.430
    Eu 0.008 SiO2* 0.870
    Ho 0.007 Al2O3* 0.026
    Yb 0.074 Fe2O3* 0.033
    Lu 0.006 CaO* 0.051
    Y 0.442 MgO* 0.004
    Pr 0.025 K2O* 0.192
    Gd 0.077 Na2O* 0.080
    Dy 0.026 MnO* 0.001
    Er 0.113 TiO2* 0.001
    注:标注“*”的待测元素检出限单位为%。
    下载: 导出CSV

    表  3   国家标准物质测定结果及加标回收率

    Table  3   Analytical results of national standard references and their spiked recovery

    待测元素 GBW07314 GBW07333 GBW07335 GBW07336 回收率(%)
    认定值(μg/g) 测定值(μg/g) 认定值(μg/g) 测定值(μg/g) 认定值(μg/g) 测定值(μg/g) 认定值(μg/g) 测定值(μg/g)
    Cu 31 29.9 29.1 26.5 18 16.6 23 20.8 96.2
    Zn 87 85.5 114 112 79 75.4 100 95.5 91.4
    Cr 86 77.8 107 98.5 78 73.9 64 57.9 91.4
    Ni 34.3 32.7 46.1 42.0 36 35.7 44 42.5 87.8
    Co 14.2 13.3 18.9 18.6 15 14.9 13 12.3 83.6
    Pb 25 23.6 29 26.9 25 23.5 20 18.3 92.2
    Sr 150 142 130 124 193 184 507 463 96.0
    Ba 425 424 477 449 396 361 488 479 96.4
    Ga 16.1 16.0 - 19.2 16 14.8 15.1 14.1 114.6
    Mo 0.64 0.651 - 0.462 - 1.42 - 1.08 107.8
    Zr 229 227 144 132 184 171 134 128 105.2
    La 38 35.6 40.8 39.9 38 36.0 31 28.0 93.6
    Ce 78 70.4 77.4 75.9 78 71.5 64 62.8 86.6
    Nd 33 30.0 33.1 31.6 32.6 30.2 26 25.0 112.0
    Sm 6.7 6.48 6.28 6.18 6.2 6.03 5.2 4.77 89.8
    Eu 1.3 1.24 1.26 1.16 1.25 1.24 1.01 0.93 91.2
    Ho 1 0.965 0.96 0.952 0.92 0.839 0.8 0.744 110.0
    Yb 2.8 2.61 2.46 2.23 2.42 2.21 2.2 2.11 85.2
    Lu 0.45 0.425 0.37 0.355 0.38 0.374 0.31 0.318 86.2
    Y 27 25.2 24.9 23.7 25 25.0 23 20.7 109.4
    Pr 8.7 7.98 8.32 7.51 8.3 7.59 6.8 6.26 85.2
    Gd 5.6 5.46 5.44 4.98 5.4 5.09 4.5 4.08 86.2
    Dy 5.4 5.18 4.59 4.43 4.8 4.74 4.1 3.97 107.2
    Er 3 2.94 2.57 2.49 2.56 2.42 2.3 2.09 108.8
    Tm 0.44 0.442 0.38 0.355 0.39 0.364 0.29 0.285 109.6
    Rb 109.3 104 164 164 118 113 110 99.8 95.0
    Sc 12.5 11.6 16.1 15.1 12 11.9 11 10.8 118.6
    Th 10.2 9.52 14.2 13.2 13.6 12.6 12.6 12.0 93.4
    V 103.1 95.5 131 128 95 91.3 87 85.6 109.6
    Nb 19.1 18.3 17.1 16.3 13.7 13.2 12.9 12.4 116.5
    Ta 1.2 1.08 1.22 1.21 - 1.62 - 1.08 110.0
    Hf 6.2 6.09 5.2 4.83 5 4.91 5 4.80 97.2
    Cs 8.2 8.11 13.8 13.4 8 7.33 7.6 7.28 105.6
    W 2.1 1.97 1.93 1.82 - 2.11 - 1.97 104.8
    Sb 1.4 1.39 1.06 0.972 - 0.865 - 1.32 96.0
    U 2.7 2.66 4.5 4.45 2.7 2.61 2.8 2.54 113.2
    Tb 0.83 0.821 0.76 0.725 0.8 0.762 0.7 0.645 107.8
    Be - 2.42 - 1.61 - 1.72 - 1.71 99.2
    Bi - 0.621 0.45 0.431 - 0.515 - 1.46 110.2
    SiO2* 61.91 60.4 54 51.3 59.6 55.3 44.9 44.4 -
    Al2O3* 13.07 12.58 17.42 17.32 13.1 12.06 12.1 11.9 96.2
    Fe2O3* 5.36 5.14 6.77 6.17 5.28 5.23 4.65 4.57 91.0
    CaO* 4.31 4.27 1.47 1.34 4.8 4.51 4.8 4.62 112.5
    MgO* 2.5 2.43 3.08 2.84 2.51 2.4 2.51 2.31 87.5
    K2O* 2.48 2.44 3.53 3.36 2.71 2.63 2.71 2.65 93.5
    Na2O* 1.68 1.53 2.93 2.66 2.3 2.12 2.5 2.37 103.0
    MnO* 0.096 0.112 0.062 0.0641 0.073 0.0754 0.3 0.274 109.9
    TiO2* 0.825 0.824 0.775 0.711 0.72 0.654 0.61 0.595 101.2
    注:标注“*”的待测元素认定值和测定值的数据单位为%。
    下载: 导出CSV
  • Guan Y, Sun X M, Shi G Y, et al. Rare earth elements composition and constraint on the genesis of the polymetallic crusts and nodules in the South China Sea[J]. Acta Geologica Sinica (English Edition), 2017, 91(5): 1751-1766. doi: 10.1111/1755-6724.13409

    Wegorzewski A V, Grangeon S, Webb S M, et al. Mineralogical transformations in polymetallic nodules and the change of Ni, Cu and Co crystal-chemistry upon burial in sediments[J]. Geochimica et Cosmochimica Acta, 2020, 282: 19-37. doi: 10.1016/j.gca.2020.04.012

    Wang X H, Gao Y S, Wang Y M, et al. Three cobalt-rich seamount crust reference materials: GSMC-1 to 3[J]. Geostandards & Geoanalytical Research, 2003, 27(3): 251-257.

    Levin L A, Mengerink K, Gjerde K M, et al. Defining "serious harm" to the marine environment in the context of deep-seabed mining[J]. Marine Policy, 2016, 74: 245-259. doi: 10.1016/j.marpol.2016.09.032

    German C R, Petersen S, Hannington M D. Hydrothermal exploration of mid-ocean ridges: Where might the largest sulfide deposits be forming?[J]. Chemical Geology, 2016, 420: 114-126. doi: 10.1016/j.chemgeo.2015.11.006

    Monecke T, Petersen S, Hannington M, et al. The global rare element endowment of seafloor massive sulfide deposits[J]. 13th SGA Biennial Meeting, 2015, 3: 1261-1263.

    Takaya Y, Yasukawa K, Kawasaki T, et al. The tremendous potential of deep-sea mud as a source of rare-earth elements[J]. Scientific Reports, 2018, 8: 5763. doi: 10.1038/s41598-018-23948-5

    Li J R, Lius F, Feng X L, et al. Major and trace element geochemistry of the mid-bay of Bengal surface sediments: Implications for provenance[J]. Acta Oceanologica Sinica, 2017, 36(3): 82-90. doi: 10.1007/s13131-017-1041-z

    Pham D T, Gouramanis C, Switzer A D, et al. Elemental and mineralogical analysis of marine and coastal sediments from Phra Thong Island, Thailand: Insights into the provenance of coastal hazard deposits[J]. Marine Geology, 2017, 385: 274-292. doi: 10.1016/j.margeo.2017.01.004

    冯利, 冯秀丽, 王晓明, 等. 末次盛冰期以来南海西北陆坡沉积物来源及其常微量元素对古气候变化的响应[J]. 中国海洋大学学报, 2020, 50(6): 88-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY202006010.htm

    Feng L, Feng X L, Wang X M, et al. Sediment provenance and climate change since the last glacial maximum record by major and trace elements in the northwestern slope of the South China Sea[J]. Periodical of Ocean University of China, 2020, 50(6): 88-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY202006010.htm

    Santos I R, Favaro D I, Schaefer C E, et al. Sediment geochemistry in coastal maritime Antarctica (Admiralty Bay, King George Island): Evidence from rare earths and other elements[J]. Marine Chemistry, 2007, 107(4): 464-474. doi: 10.1016/j.marchem.2007.09.006

    Xu F J, Hu B Q, Dou T G, et al. Sediment provenance and paleoenvironmental changes in the northwestern shelf mud area of the South China Sea since the mid-Holocene[J]. Continental Shelf Research, 2017, 144: 21-30. doi: 10.1016/j.csr.2017.06.013

    贾福福, 沙龙滨, 李冬玲, 等. 西伯利亚极地海域第四纪以来古海洋环境研究进展[J]. 极地研究, 2020, 32(2): 250-263. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ202002012.htm

    Jia F F, Sha L B, Li D L, et al. Review of research on quaternary paleoceanography of the Siberian arctic seas[J]. Chinese Journal of Polar Research, 2020, 32(2): 250-263. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ202002012.htm

    Yasukawa K, Nakamura K, Fujinaga K, et al. Rare-earth, major, and trace element geochemistry of deep-sea sediments in the Indian Ocean: Implications for the potential distribution of REY-rich mud in the Indian Ocean[J]. Geochemical Journal, 2015, 49(6): 621-635. doi: 10.2343/geochemj.2.0361

    Iijima K, Yasukawa K, Fujinaga K, et al. Discovery of extremely REY-rich mud in the western North Pacific Ocean[J]. Geochemical Journal, 2016, 50(6): 557-573. doi: 10.2343/geochemj.2.0431

    曾志刚, 陈祖兴, 张玉祥, 等. 海底热液活动的环境与产物[J]. 海洋科学, 2020, 44(7): 143-155. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX202007013.htm

    Zeng Z G, Chen Z X, Zhang Y X, et al. Seafloor hydrothermal activities and their geological environments and products[J]. Marine Sciences, 2020, 44(7): 143-155. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX202007013.htm

    Begum Z, Balaram V, Ahmad S M, et al. Determination of trace and rare earth elements in marine sediment reference materials by ICP-MS: Comparison of open and closed acid digestion methods[J]. Atomic Spectroscopy, 2007, 28(2): 41-50.

    高晶晶, 刘季花, 张辉, 等. 高压密闭消解-电感耦合等离子体质谱法测定海洋沉积物中稀土元素[J]. 岩矿测试, 2012, 31(3): 425-429. doi: 10.3969/j.issn.0254-5357.2012.03.007

    Gao J J, Liu J H, Zhang H, et al. Determination of rare earth elements in the marine sediments by inductively coupled plasma-mass spectrometry with high-pressure closed digestion[J]. Rock and Mineral Analysis, 2012, 31(3): 425-429. doi: 10.3969/j.issn.0254-5357.2012.03.007

    王初丹, 罗盛旭. 硝酸-氢氟酸消解ICP-MS测定海洋沉积物中多种金属元素[J]. 桂林理工大学学报, 2016, 36(2): 337-340. doi: 10.3969/j.issn.1674-9057.2016.02.024

    Wang C D, Luo S X. Determination of metal elements in marine sediments by nitric acid-hydrofluoric acid digestion and ICP-MS[J]. Journal of Guilin University of Technology, 2016, 36(2): 337-340. doi: 10.3969/j.issn.1674-9057.2016.02.024

    孙友宝, 宋晓红, 孙媛媛, 等. 电感耦合等离子体原子发射光谱法(ICP-AES)测定海洋沉积物中的多种金属元素[J]. 中国无机分析化学, 2014, 4(3): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201403011.htm

    Sun Y B, Song X H, Sun Y Y, et al. Determination of multiple metallic elements in oceanic sediments by ICP-AES[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(3): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201403011.htm

    Ahmed A Y, Abdullah P, Wood A K, et al. Determination of some trace elements in marine sediment using ICP-MS and XRF (A comparative study)[J]. Oriental Journal of Chemistry, 2013, 29(2): 645-653.

    张颖, 朱爱美, 张迎秋, 等. 波长与能量色散复合式X射线荧光光谱技术测定海洋沉积物元素[J]. 分析化学, 2019, 47(7): 19. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201907019.htm

    Zhang Y, Zhu A M, Zhang Y Q, et al. Fast analysis of major and minor elements in marine sediments by wavelength and energy dispersive X-ray fluorescence spectrometer[J]. Chinese Journal of Analytical Chemistry, 2019, 47(7): 19. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201907019.htm

    孙萱, 宋金明, 于颖, 等. 熔融制样XRF法测定海洋沉积物中10种主量元素的条件优化[J]. 海洋环境科学, 2020, 39(6): 902-908. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ202006013.htm

    Sun X, Song J M, Yu Y, et al. Optimum conditions for the determination of 10 main elements in marine sediments by the fused bead-X-ray fluorescence spectrometry[J]. Marine Environmental Science, 2020, 39(6): 902-908. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ202006013.htm

    王娜, 徐铁民, 魏双, 等. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J]. 岩矿测试, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043

    Wang N, Xu T M, Wei S, et al. Determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043

    王蕾, 何红蓼, 李冰. 碱熔沉淀-等离子体质谱法测定地质样品中的多元素[J]. 岩矿测试, 2003, 22(2): 86-92. http://www.ykcs.ac.cn/article/id/ykcs_20030225

    Wang L, He H L, Li B. Multi-element determination in geological samples by inductively coupled plasma mass spectrometry after fusion-precipitation treatment[J]. Rock and Mineral Analysis, 2003, 22(2): 86-92. http://www.ykcs.ac.cn/article/id/ykcs_20030225

    罗磊, 付胜波, 肖洁, 等. 电感耦合等离子体发射光谱法测定含重晶石的银铅矿中的铅[J]. 岩矿测试, 2014, 33(2): 203-207. http://www.ykcs.ac.cn/article/id/b2b8f425-60ab-4b67-8e4d-151c5e29622d

    Luo L, Fu S B, Xiao J, et al. Determination of lead in argentalium ores containing barite by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 203-207. http://www.ykcs.ac.cn/article/id/b2b8f425-60ab-4b67-8e4d-151c5e29622d

    杨辉, 王书言, 黄继勇, 等. 同时检测土壤中铅镉铬汞砷重金属元素含量方法的优化[J]. 河南科技大学学报(自然科学版), 2020, 41(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX202001014.htm

    Yang H, Wang S Y, Huang J Y, et al. Optimization of simultaneous detection method for heavy metal elements content of Pb, Cd, Cr, Hg and As in soil[J]. Journal of Henan University of Science and Technology (Natural Science), 2020, 41(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX202001014.htm

    杨常青, 张双双, 吴楠, 等. 微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究[J]. 岩矿测试, 2016, 35(5): 481-487. doi: 10.15898/j.cnki.11-2131/td.2016.05.006

    Yang C Q, Zhang S S, Wu N, et al. Feasibility study on content determination of mercury and arsenic in high organic anthracite by microwave digestion-hydride generation-atomic fluorescence spectrometry and mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(5): 481-487. doi: 10.15898/j.cnki.11-2131/td.2016.05.006

    苗雪雪, 苗莹, 龚浩如, 等. 不同消解方法测定植株中磷含量的比较研究[J]. 中国农学通报, 2019, 35(20): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201920024.htm

    Miao X X, Miao Y, Gong H R, et al. Digestion methods for determining phosphorus content in plants[J]. Chinese Agricultural Science Bulletin, 2019, 35(20): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201920024.htm

    汪勇先, 秦俊法, 吉倩梅, 等. 不同的干燥和灰化过程中生物样品微量元素损失的放射性示踪研究——Ⅰ. 锌、钼、镉和硒[J]. 分析化学, 1985, 13(3): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198503016.htm

    Wang Y X, Qin J F, Ji Q M, et al. Investigation on the loss of trace elements in biological materials in different drying and ashing procedures by using radioactive tracers. Ⅰ: Zn, Mo, Cd and Se[J]. Chinese Journal of Analytical Chemistry, 1985, 13(3): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198503016.htm

    冯婧. 重金属元素分析消解技术在镉、砷检测中的应用比较[J]. 食品研究与开发, 2017, 38(16): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-SPYK201716034.htm

    Feng J. Comparison and application of digestion methods of heavy metals on cadmium and arsenic determination[J]. Food Research and Development, 2017, 38(16): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-SPYK201716034.htm

    任玲玲, 谭胜楠, 李建朝. 微波消解-电感耦合等离子体原子发射光谱法测定烧结除尘灰中9种元素[J]. 冶金分析, 2020, 40(6): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202006012.htm

    Ren L L, Tan S N, Li J C. Determination of nine elements in sintering dedusting ash by inductively coupled plasma atomic emission spectrometry after microwave digestion[J]. Metallurgical Analysis, 2020, 40(6): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202006012.htm

    刘珂珂, 霍现宽, 褚艳红, 等. 超声辅助-王水提取法在测定土壤中重金属元素的应用[J]. 冶金分析, 2019, 39(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201901008.htm

    Liu K K, Huo X K, Chu Y H, et al. Application of ultrasonic-assisted aqua regia extraction in the determination of heavy metal elements in soil[J]. Metallurgical Analysis, 2019, 39(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201901008.htm

    禹莲玲, 郭斌, 柳昭, 等. 电感耦合等离子体质谱法测定高锡地质样品中的痕量镉[J]. 岩矿测试, 2020, 39(1): 77-84. doi: 10.15898/j.cnki.11-2131/td.201906270094

    Yu L L, Guo B, Liu Z, et al. Determination of low-content cadmium in Sn-rich geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 77-84. doi: 10.15898/j.cnki.11-2131/td.201906270094

    董学林, 贾正勋, 汪慧平, 等. 共沉淀分离-电感耦合等离子体质谱法测定多金属矿石中硒和碲[J]. 冶金分析, 2016, 36(3): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201603002.htm

    Dong X L, Jia Z X, Wang H P, et al. Determination of selenium and tellurium in polymetallic ore by coprecipitation separation-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(3): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201603002.htm

    范爽, 郭超, 张百慧, 等. 基于实验室间协作实验评估土壤中重金属能量色散X射线荧光光谱分析方法性能[J]. 冶金分析, 2020, 40(8): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202008002.htm

    Fan S, Guo C, Zhang B H, et al. Evaluation of analytical method performance for determination of heavy metals in soils by energy dispersive X-ray fluorescence spectrometry based on inter-laboratory collaborative experiments[J]. Metallurgical Analysis, 2020, 40(8): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202008002.htm

    张瑞仙, 崔智勇, 王建绣, 等. 高压罐消解和湿法消解测定食品中铅的比较[J]. 中国卫生检验杂志, 2016, 26(17): 2468-2470. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201617012.htm

    Zhang R X, Cui Z Y, Wang J X, et al. Comparison between high pressure tank digestion and wet digestion in the determination of lead in food[J]. Chinese Journal of Health Laboratory Technology, 2016, 26(17): 2468-2470. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201617012.htm

    徐浩然, 张瑞娜, 胡济民, 等. 硫和硫化物对垃圾焚烧过程中Pb迁移分布的影响[J]. 环境工程学报, 2019, 13(1): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201901022.htm

    Xu H R, Zhang R N, Hu J M, et al. Influence of sulfur and sulfide on migration and distribution of lead in waste incineration process[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201901022.htm

    邱海鸥, 郑洪涛, 汤志勇. 岩石矿物分析[J]. 分析试验室, 2014, 33(11): 1349-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201411032.htm

    Qiu H O, Zheng H T, Tang Z Y. Analysis of rocks and minerals[J]. Chinese Journal of Analysis Laboratory, 2014, 33(11): 1349-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201411032.htm

    门倩妮, 沈平, 甘黎明, 等. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪[J]. 岩矿测试, 2020, 39(1): 59-67. doi: 10.15898/j.cnki.11-2131/td.201905100060

    Men Q N, Shen P, Gan L M, et al. Determination of rare earth elements and Nb, Ta, Zr, Hf in polymetallic mineral samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J]. Rock and Mineral Analysis, 2020, 39(1): 59-67. doi: 10.15898/j.cnki.11-2131/td.201905100060

    李占江. 金银及有色金属地勘矿冶分析手册[M]. 北京: 地质出版社, 2013: 490-495.

    Li Z J. Handbook for geological prospecting and metallurgy of gold, silver and nonferrous metals[M]. Beijing: Geological Publishing House, 2013: 490-495.

  • 期刊类型引用(7)

    1. 李志雄,刘振超,陆迁树,和成忠,张松,杨金江,张连凯. 氢氧化物系离子液体在碱性土壤有效磷含量测定中的应用. 岩矿测试. 2024(05): 802-811 . 本站查看
    2. 于汀汀,朱云,郭琳. 溴酚蓝作酸碱指示剂分光光度法测定土壤中有效磷. 岩矿测试. 2023(01): 213-219 . 本站查看
    3. 朱志刚,李美丽,井永军,阿拉木斯,董天姿. 单提取法-动能甄别型碰撞模式-电感耦合等离子体质谱(ICP-MS)法测定土壤中8种有效态元素的含量. 中国无机分析化学. 2023(06): 590-597 . 百度学术
    4. 杨友亮. 环境温度对土壤中有效磷前处理效果的影响分析. 皮革制作与环保科技. 2023(23): 113-115 . 百度学术
    5. 贾双琳,李长安. 土壤中重金属有效态分析技术研究进展. 贵州地质. 2021(01): 79-84 . 百度学术
    6. 程祎,王琳,张芳,刘军,陈浩凤,张帆. 高压密闭消解-电感耦合等离子体质谱法测定钛铁矿中39种主次元素. 冶金分析. 2021(09): 24-33 . 百度学术
    7. 郑伟. 土壤中重金属铅的检测技术研究进展. 辽宁化工. 2021(10): 1598-1600 . 百度学术

    其他类型引用(0)

表(3)
计量
  • 文章访问数:  4163
  • HTML全文浏览量:  995
  • PDF下载量:  61
  • 被引次数: 7
出版历程
  • 收稿日期:  2020-06-04
  • 修回日期:  2020-09-11
  • 录用日期:  2020-12-06
  • 发布日期:  2021-03-27

目录

/

返回文章
返回