• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

超富集植物与重金属相互作用机制及应用研究进展

何玉君, 孙梦荷, 沈亚婷, 帅琴, 罗立强

何玉君, 孙梦荷, 沈亚婷, 帅琴, 罗立强. 超富集植物与重金属相互作用机制及应用研究进展[J]. 岩矿测试, 2020, 39(5): 639-657. DOI: 10.15898/j.cnki.11-2131/td.202004140048
引用本文: 何玉君, 孙梦荷, 沈亚婷, 帅琴, 罗立强. 超富集植物与重金属相互作用机制及应用研究进展[J]. 岩矿测试, 2020, 39(5): 639-657. DOI: 10.15898/j.cnki.11-2131/td.202004140048
HE Yu-jun, SUN Meng-he, SHEN Ya-ting, SHUAI Qin, LUO Li-qiang. Research Progress on the Interaction Mechanism between Hyperaccumulator and Heavy Metals and Its Application[J]. Rock and Mineral Analysis, 2020, 39(5): 639-657. DOI: 10.15898/j.cnki.11-2131/td.202004140048
Citation: HE Yu-jun, SUN Meng-he, SHEN Ya-ting, SHUAI Qin, LUO Li-qiang. Research Progress on the Interaction Mechanism between Hyperaccumulator and Heavy Metals and Its Application[J]. Rock and Mineral Analysis, 2020, 39(5): 639-657. DOI: 10.15898/j.cnki.11-2131/td.202004140048

超富集植物与重金属相互作用机制及应用研究进展

基金项目: 

国家重点研发计划项目(2016YFC0600603);国家自然科学基金面上项目(41877505)

国家重点研发计划项目 2016YFC0600603

国家自然科学基金面上项目 41877505

详细信息
    作者简介:

    何玉君, 硕士, 研究方向为生物地球化学。E-mail:heyujunlhyj@163.com

    通讯作者:

    罗立强, 博士, 研究员, 研究方向为生物地球化学。E-mail:lliqiang@mail.cgs.gov.cn

  • 中图分类号: S151.93;X142

Research Progress on the Interaction Mechanism between Hyperaccumulator and Heavy Metals and Its Application

  • 摘要: 社会发展过程中对矿产资源的勘查和开采利用所带来的重金属污染已对生态系统和人类健康造成严重威胁。超富集植物对重金属具有超富集、超耐受能力,是降低环境重金属污染、保障人类健康、实现绿色矿产勘查的有效途径,在植物修复、植物采矿和植物找矿中已获得了广泛应用。深入探索超富集植物的富集和耐受机制,揭示重金属-植物相互作用规律,提高植物对重金属的富集能力,是当前国际上研究热点。本文在简要介绍重金属对植物作用的基础上,阐述了重金属诱导氧化应激机制,重点关注重金属超富集植物富集机理研究,对其在解毒和耐受机制等领域的研究进展进行了评述。当前研究认为:①对超富集植物而言,根系分泌物与根际微生物的共同作用促进了重金属溶解,经共质体、质外体途径吸收后,重金属通过木质部向上转运,并隔离在液泡中,实现对重金属的超富集;②重金属通过与小分子有机酸、细胞壁、植物螯合肽结合,以及液泡隔离,可降低细胞质中游离金属离子浓度,增强植物耐受性;③重金属胁迫下,植物将激活多种特异性抗氧化酶,抵御氧化应激反应,实现对重金属的超耐受。④本文分析认为,植物中砷诱导的氧化应激反应机制可能是由砷的还原与甲基化过程及Haber-Weiss反应三部分构成。对重金属超富集植物的富集与耐受过程所涉及的生理与生化作用进行深入研究,揭示关键性影响因素与相关规律,寻找提升其特异性富集与指示能力的有效途径,将有助于超富集植物研究与应用向纵深发展。
    要点

    (1) 根系分泌物及根际微生物的共同作用促进了土壤重金属溶解。

    (2) 液泡隔离与抗氧化酶作用是超富集植物主要富集与耐受机制。

    (3) 超富集植物的选择性、指示性使其在植物修复、植物采矿、植物找矿中得到广泛应用。

    HIGHLIGHTS

    (1) The interaction between root exudates and rhizosphere microorganisms promotes the dissolution of heavy metals in soil.

    (2) Vacuole sequestration and the action of antioxidant enzymes are the main accumulation and tolerance mechanism of hyperaccumulator.

    (3) Hyperaccumulator is widely used in phytoremediation, phytomining and plant prospecting because of the selectivity and indicative properties.

  • 石榴石是地质体中一种常见的矿物,其主要化学元素少,晶体结构相对简单,但其类质同象非常复杂,这与其形成时的地质环境有直接关系。其中,镁铝榴石主要产在超基性岩中。我国江苏东海地区的镁铝榴石呈斑晶产于蛇纹石化超基性岩体中,如镁铝榴石含有足够铁铝榴石分子,当只有Fe起致色作用时,则呈现一种漂亮的淡紫-红。钙铝榴石仅产于钙质矽卡岩中,是矽卡岩及有关矿床中的其中一种标型造岩矿物,主要产于东非的肯尼亚、坦桑尼亚和马达加斯加,我国安徽铜山、湖南柿竹园、西藏冈底斯等地均有产出;同时钙铝榴石也作为软玉中的次要矿物出现,在玛纳斯、台湾、加拿大等地出产的碧玉中常见,但在其他品种的软玉中极少见[1-6]。钙铝榴石因含Cr3+、V3+类质同象替代Al3+时而呈现绿色。锰铝榴石是泥质岩层经低级区域变质作用的产物,主要限于绿片岩相中。锰铝榴石有橙色、褐橙色和橙红色,其橙色是由于含有致色元素Mn。铁铝榴石和锰铝榴石产于伟晶岩中。如美国加利福尼亚州拉莫地区锂云母型伟晶岩中的锰铝榴石。类似情况还见于马达加斯加、印度等[3-6]

    石榴石属等轴晶系岛状硅酸盐矿物,晶体结构中岛状分布的硅氧四面体之间由以三价阳离子为中心的八面体及以二价阳离子为中心的十二面体相互连接。这一族矿物存在着广泛的类质同象替代,在矿物学中,根据进入晶格离子的类型,将石榴石的类质同象替换分为两大系列:铝质系列和钙质系列。铝质系列,常见品种有镁铝榴石、铁铝榴石、锰铝榴石;钙质系列,常见品种有钙铝榴石、钙铁榴石、钙铬榴石[2-3]。铝质系列和钙质系列矿物组成了石榴石族,其间有类质同象产生的过渡型矿物[6-7]。在实际情形中,石榴石不是纯的端元组分,常常含有两种或以上端元组分。此外,一些石榴石晶格中还附加有OH-离子,形成含水的亚种,如水钙铝榴石[8-9]。类质同象的普遍替代,使得石榴石颜色非常丰富,而在研究石榴石的种属时,常规手段存在很强的局限性,一方面是因为不同石榴石品种在矿物学和谱学数值上重叠很多,另一方面是因为研究测试手段本身的局限性。例如,用X射线荧光光谱法对石榴石进行研究,仅能给出半定量分析,必须结合其他手段予以定名[10]。另外,以往大多数矿物学研究采用常规的电子探针等微区微量测试手段,分析矿物主量元素差异[11],但是石榴石类质同象复杂,除主量元素外,微量元素含量变化亦很大,要借助微量元素分析手段,如电感耦合等离子体质谱法等,对石榴石进行全岩微量元素测试。随着研究手段的发展,多种光谱学分析方法被广泛应用于矿物学研究,以补充单纯成分研究的不足[12-15]。例如,利用拉曼光谱特征峰的偏移研究石榴石的类质同象替换产生现象[16-18];利用红外吸收光谱特征确定石榴石种属[19];利用紫外可见吸收光谱确定石榴石中特征致色离子[20]。但是前人关于石榴石的研究,多局限于个别测试手段的应用,难以获取全面系统的分析数据,不能就常见不同品种石榴石的成分和结构变异特征给出可靠的矿物学研究结论。

    基于以上分析,本次工作借助多种仪器测试手段和全面的谱学分析方法,对目前常见的石榴石品种进行综合系统的研究。本文以红色、橙色、绿色和褐红色不同颜色种类的石榴石品种为研究对象,通过电子探针、电感耦合等离子体质谱(ICP-MS)、X射线粉晶衍射(XRD)、拉曼光谱、傅里叶变换红外光谱(FTIR)和紫外可见吸收光谱等测试方法,对样品的化学成分、晶体结构与谱学特征进行全面系统的对比分析,以期为不同地质体中产出的石榴子石的矿物学特征总结及地质应用提供依据。

    实验部分测试样品取自志东公司收藏的4块石榴石样品,分别编号为G1、G2、G3和G4,其中G1为红色,G2为橙色,G3为绿色,G4为褐红色。本次研究工作目的是了解不同颜色石榴石的成分、晶体结构、物理特征并准确予以定名。通过样品系统测试和分析,揭示石榴石成分变异对晶体结构、光谱特征影响和制约关系。

    样品主量元素分析:在中国地质科学院矿产资源研究所完成。测试仪器为JXA 8230型电子探针。硅酸盐和氧化物在电压15kV的操作环境下进行,电流20mA,波长5μm。

    样品微量元素分析:在国家地质实验测试中心完成。测试仪器为NexION 300D型电感耦合等离子体质谱仪(美国PerkinElmer公司),含量高于10μg/g的元素的相对误差小于5%,含量小于10μg/g的元素的相对误差小于10%。

    X射线粉晶衍射(XRD)晶体结构测试:在中国科学院理化技术研究所完成。测试仪器为D8 Focus型多晶X射线衍射仪(德国Bruker公司)。实验条件为:X射线发生器功率2.2kW;铜靶陶瓷X光管;扫描方式θ/2θ测角仪;扫描范围20°~89°;测角精度0.0001°。目的在于确定不同颜色石榴石的晶体结构及为其定名。

    拉曼光谱测试:在中国科学院理化技术研究所完成。测试仪器为inVia-Reflex型显微共聚焦激光拉曼光谱仪(英国Renishaw公司)。实验条件为:激发波长532nm;测试范围100~1400cm-1;激光强度10%;扫描时间30s;叠加次数3次。目的是分析拉曼光谱特征峰的偏移来确定石榴石的类质同象替换情况。

    红外光谱测试:在中国科学院理化技术研究所完成。测试仪器为Excalibur 3100型傅立叶变换红外光谱仪(原美国Varian公司)。实验条件为:测试范围400~1200cm-1;分辨率0.20cm-1;叠加次数64次。目的是根据红外谱带的频率和强度的变化,对石榴石矿物品种进行鉴定。

    紫外可见吸收光谱测试:在中国科学院理化技术研究所完成。测试仪器为Cary 5000型紫外可见近红外分光光度计(原美国Varian公司)。实验条件为:测试范围1100~200nm,分辨率为0.5nm,扫描速度为2.64nm/s。目的是根据特征离子价电子的跃迁产生的吸收性质,确定石榴石中特征致色离子。

    实验中分别对4种石榴石样品进行电子探针测试,其主量元素测试结果见表 1。由于电子探针无法对铁元素的价态进行测定,样品中的全铁含量采用二价离子进行计算。石榴石的通用化学式为X3Y2(SiO4) 3。在铝质系列中,Y以三价阳离子Al3+为主,X为半径较小的二价阳离子,如Mg2+、Fe2+和Mn2+等,这样铝质系列中的常见品种有镁铝榴石、铁铝榴石、锰铝榴石等。在钙质系列中,X以大半径的二价阳离子Ca为主,Y为三价阳离子,如Al3+、Fe3+、Cr3+等,这样钙质系列中的常见品种有钙铝榴石、钙铁榴石、钙铬榴石等[13]

    表  1  石榴子石样品中的主量元素电子探针分析结果
    Table  1.  EMPA results of major elements in garnet samples
    样品编号 含量(%)
    SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO 8种氧化物之和 Si Ti Al Cr Fe3+ Fe2+ Mn Mg Ca Uvt And Py Sps Grs Alm
    G1 37.65 0 21.34 0 19.87 4.12 16.13 1.33 100.44 2.82 0 1.88 0 0.24 1.01 0.26 1.8 0.11 0 11.1 56.66 8.22 0 31.76
    G2 35.67 0.06 19.99 0 0.84 39.39 2.23 0.75 98.93 2.95 0 1.95 0 0.06 0 2.76 0.28 0.07 0 2.81 8.87 88.99 0 0
    G3 36.60 0.40 20.74 0.17 0.06 5.98 0.55 34.81 99.31 2.85 0.02 1.91 0.01 0 0 0.40 0.06 2.91 0.47 0.17 1.9 11.37 85.73 0
    G4 37.61 0.06 21.34 0 18.03 4.52 15.87 3.04 100.47 2.81 0 1.88 0 0.24 0.89 0.29 1.77 0.24 0 11.41 55.56 8.99 0 27.8
    注:以12个氧原子和8个阳离子为计算基础。Uvt—钙铬榴石; And—红柱石; Py—黄铁矿; Sps—锰铝榴石; Grs—钙铝榴石。
    下载: 导出CSV 
    | 显示表格

    此外,一些石榴石的晶格中还附加有OH-离子,形成含水的种。根据表 1中化学百分含量及石榴石中离子占位及价态分布,将Fe元素进行重新分配,得到石榴石样品的晶体化学式。样品G1(Mn0.261Ca0.107,Fe1.0102+,Mg1.802)Σ=3.18 (Fe0.2353+Al1.884)Σ=2.119 Si2.821 O12 ,以镁铝榴石成分为主(56.66%),其中存在一定的Mn2+、Fe2+和Ca2+代替Mg2+。样品G2(Mn2.755Ca0.066Mg0.275)Σ=3.116 (Fe0.0583+Al1.946)Σ=2.004 Si2.946 O12 ,以锰铝榴石成分为主(88.99%),其中存在一定的Ca2+和Mg2+代替Mn2+。样品G3(Mn0.395Ca2.908Mg0.064)Σ=3.367 (Fe0.0043+Al1.906)Σ=1.91 Si2.853 O12,以钙铝榴石成分为主(85.73%),其中畸变的配位立方体中存在一定的Mn2+、Mg2+代替Ca2+。样品G4(Mg1.769)Σ=3.184 (Fe0.2423+Al1.881)Σ=2.123 Si2.812 O12以镁铝榴石成分为主(55.56%),其中存在一定的Mn2+、Fe2+和Ca2+代替Mg2+。据文献报道[16-17, 21-22],石榴石成分发生变化的主要原因是石榴石形成时的温度、压力条件,特别是形成时的压力不同而导致成分在空间上发生规律性变化,其成分的变化主要是二价阳离子的变化所致。石榴石晶格处于八面体配位的不同的二价阳离子半径有差异。在高压下,小配位半径的阳离子(Mg2+、Fe2+)比大配位半径的阳离子(Ca2+、Mn2+)易进入晶格,形成稳定的八次配位,而在低压下大配位半径阳离子进入晶格八次配位时的稳定性远远大于小配位半径阳离子的稳定性。由于Ca2+、Mn2+、Fe2+、Mg2+的配位半径依次递减,它们进入晶格所需的压力条件不同。配位半径大的离子,进入晶格时压力条件要小些,因此随着压力的增加,Ca2+含量降低,即石榴石中钙铝榴石的摩尔分数降低。Mn2+进入晶格时所需的压力较小,Mg2+需要很大的压力条件才能在晶体中呈现稳定的八次配位,而Fe2+介于两者之间。所以,可以推测,4件样品形成的压力条件是:G3(钙铝榴石) < G2(锰铝榴石) < G1、G4(镁铝榴石)。此外,根据不同样品间主要成分中特征元素制作差异对比图可知,G1和G4(镁铝榴石)样品中含有大量Fe,推测这是样品呈现红色调的主要原因。而G2(锰铝榴石)呈现明亮橙色,推测这与样品中含有大量锰元素有关。但是,该结论需要后续实验进行补充验证。

    通过对上述石榴石样品中主量元素的研究,得出了4件样品的种属分类,并分析了样品中存在的主要类质同象替换离子种类。但是,同种石榴石的颜色差异,常常是由微量元素引起的。为了进一步明确颜色与成分的差异,对4种石榴石样品进行ICP-MS测试,微量元素测试结果列于表 2。可以看到,相对于其他三个样品,G3(钙铝榴石)中含有较多Cr和V,推测这是该样品呈现绿色的主要原因,后续光谱学研究将进一步对此结论进行验证分析。此外,4件石榴石样品中都含有较大量Zn元素,虽然不同样品中的含量有差异,但是总体而言,Zn元素的含量偏高,这表明锌离子的类质同象替换普遍存在。本次测试的4件样品中其他微量元素含量均较低,无显著差异性。

    表  2  石榴石样品中的微量元素和稀土元素组成
    Table  2.  Trace elements and rare earth elements composition of garnet samples
    微量元素 含量(×10-6)
    G1 G2 G3 G4
    Cr 233 60.9 3453 126
    V 132 1.42 1358 30.3
    Zn 3447 1851 2188 3116
    Ni 1.21 2.09 < 0.05 3.3
    Rb 0.18 0.38 0.25 0.21
    Sr 3.60 1.93 3.83 1.59
    Ba 4.31 6.39 3.55 1.66
    Pb 2.92 0.85 1.68 0.84
    Nb 12.6 19.8 13.8 1.43
    Ta 0.31 0.35 0.15 0.32
    Zr 18.7 10.3 43.9 88.9
    Hf 1.21 1.01 2.1 2.55
    Be < 0.05 0.59 1.03 0.07
    Sc 282 5.67 11.8 118
    Cu 2.49 4.25 2.22 2.18
    Ga 7.93 51.7 77.8 5.51
    Mo 0.42 0.13 0.52 0.29
    Cd 0.90 0.56 0.18 0.24
    Cs 0.05 0.16 0.2 0.06
    W 1.02 0.45 0.39 0.85
    La 0.39 0.42 0.2 6.58
    Ce 0.26 0.85 0.2 7.07
    Pr 41.5 1.23 4.9 101
    Nd 1.03 0.63 0.9 8.93
    Sm 12.7 7.59 5.9 32.6
    Eu 4.76 21.9 12 47.8
    Gd 52.9 52.5 18 108
    Tb 123 130 26 187
    Dy 181 171 30 232
    Ho 191 169 28 235
    Er 205 181 32 269
    Tm 196 175 33 271
    Yb 189 169 36 269
    Lu 174 161 36 243
    Y 202 190 33 276
    REE 1574 1433 296 2293
    LREE/ HREE 0.04 0.02 0.1 0.1
    Eu/Eu* 0.15 0.73 1 0.68
    Ce/Ce* 0.01 1.04 0.1 0.13
    注:Eu/Eu*=2EuN/(SmN+GdN),无单位;Ce/Ce*=2CeN/(LaN+PrN),无单位;LREE/HREE无单位。
    下载: 导出CSV 
    | 显示表格

    对4种石榴石样品进行ICP-MS测试,同时获得样品的稀土元素含量信息,测试结果见表 2,稀土元素配分曲线见图 1。4件样品的稀土元素呈现HREE富集的左倾曲线。稀土元素总量变化范围较大,ΣLREE为296×10-6~2293×10-6,Y含量分布不均,为33×10-6~276×10-6,LREE/HREE比值小于1,表现为重稀土元素富集,Eu/Eu*比值小于1,为Eu负异常。所有样品的Ce异常均不明显,为弱或不明显的亏损,稀土元素进入石榴石的方式主要为受晶体化学控制的类质同象替换[16]。前人研究显示,HREE较LREE更容易进入石榴石的晶格内部,因而当稀土元素在石榴石中的分配受其晶体化学结构制约时,石榴石应呈HREE富集、LREE亏损的分配特征。稀土元素在石榴石与熔体或流体之间的分配系数无论是在铝质榴石系列中还是在钙质榴石系列中都是∑HREE>∑LREE[23-24]。此外,石榴子石的八面体位置适合半径较小的HREE进入而不能容纳半径较大的LREE[25]。因此,通常情况下石榴石应具有HREE富集的左倾斜型配分模式。岩浆成因及变质成因的富铝石榴子石(钙铝榴石、镁铝榴石、铁铝榴石以及锰铝榴石)多具有HREE富集、LREE亏损的特征,指示岩浆及区域变质环境下稀土元素在富铝石榴石中的分配主要受到石榴石的晶体化学结构所影响[26-27]

    图  1  石榴石样品稀土元素配分曲线
    Figure  1.  REE distribution curves of garnet samples

    为了研究4种石榴石样品的晶体结构特征和差异,对样品进行X射线粉晶衍射(XRD)晶体结构测试(图 2),并由此给出石榴石样品的定名。4种颜色石榴石分别为G1:镁铝榴石(Pyrope),G2:锰铝榴石(Spessartine),G3:钙铝榴石(Grossular),G4:镁铝榴石(Pyrope)。这个结论与上述成分分析结果一致。此外,4件石榴石样品的晶胞参数,分别是a=11.530nm (G1)、11.563nm(G2)、11.849nm(G3)和11.470nm(G4),其中钙铝榴石>锰铝榴石>镁铝榴石。这表明类质同象替换对石榴石晶体结构产生影响,随着不同种类离子替换石榴石晶格中的A和B位,石榴石的晶胞参数出现明显差异。综上,XRD定名结果与成分分析结果对应,验证了石榴石样品定名的准确性,同时石榴石中随着离子替换的发生,晶格发生变化。

    图  2  石榴石样品X射线粉晶衍射谱图
    Figure  2.  XRD patterns of garnet samples

    石榴石的红外光谱图中,位于指纹区的红外谱带的频率和强度与成分关系密切,可以对石榴石矿物品种进行鉴定(图 3)。由于石榴石中普遍存在的类质同象替换,红外光谱与上述其他研究手段结合,能更好地指示石榴石的鉴定和特征分析[28-29]

    图  3  石榴石样品红外光谱
    Figure  3.  Infrared spectra of garnet samples

    石榴石中各振动模形式以不可约可以表示为:Γ=3A1g +5A2g+8Eg+14F1g +14F2g +5A1u +5A2u +10Eu +17F1u+16F2u[30]。其中,满足选择定律,且使分子偶极距发生变化的简正振动模式才能是红外活性的。理论上来说,石榴石中应出现17个红外光谱的基频谱线[31],而实际样品测试中不会出现完整的17个谱线。其中,一般而言,800~1100cm-1处会出现3个吸收带,是[SiO4]四面体伸缩振动(反对称伸缩振动)所致,实验中石榴石样品在该处红外光特征峰较弱,G2和G3观察到3个吸收带,而G1和G4仅出现两个吸收带。然后,在400~700cm-1处的3个吸收带是四面体弯曲振动(反对称弯曲振动)所致,而石榴石样品在此区域,G1和G2观察到3个吸收带,G3和G4仅出现两个吸收带。此外,500cm-1以下的吸收是石榴石中除了Si以外的阳离子的相关振动引起的:400~500cm-1与三价阳离子相关振动相关,因在石榴石晶格内八面体三价原子团比硅氧四面体有较大的体积,使得谱带以较小的波数出现在低频区域[21]

    此外,样品红外光谱中未显示水分子的信号,表明这4件石榴石样品不含水。本实验中,因实验所限,未获得更精确的红外数据,仅给出石榴石大类确定,无法对不同样品的种属划分提供确定性证据。本次实验所测4件样品指纹区的红外光谱基本一致,因离子替换的普遍存在,个别峰的峰强略有差异,而峰位偏移也有出现。但是,4件样品红外光谱的信息差异不明显。

    为了进一步研究石榴石样品的谱学特征,以补充红外光谱分析的不足,对样品进行拉曼光谱测试(图 4)。在硅酸盐系列矿物的拉曼光谱中,硅氧Si—Onb的伸缩振动在800~1250cm-1,桥氧(Si—Obr—Si)的反伸缩加弯曲振动频率位于450~760cm-1;[SiO4]旋转振动R[SiO4]产生的拉曼位移一般小于400cm-1[32]。石榴石中各振动模式列于上述红外分析中,其中A1g、Eg、F2g为拉曼活性[16]。由于石榴石族矿物之间存在普遍的类质同象替换,因此不同品种石榴石的拉曼光谱的谱峰位置必将存在差异[13]。4件石榴石样品所测的拉曼光谱中重要峰均出现,但是存在明显差异。需要注意的是,G3因样品存在强荧光,出现明显拉曼信号抬高现象。其中,900cm-1附近拉曼峰归属于Si—Onb伸缩振动(A1g模),其两侧的两个小峰由Si—Onb伸缩振动Eg+F2g模引起,这3个拉曼位移是石榴石Si—Onb伸缩振动的特征峰。实验中出现400~700cm-1之间的4个拉曼位移峰由石榴石的桥氧(Si—Obr—Si)的反对称伸缩加弯曲振动引起。[SiO4]四面体的对称伸缩振动产生的拉曼峰位与晶胞面积有关。在不同端元组分石榴石中,随着晶格常数变大,拉曼位移朝着低频方向移动,在铝质系列和钙质系列中均有这种规律。在晶体结构测试部分所示,石榴石样品的晶胞参数:G3>G2>G1(G4),因此,相应样品的拉曼特征峰也出现对应的向波数小的方向偏移。

    图  4  石榴石样品拉曼光谱
    Figure  4.  Raman spectra of garnet samples

    为了更清晰地分析石榴石样品的拉曼特征,在下文列出样品的拉曼光谱特征峰,结合前人文献中对纯净端元组分石榴石的拉曼光谱研究,对各种属石榴石的拉曼光谱进行粗略分类:镁铝榴石的拉曼特征峰在912cm-1、552cm-1、355cm-1附近;铁铝榴石在916cm-1、500cm-1、340cm-1附近;锰铝榴石在900cm-1、543cm-1、341cm-1附近;钙铝榴石系列在874cm-1、543cm-1、368cm-1附近;钙铁榴石在867cm-1、507cm-1、370cm-1附近。

    实验中样品G1和G4对应镁铝榴石的特征拉曼峰,而样品G2的特征拉曼峰指示与锰铝榴石对应,样品G3则与钙铝榴石拉曼峰呈现很好的对应关系。这个结论与之前对样品进行的成分及结构分析结果一致,同时也表明拉曼光谱测试这种分析手段在石榴石种属确定中具备重要的参考价值。

    分析不同颜色石榴石样品的紫外可见吸收光谱,能给出石榴石中特征离子价电子在电子能级间的跃迁而产生的吸收性质,从而确定石榴石中的特征致色离子,为石榴石种属鉴定提供完备的依据和补充。

    图 5给出4件石榴石样品的紫外可见吸收光谱对比,4件样品的紫外吸收峰值位置有明显差异。由前面的成分和结构分析可知,石榴石中普遍存在类质同象替换,石榴石的吸收光谱由类质同象替代的铁、锰、铬离子等共同作用影响。

    图  5  石榴石样品紫外可见吸收光谱
    Figure  5.  UV-Vis spectra of garnet samples

    样品G1与G4均为镁铝榴石,光谱特征较一致。但是,样品G1中出现的570nm附近的吸收峰, 归属于Fe3+ 的电子跃迁[8],样品G4的该类特征峰不明显。样品G1和G4在690~700nm附近都出现了小的吸收峰,该峰归属于样品中含有的微量Cr。样品G2中大量含有Mn2+ ,Mn2+电子态为3d5,460nm和520nm附近吸收峰为Mn2+的d-d电子跃迁所致。样品G3中,590~665nm处出现强的吸收带,由Cr3+分裂的能级之间的跃迁产生,这也是样品呈现绿色的原因[1, 33]

    本次工作利用电子探针、电感耦合等离子体质谱、X射线粉晶衍射、拉曼光谱、红外光谱和紫外可见吸收光谱等测试方法,对石榴石样品进行了全面系统的矿物学研究,获得了石榴石矿物系统的结构和成分数据。研究结果表明,4种颜色的石榴石样品分属于铁铝榴石(红色和褐红色)、锰铝榴石(橙色)和钙铝榴石(绿色),电子探针和光谱分析均证实鉴定结果的准确性。4件样品的稀土元素均呈HREE富集的左倾配分模式,但稀土元素总量变化范围较大,LREE/HREE比值小于1,Eu负异常。石榴子石的八面体位置适合半径较小的HREE进入,岩浆成因及变质成因的富铝石榴石(钙铝榴石、镁铝榴石、铁铝榴石以及锰铝榴石)多具有HREE富集、LREE亏损的特征,稀土元素在富铝石榴石中的分配主要受到石榴石的晶体化学结构所影响,进入石榴石的方式主要为受晶体化学控制的类质同象替换;同时类质同象替换亦对石榴石晶体结构产生影响,随着不同种类离子替换石榴石晶格中的A和B位,石榴石的晶胞参数出现明显差异。4件石榴石样品拉曼峰位的变化也与晶胞面积密切相关,随着晶格常数变大,拉曼位移朝着低频方向移动,在铝质系列和钙质系列中均有这种规律。

    通过比较不同样品中的主量元素和微量元素含量可知,样品G1和G4(镁铝榴石)中含有大量Fe,样品G2(锰铝榴石)中含有大量Mn;样品G3(钙铝榴石)中含有较多Cr和V。由此推测,特征的Fe、Mn、Cr和V含量分别是G1和G4显红色、G2显亮橙色、G3显绿色的主要致色原因。样品的拉曼光谱和紫外可见吸收光谱特征与样品成分分析结果较一致。石榴石的颜色与其成分和结构具有良好的对应关系。4件样品多数微量元素含量均较低,无显著差异性特征。而Zn元素的含量普遍偏高,这表明锌离子的类质同象替换普遍存在。由于本次实验条件所限,对样品Zn元素明显富集的原因有待于本课题组下一步研究深化。

  • 图  1   砷诱导氧化应激机制

    Figure  1.   Mechanism of arsenic induced oxidative stress

    图  2   植物体内重金属元素超富集的主要过程与机制[50]

    Mx+代表金属离子。

    Figure  2.   Main mechanisms and processes involved in heavy metal hyperaccumulation by plants[50]

    图  3   重金属液泡积累机制,液泡膜转运蛋白直接将重金属元素带入液泡[99]

    PCs—植物螯合肽:MTs—金属硫蛋白;Acids—小分子有机酸,Mx+—金属离子。

    Figure  3.   Mechanisms of vacuolar accumulation of heavy metals. Transporters residing at the tonoplast directly carry heavy metals into the vacuolar lumen[99](PCs: phytochelatins, MTs: metallothioneins, Acids: low molecular organic acids, Mx+: metal ions)

    表  1   植物中微量元素的作用与机制

    Table  1   Function and mechanism of micronutrients in plants

    微量元素 作用(适量) 过量
    (干重浓度)
    毒性机制 毒性症状
    Zn[13] 促进植物形成花粉;氧化还原酶、转移酶、
    水解酶、裂解酶、异构酶、连接酶组成成分
    >20mg/kg 增强脂质过氧化酶活性 引起遗传变异,抑制植物
    生长
    Cu[13] 多种酶辅因子;参与细胞壁代谢,叶绿体、
    线粒体电子传递;氧化磷酸化和铁动员,
    氮同化,脱落酸合成等
    >20μg/g 抑制酶活性及蛋白质
    功能,引起氧化应激
    抑制胚芽发育、种子活性、
    植株发育,导致萎黄、坏死
    Mn[13] 参与ATP酰基脂质、蛋白质、脂肪酸生物
    合成,参与RuBP羧化酶反应,光合作用
    的氧化还原过程
    >(10~100)μg/g 干扰其他营养元素吸收
    利用,诱导氧化应激
    影响能量代谢,降低光合
    作用速率
    Se[24, 28] 保护细胞膜,防止不饱和脂肪酸氧化 >2mg/kg 非特异性硒蛋白积累,
    氧化应激
    抑制植物生长
    Ni[29-30] 脲酶组成成分 >(10~50)mg/kg 破坏叶绿素结构,降低
    叶绿素含量
    抑制光合作用、氮代谢、
    酶活性,产生活性氧,生长
    速率下降
    Co[30] 诱导淀粉积累 >368mg/kg 破坏叶绿素结构,降低
    叶绿素含量
    降低生长速率,光合作用
    速率下降
    下载: 导出CSV

    表  2   在不同培养条件下生长的不同植物中,重金属激活抗氧化酶差异

    Table  2   Heavy metal-induced activation of antioxidant enzymes in different plant species grown in different condition

    植物名称 胁迫元素与浓度 胁迫时间 基质 抗氧化酶 活性变化情况
    江南星厥[109]
    (Microsorum fortunei)
    Cd:1000μmol/L 15d 水培 CAT、POD、GST、CCP 降低
    水合欢[110]
    (Neptunia olerace)
    Cd:50、100、180mg/kg Pb:500、1000、1800mg/kg 37d 土培 根中CAT、茎中SOD、叶中POD 先降低后升高
    根和茎中SOD、茎中CAT、叶中POD
    大聚藻[111]
    (Myriophyllum aquaticum)
    Cd:10、20、40、80、160mg/kg 28d 水培 SOD、POD、PRO 升高
    印度芥菜[112] Cu、Zn、Pb、Cd:50μmol/L 96h 水培 SOD、CAT、APX 根部升高,地上部分先升高后降低(高于对照组)
    墨旱莲[113]
    (Eclipta prostrata)
    Pb:100、200、400、800、1600mg/kg 30d 土培 SOD、CAT、APX、GR 升高
    印度芥菜、紫花苜蓿[114] Cd:7 5、150、300、600mg/kg 14d 土培 SOD 紫花苜蓿茎中升高
    CAT 两者根、茎中均有升高
    注:CAT—过氧化氢酶(catalase);POD—过氧化物酶(peroxidase);GST—谷胱甘肽硫转移酶(glutathione-S-transferase);CCP—细胞色素c过氧化物酶(cytochrome c peroxidase);SOD—超氧化物歧化酶(superoxide dismutase);PRO—脯氨酸(proline);APX—抗坏血酸过氧化物酶(ascorbate peroxidase);GR—谷胱甘肽还原酶(glutathione reductase)。
    下载: 导出CSV

    表  3   部分重金属超富集植物及其富集能力和应用

    Table  3   Accumulation ability of several hyperaccumulators and their application

    元素 超富集植物名称 生长条件 植物中重金属浓度(干重) 应用
    Ni 褐蓝菜[75] 100μmol/L水培,>60天 根:33.6μmol/g
    叶:130μmol/g
    /
    Odontarrhena chalcidica
    (庭芥属)[116]
    蛇纹石(serpentine)土壤,6.5个月 地上部分:13μg/g 植物采矿
    小野芥菜[116]
    (Noccaea goesingensis)
    蛇纹石土壤,11个月 地上部分:8μg/g 植物采矿
    Senecio conrathii(菊科)[117] 总Ni:503μg/g,可溶性
    Ni:0.1μg/g,土壤
    叶:1558μg/g 植物修复
    髭脉桤叶树[118]
    (Clethra barbinervis)
    500μmol/L水培,12周 根:1310μg/g
    茎:542μg/g
    叶:804μg/g
    /
    少根紫萍[30]

    (Landoltia punctata)
    10mg/L水培,10天 叶:2013mg/kg 植物修复
    Co 髭脉桤叶树[118] 500μmol/L水培,12周 根:1810μg/g
    茎:246μg/g
    叶:1770μg/g
    /
    少根紫萍[30] 10mg/L水培,10天 叶:1998mg/kg 植物修复
    Cd 伴矿景天[82] 总Cd:36~157mg/kg,
    CaCl2可提取态Cd:
    1.83~14.2mg/kg,土壤
    地上部分:574~1470mg/kg 植物修复
    多穗稗[65] 100mg/L水培,62天 根:299mg/kg
    叶:233mg/kg
    植物修复
    东南景天[79] 25μmol/L水培,30天 根:150μg/g;
    地上部分:500μg/g
    植物修复
    宝山堇菜[119]
    (Viola baoshanensis)
    100μmol/L水培,2天 根:3500mg/kg
    地上部分:1750mg/kg
    植物修复
    狐尾藻[111]
    (Myriophyllum aquaticum)
    40mg/L水培,28天 17970mg/kg 植物修复
    龙葵[66] 20mg/kg,土壤,14天 根:95μg/g
    地上部分:128μg/g
    植物修复
    Zn 褐蓝菜[75] 100μmol/L水培,60天 根:46.4μmol/g
    叶:161μmol/g(干重)
    /
    伴矿景天[82] 总Zn:1930~6200mg/kg,
    CaCl2可提取态
    Zn:24~162mg/kg,土壤
    地上部分:9020~14600mg/kg 植物修复
    As 凤尾蕨[120] 10mg/kg,土壤,30天 根:1885mg/kg
    叶:2562mg/kg
    植物修复
    Pb 墨旱莲[113]
    (Eclipta prostrata)
    1600mg/kg,土壤,30天 根:7229μg/g
    地上部分:12484μg/g
    植物修复
    下载: 导出CSV
  • Jiang P, Hou Z G, Bolin J M, et al.RNA-Seq of human neural progenitor cells exposed to lead (Pb) reveals transcriptome dynamics, splicing alterations and disease risk associations[J].Toxicological Sciences, 2017, 159(1):251-265. doi: 10.1093/toxsci/kfx129

    Moynihan M, Peterson K E, Cantoral A, et al.Dietary predictors of urinary cadmium among pregnant women and children[J].Science of the Total Environment, 2017, 575:1255-1262. doi: 10.1016/j.scitotenv.2016.09.204

    Lintern M, Anand R, Ryan C, et al.Natural gold particles in Eucalyptus leaves and their relevance to exploration for buried gold deposits[J].Nature Communications, 2013, 4(4):2614. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aec86ceeb26cae2fedad81514fb248d4

    Vardanyan N, Sevoyan G, Navasardyan T, et al.Recovery of valuable metals from polymetallic mine tailings by natural microbial consortium[J].Environmental Technology, 2019, 40(26):3467-3472. doi: 10.1080/09593330.2018.1478454

    袁玲, 孟扬, 左玉明.黄金矿山尾矿资源回收和综合利用[J].黄金, 2010, 31(2):52-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj201002014

    Yuan L, Meng Y, Zuo Y M.Recovery and comprehensive utilization of gold tailings[J].Gold, 2010, 31(2):52-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj201002014

    Baker A J M.Accumulators and excluders-strategies in the response of plants to heavy metals[J].Journal of Plant Nutrition, 1981, 3(1-4):643-654. doi: 10.1080/01904168109362867

    Krämer U.Metal hyperaccumulation in plants[J].Annual Review of Plant Biology, 2010, 61:517-534. doi: 10.1146/annurev-arplant-042809-112156

    Kumar S S, Malyan S K, Kadier A, et al.Phytoremediation and rhizoremediation: Uptake, mobilization and sequestration of heavy metals by plants[M]//Singh D P, Singh H B, Prabha R.Plant-microbe interactions in agro-ecological perspectives: Volume 2: Microbial interactions and agro-ecological impacts.Singapore: Springer, 2017: 367-394.

    Sheoran V, Sheoran A S, Poonia P.Phytomining of gold:A review[J].Journal of Geochemical Exploration, 2013, 128:42-50. doi: 10.1016/j.gexplo.2013.01.008

    Lintern M J, Anand R R.Dispersion of gold and other metals by trees, gravels and soils near Boddington gold deposit, western Australia[J].Journal of Geochemical Exploration, 2017, 181:10-21. doi: 10.1016/j.gexplo.2017.06.016

    Harguinteguy C A, Cofré M N, Cirelli A F, et al.The macrophytes Potamogeton pusillus L. and Myriophyllum aquaticum (Vell.) Verdc. as potential bioindicators of a river contaminated by heavy metals[J].Microchemical Journal, 2016, 124:228-234. doi: 10.1016/j.microc.2015.08.014

    Hakeem K, Rehman K.Crop production and global environmental issues[M]//Shahid M, Khalid S, Abbas G, et al.Heavy metal stress and crop productivity.Cham: Springer, 2015.

    Tripathi D K, Singh S, Singh S, et al.Micronutrients and their diverse role in agricultural crops:Advances and future prospective[J].Acta Physiologiae Plantarum, 2015, 37:139. doi: 10.1007/s11738-015-1870-3

    Kopittke P M, Blamey F P C, Mckenna B A, et al.Toxicity of metals to roots of cowpea in relation to their binding strength[J].Environmental Toxicology and Chemistry, 2011, 30(8):1827-1833. doi: 10.1002/etc.557

    Gupta D, Corpas F, Palma J.Heavy metal stress in plants[M]//Gupta D K, Vandenhove H, Inouhe M.Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants.Heidelberg: Springer, 2013.

    Whitacre D.Reviews of environmental contamination and toxicology volume 232[M]//Shahid M, Pourrut B, Dumat C, et al.Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants.Cham: Springer, 2014.

    Galloa M, Morseb D, Hollnagel H C, et al.Oxidative stress and toxicology of Cu2+ based on surface areas in mixed cultures of green alga and cyanobacteria:the pivotal role of H2O2[J].Aquatic Toxicology, 2020, 222:105450. doi: 10.1016/j.aquatox.2020.105450

    Jomova K, Valko M.Advances in metal-induced oxidative stress and human disease[J].Toxicology, 2011, 283(2-3):65-87. doi: 10.1016/j.tox.2011.03.001

    Thounaojam T C, Panda P, Mazumdar P, et al.Excess copper induced oxidative stress and response of antioxidants in rice[J].Plant Physiology and Biochemistry, 2012, 53:33-39. doi: 10.1016/j.plaphy.2012.01.006

    Küpper H, Andresen E.Mechanisms of metal toxicity in plants[J].Metallomics, 2016, 8(3):269-285. doi: 10.1039/C5MT00244C

    Santos E F, Santini J M K, Paixao A P, et al.Physiologica l highlights of manganese toxicity symptoms in soybean plants:Mn toxicity responses[J].Plant Physiology and Biochemistry, 2017, 113:6-19. doi: 10.1016/j.plaphy.2017.01.022

    Tavanti R F R, Queiroz G D, Silva A C D, et al.Changes in photosynthesis and antioxidant metabolism of cotton (Gossypium hirsutum L.) plants in response to manganese stress[J].Archives of Agronomy and Soil Science, 2019. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/03650340.2019.1637857

    Yu Y, Fu P N, Huang Q P, et al.Accumulation, sub-cellular distribution, and oxidative stress of cadmium in Brassica chinensis supplied with selenite and selenate at different growth stages[J].Chemosphere, 2019, 216:331-340. doi: 10.1016/j.chemosphere.2018.10.138

    Hoewyk D V.A tale of two toxicities:Malformed selenoproteins and oxidative stress both contribute to selenium stress in plants[J].Annals of Botany, 2013, 112(6):965-972. doi: 10.1093/aob/mct163

    Kaur M, Sharma S.Influence of selenite and selenate on growth, leaf physiology and antioxidant defense system in wheat (Triticum aestivum L.)[J].Journal of the Science of Food and Agriculture, 2018, 98(15):5700-5710. doi: 10.1002/jsfa.9117

    Knauert S, Knauer K.The role of reactive oxygen species in copper toxicity to two freshwater green algae[J].Journal of Phycology, 2010, 44(2):311-309. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1529-8817.2008.00471.x

    Opdenakker K, Remans T, Keunen T, et al.Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels[J].Environmental and Experimental Botany, 2012, 83:53-61. doi: 10.1016/j.envexpbot.2012.04.003

    Kolbert Z, Lehotai N, Molnár A, et al."The roots" of selenium toxicity:A new concept[J].Plant Signaling & Behavior, 2016, 11(10):1241935. doi: 10.1080/15592324.2016.1241935

    Pas L V D, Robert A I.Towards an understanding of the molecular basis of nickel hyperaccumulation in plants[J].Plants, 2019, 8:11. doi: 10.3390/plants8010011

    Guo L, Ding Y Q, Xu Y L, et al.Responses of Landoltia punctata to cobalt and nickel:Removal, growth, photosynthesis, antioxidant system and starch metabolism[J].Aquatic Toxicology, 2017, 190:87-93. doi: 10.1016/j.aquatox.2017.06.024

    Tan L L, Xue X G, Du J, et al.Probing the molecular toxic mechanism of lead(Ⅱ) ions with glutathione peroxidase 6 from Arabidopsis thaliana[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 226:117597. doi: 10.1016/j.saa.2019.117597

    Abbas G, Murtaza B, Bibi I, et al.Arsenic uptake, toxicity, detoxification, and speciation in plants:Physiological, biochemical, and molecular aspects[J].International Journal of Environmental Research and Public Health, 2018, 15:59. doi: 10.3390/ijerph15010059

    Kehrer J P.The Haber-Weiss reaction and mechanisms of toxicity[J].Toxicology, 2000, 149(1):43-50. http://www.onacademic.com/detail/journal_1000034185137910_b550.html

    Kumar A, Prasad M N V.Plant-lead interactions:transport, toxicity, tolerance, and detoxification mechanisms[J].Ecotoxicology and Environmental Safety, 2018, 166:401-418. doi: 10.1016/j.ecoenv.2018.09.113

    Ugya A Y, Imam T S, Li A F, et al.Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production:A mini review[J].Chemistry and Ecology, 2020, 36(2):174-193. doi: 10.1080/02757540.2019.1688308

    Ghosh P, Rathinasabapathi B, Lena Q M. Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria[J].Chemosphere, 2015, 134:1-6. doi: 10.1016/j.chemosphere.2015.03.048

    Kumar S, Dubey R S, Tripathi R D, et al.Omics and biotechnology of arsenic stress and detoxification in plants:Current updates and prospective[J].Environment International, 2015, 74:221-230. doi: 10.1016/j.envint.2014.10.019

    Tripathi R D, Tripathi P, Dwivedi S, et al.Arsenomics:Omics of arsenic metabolism in plants[J].Frontiers in Physiology, 2012, 3:275. http://europepmc.org/articles/PMC3429049/

    Swaran J S F.Arsenic-induced oxidative stress and its reversibility[J].Free Radical Biology & Medicine, 2011, 51(2):257-281. http://www.ncbi.nlm.nih.gov/pubmed/21554949

    Sharma I.Arsenic induced oxidative stress in plants[J].Biologia, 2012, 67(3):447-453. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.2478/s11756-012-0024-y

    Malik J A, Goel S, Kaur N, et al.Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms[J].Environmental and Experimental Botany, 2012, 77:242-248. doi: 10.1016/j.envexpbot.2011.12.001

    Tamás L, Zelinová V.Mitochondrial complex Ⅱ-deri-ved superoxide is the primary source of mercury toxicity in barley root tip[J].Journal of Plant Physiology, 2017, 209:68-75. doi: 10.1016/j.jplph.2016.10.014

    Chen Q, Zhang Z Y, Liu Y Y, et al.Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings[J].Plant Growth Regulation, 2017, 81(2):253-264. doi: 10.1007/s10725-016-0202-y

    Gupta D K, Pena B, Romero P M C, et al.NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity[J].Plant, Cell & Environment, 2017, 40(4):509-526. http://www.ncbi.nlm.nih.gov/pubmed/26765289

    Zhang H H, Li X, Xu Z S, et al.Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves:Photosynthetic function and reactive oxygen species (ROS) metabolism responses[J].Ecotoxicology and Environmental Safety, 2020, 195:110469. doi: 10.1016/j.ecoenv.2020.110469

    Mitch M L.Phytoextraction of toxic metals:A review of biological mechanisms[J].Journal of Environmental Quality, 2002, 31(1):109-120. http://europepmc.org/abstract/MED/11837415

    Fayigaa A O, Maa L Q, Cao X D, et al.Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L[J].Environmental Pollution, 2004, 132(2):289-296. doi: 10.1016/j.envpol.2004.04.020

    Rascio N, Izzo F N.Heavy metal hyperaccumulating plants:How and why do they do it? and what makes them so interesting?[J].Plant Science, 2011, 180:169-181. doi: 10.1016/j.plantsci.2010.08.016

    Freeman J L, Quinn C F, Lindblom S D, et al.Selenium protects the hyperaccumulator Stanleya pinnata against black-tailed prairie dog herbivory in native seleniferous habitats[J].American Journal of Botany, 2009, 96(6):1075-1085. doi: 10.3732/ajb.0800287

    Sheoran V, Sheoran A S, Poonia P.Phytomining:A review[J].Minerals Engineering, 2009, 22(12):1007-1019. doi: 10.1016/j.mineng.2009.04.001

    Li T Q, Tao Q, Liang C F, et al.Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii[J].Environmental Pollution, 2013, 182:248-255. doi: 10.1016/j.envpol.2013.07.025

    Salinitroa M, Entb A N D, Tognacchini A, et al.Stress responses and nickel and zinc accumulation in different accessions of Stellaria media (L.) Vill.in response to solution pH variation in hydroponic culture[J].Plant Physiology and Biochemistry, 2020, 148:133-141. doi: 10.1016/j.plaphy.2020.01.012

    Peng C, Xu C, Liu Q, et al.Fate and transformation of CuO nanoparticles in the soil-rice system during the life cycle of rice plants[J].Environmental Science & Technology, 2017, 51(9):4907-4917. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3a03e6f916726717f3a110e2db6fffbf

    Liu X, Fu J W, Guan D X, et al.Arsenic induced phytate exudation, and promoted FeAsO4 dissolution and plant growth in As-hyperaccumulator Pteris vittata[J].Environmental Science & Technology, 2016, 50(17):9070-9077. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e844969c9b56ea80aee1cdf676f646e3

    Ge Y, Priester J H, Werfhorst L C V D, et al.Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities[J].Environmental Science & Technology, 2014, 48(22):13489-13496. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=40a30aba396d9dc05ea443482f74ed99

    Ali H, Khan E, Sajad M A.Phytoremediation of heavy metals-Concepts and applications[J].Chemosphere, 2013, 91(7):869-881. doi: 10.1016/j.chemosphere.2013.01.075

    Mahrousa N N, Columbusa M P, Southam G, et al.Changes in microbial community structure and increased metal bioavailability in a metal-contaminated soil and in the rhizosphere of corn (Zea mays)[J].Rhizosphere, 2019, 11:100169. doi: 10.1016/j.rhisph.2019.100169

    曾远, 罗立强.土壤中特异性微生物与重金属相互作用机制与应用研究进展[J].岩矿测试, 2017, 36(3):209-221. doi: 10.15898/j.cnki.11-2131/td.201701170009

    Zeng Y, Luo L Q.Research progress on the application and interaction mechanism between specific microorganisms and heavy metals in soil[J].Rock and Mineral Analysis, 2017, 36(3):209-221. doi: 10.15898/j.cnki.11-2131/td.201701170009

    He H D, Ye Z H, Yang D J, et al.Characterization of endophytic Rahnella sp.JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus[J].Chemosphere, 2013, 90(6):1960-1965. doi: 10.1016/j.chemosphere.2012.10.057

    He B Y, Yu D P, Chen Y, et al.Use of low-calcium cultivars to reduce cadmium uptake and accumulation in edible amaranth (Amaranthus mangostanus L.)[J].Chemosphere, 2017, 171:588-594. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=90945c9a80906fe9bd334d6d5a7dc7ae

    Wu Z C, Zhao X H, Sun X C, et al.Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus)[J].Chemosphere, 2015, 119:1217-1223. doi: 10.1016/j.chemosphere.2014.09.099

    Tao Q, Jupa R, Luo J P, et al.The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii[J].Journal of Experimental Botany, 2017, 68(3):739-751. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a418367952ea1179ba9bcaee10182fca

    Hendel A M, Zubko M, Karcz J, et al.Fate of neutral-charged gold nanoparticles in the roots of the Hordeum vulgare L.cultivar Karat[J].Scientific Reports, 2017, 7(1):3014. doi: 10.1038/s41598-017-02965-w

    Attwood T S, Unrine J M, Stone J W, et al.Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings[J].Nanotoxicology, 2012, 6(4):353-360. doi: 10.3109/17435390.2011.579631

    Solis D F A, Gonzalez C M C, Carrillo G R, et al. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system[J].Journal of Hazardous Materials, 2007, 141(3):630-636. doi: 10.1016/j.jhazmat.2006.07.014

    Bao T, Sun T H, Sun L.Low molecular weight organic acids in root exudates and cadmium accumulation in cadmium hyperaccumulator Solanum nigrum L.and nonhyperaccumulator Solanum lycopersicum L.[J].African Journal of Biotechnology, 2011, 10(75):17180-17185. http://www.researchgate.net/publication/272690006_Low_molecular_weight_organic_acids_in_root_exudates_and_cadmium_accumulation_in_cadmium_hyperaccumulator_Solanum_nigrum_L._and_non-hyperaccumulator_Solanum_lycopersicum_L

    Lu L L, Tian S K, Zhang J, et al.Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii[J].New Phytologist, 2013, 198(3):721-731. doi: 10.1111/nph.12168

    Kozhevnikova A D, Seregin I V, Erlikh N T, et al. Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens[J].New Phytologist, 2014, 203(2):508-519. doi: 10.1111/nph.12816

    Yoneyama T, Ishikawa S, Fujimaki S.Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling:Metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification[J].International Journal of Molecular Sciences, 2015, 16(8):19111-19129. doi: 10.3390/ijms160819111

    Gao J, Sun L, Yang X E, et al.Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance[J].Plos One, 2013, 8(6):e64643. doi: 10.1371/journal.pone.0064643

    Palusińska M, Barabasz A, KozakK, et al.Zn/Cd status-dependent accumulation of Zn and Cd in root parts in tobacco is accompanied by specific expression of ZIP genes[J].BMC Plant Biology, 2020, 20(1):37. http://www.researchgate.net/publication/338758611_ZnCd_status-dependent_accumulation_of_Zn_and_Cd_in_root_parts_in_tobacco_is_accompanied_by_specific_expression_of_ZIP_genes

    Morel M, Crouzet J, Gravot A, et al.AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis[J].Plant Physiology, 2009, 149(2):894-904. doi: 10.1104/pp.108.130294

    Ueno D, Yamaji N, Kono I, et al.Gene limiting cadmium accumulation in rice[J].Proceedings of the National Academy of Sciences, 2010, 107(38):16500-16505. doi: 10.1073/pnas.1005396107

    Kutrowska A, Szelag M.Low-molecular weight organic acids and peptides involved in the long-distance transport of trace metals[J].Acta Physiologiae Plantarum, 2014, 36(8):1957-1968. doi: 10.1007/s11738-014-1576-y

    Deng T H B, Tang Y T, Ent A V D, et al.Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae)[J].Plant and Soil, 2016, 404(1):35-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85119aa52a5bedc95fdc83ed187e48c4

    Dan Y B, Zhang W L, Xue R M, et al.Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis[J].Environmental Science & Technology, 2017, 49(5):3007-3014. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=809dad9164c921979f01c071084ecd61

    Feichtmeier N S, Walther P, Leopold K.Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles[J].Environmental Science & Pollution Research International, 2015, 22(11):8549-8558. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4357b695661430297a547e179ff456e7

    Tao Q, Jupa R, Liu Y K, et al.Abscisic acid-mediated modifications of radial apoplastic transport pathway play a key role in cadmium uptake in hyperaccumulator Sedum alfredii[J].Plant Cell And Environment, 2019, 42(5):1425-1440. doi: 10.1111/pce.13506

    Li T Q, Tao Q, Shohag M J I, et al.Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii[J].Plant and Soil, 2015, 389:387-399. doi: 10.1007/s11104-014-2367-3

    Chi K Y, Zou R, Wang L, et al.Cellular distribution of cadmium in two amaranth (Amaranthus mangostanus L.) cultivars differing in cadmium accumulation[J].Environmental Science and Pollution Research, 2019, 26:22147-22158. doi: 10.1007/s11356-019-05390-w

    Mori S, Uraguchi S, Ishikawa S, et al.Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum[J].Environmental and Experimental Botany, 2009, 67:127-132. doi: 10.1016/j.envexpbot.2009.05.006

    Hu P J, Wang Y D, Przybyłowicz W J, et al.Elemental distribution by cryo-micro-PIXE in the zinc and cadmium hyperaccumulator Sedum plumbizincicola grown naturally[J].Plant and Soil, 2015, 388:267-282. doi: 10.1007/s11104-014-2321-4

    Wang W J, Zhang M Z, Liu J.Subcellular distribution and chemical forms of Cd in Bougainvillea spectabilis Willd. as an ornamental phytostabilizer:An integrated consideration[J].International Journal of Phytoremediation, 2018, 20(11):1087-1095. doi: 10.1080/15226514.2017.1365335

    Rozas M M, Madejon E, Madejon P.Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species:An assessment in sand and soil conditions under different levels of contamination[J].Environmental Pollution, 2016, 216:273-281. doi: 10.1016/j.envpol.2016.05.080

    Hou X L, Han H, Cai L P, et al.Pb stress effects on leaf chlorophyll fluorescence, antioxidative enzyme activities, and organic acid contents of Pogonatherum crinitum seedlings[J].Flora, 2018, 240:82-88. doi: 10.1016/j.flora.2018.01.006

    Sghaier O M, Merono R M, Zapico E F, et al.Synthesis of a new Cd(Ⅱ)-Ni(Ⅱ) hetero-metallic coordination polymer base on citric acid ligand.X-ray structure, thermal stability, XPS and fluorescence studies[J].Journal of Molecular Structure, 2016, 1105:105-111. doi: 10.1016/j.molstruc.2015.10.028

    Zhang Y L, He S R, Zhang Z, et al.Glycine transforma-tioninduces repartition of cadmium and lead in soil constituents[J].Environmental Pollution, 2019, 251:930-937. doi: 10.1016/j.envpol.2019.04.099

    Chen S, Lin R Y, Lu H L, et al.Effects of phenolic acids on free radical scavenging and heavy metal bioavailability in kandelia obovata under cadmium and zinc stress[J].Chemosphere, 2020, 249:126341. doi: 10.1016/j.chemosphere.2020.126341

    Xin J P, Zhang Y, Tian R N.Tolerance mechanism of Triarrhena saccharifiora (Maxim.) Nakai.seedlings to lead and cadmium:Translocation, subcellular distribution, chemical forms and variations in leaf ultrastructure[J].Ecotoxicology and Environmental Safety, 2018, 165:611-621. doi: 10.1016/j.ecoenv.2018.09.022

    Adediran G A, Ngwenya B T, Mosselmans J F W, et al.Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea[J].Journal of Hazardous Materials, 2015, 283:490-499. doi: 10.1016/j.jhazmat.2014.09.064

    Sun J L, Luo L Q.Subcellular distribution and chemical forms of Pb in corn:strategies underlying tolerance in Pb stress[J].Journal of Agricultural and Food Chemistry, 2018, 66(26):6675-6682. doi: 10.1021/acs.jafc.7b03605

    Ameen N Z, Amjad M, Murtaza B, et al.Biogeochemical behavior of nickel under different abiotic stresses:Toxicity and detoxification mechanisms in plants[J].Environmental Science and Pollution Research, 2019, 26(11):10496-10514. doi: 10.1007/s11356-019-04540-4

    Sunitha M S, Prashant S, Kumar S A, et al.Cellular and molecular mechanisms of heavy metal tolerance in plants:A brief overview of transgenic plants over expressing phytochelatins synthase and metallothionein genes[J].Plant Cell Biotechnology and Molecular Biology, 2013, 13(3):99-104.

    Helaoui S, Boughattas I, Hattab S, et al.Physiological, biochemical and transcriptomic responses of Medicago sativa to nickel exposure[J].Chemosphere, 2020, 249:126121. doi: 10.1016/j.chemosphere.2020.126121

    Chaudhary K, Agarwal S, Khan S.Role of phytochelatins (PCs), metallothioneins (MTs), and heavy metal atpase (HMA) genes in heavy metal tolerance[M]//Prasad R.Mycoremediation and environmental sustainability: Volume 2.Cham: Springer International Publishing, 2018: 39-60.

    Navarrete A, González A, Gómez M, et al.Copper excess detoxification is mediated by a coordinated and complementary induction of glutathione, phytochelatins and metallothioneins in the green seaweed Ulva compressa[J].Plant Physiology and Biochemistry, 2019, 135:423-431. doi: 10.1016/j.plaphy.2018.11.019

    Cao Z Z, Qin M L, Lin X Y, et al.Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration[J].Environmental Pollution, 2018, 238:76-84. doi: 10.1016/j.envpol.2018.02.083

    Bhargava A, Carmona F F, Bhargava M, et al.Appro-aches for enhanced phytoextraction of heavy metals[J].Journal of Environmental Management, 2012, 105:103-120. http://www.cabdirect.org/abstracts/20123223844.html

    Sharma S S, Dietz K J, Mimura T.Vacuolar compart-mentalization as indispensable component of heavy metal detoxification in plants[J].Plant, Cell & Environment, 2016, 39:1112-1126. http://www.ncbi.nlm.nih.gov/pubmed/26729300

    Liu H, Zhao H X, Wu L H, et al.Heavy metal ATPase 3(HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola[J].New Phytologist, 2017, 215(2):687-698. doi: 10.1111/nph.14622

    Song W Y, Park J, Cózat D G M, et al.Arsenic tolerance in arabidopsis is mediated by two ABCC-type phytochelatin transporters[J].Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(49):21187-21192. doi: 10.1073/pnas.1013964107

    Park J, Song W Y, Ko D, et al.The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury[J].The Plant Journal, 2012, 69(2):278-288. doi: 10.1111/j.1365-313X.2011.04789.x

    Zhang W W, Hu Y J, Cao Y R, et al.Tolerance of lead by the fruiting body of Oudemansiella radicata[J].Chemosphere, 2012, 88(4):467-475. doi: 10.1016/j.chemosphere.2012.02.079

    Srivastava R K, Pandey P, Rajpoot R, et al.Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings[J].Protoplasma, 2014, 251(5):1047-1065. doi: 10.1007/s00709-014-0614-3

    Tang K, Zhan J C, Yang H R, et al.Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings[J].Journal of Plant Physiology, 2010, 167(2):95-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e146b78a8d1cf5b81c94f5cc1e187e9c

    Xu X H, Yang B S, Qin G H, et al.Growth, accumulation, and antioxidative responses of two Salix genotypes exposed to cadmium and lead in hydroponic culture[J].Environmental Science and Pollution Research, 2019, 26:19770-19784. doi: 10.1007/s11356-019-05331-7

    Shahid M, Dumat C, Pourrut B, et al.Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots[J].Journal of Soils and Sediments, 2014, 14:835-843. doi: 10.1007/s11368-013-0724-0

    Cherif J, Mediouni C, Ammar W B, et al.Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solarium lycopersicum)[J].Journal of Environmental Sciences, 2011, 23(5):837-844. doi: 10.1016/S1001-0742(10)60415-9

    Yan Y Y, Yang B, Lan X Y, et al.Cadmium accumulation capacity and resistance strategies of a cadmium-hypertolerant fern-Microsorum fortunei[J].Science of the Total Environment, 2019, 649:1209-1223. doi: 10.1016/j.scitotenv.2018.08.281

    黑泽文, 向慧敏, 章家恩, 等.水合欢对重金属Cd、Pb的耐受性及吸收富集特性[J].生态毒理学报, 2019, 14(3):286-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cyyhj201903029

    Hei Z W, Xiang H M, Zhang Z E, et al.Tolerance and accumulation ability of Neptunia olerace to Cd and Pb stress in soil[J].Asian Journal of Ecotoxicology, 2019, 14(3):286-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cyyhj201903029

    Guo H, Jiang J W, Gao J Q, et al.Evaluation of cadmium hyperaccumulation and tolerance potential of Myriophyllum aquaticum[J].Ecotoxicology and Environmental Safety, 2020, 195:110502. doi: 10.1016/j.ecoenv.2020.110502

    Małecka A, Konkolewska A, Han A, et al.Insight into the phytoremediation capability of Brassica juncea (v.Malopolska):Metal accumulation and antioxidant enzyme activity[J].International Journal of Molecular Sciences, 2019, 20:4355. doi: 10.3390/ijms20184355

    Chandrasekhara C, Ray J G.Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate[J].Ecotoxicology and Environmental Safety, 2019, 171:26-36. doi: 10.1016/j.ecoenv.2018.12.058

    Zhang C L, Chen Y Q, Xu W H, et al.Resistance ofAlfalfa and Indian mustard to Cd and the correlation of plant Cd uptake and soil Cd form[J].Environmental Science and Pollution Research, 2019, 26:13804-13811. doi: 10.1007/s11356-018-3162-0

    Reeves R D, Baker A J M, Tanguy Jaffre, et al.A global database for plants that hyperaccumulate metal and metalloid trace elements[J].New Phytologist, 2018, 218:407-411. doi: 10.1111/nph.14907

    Rosenkranz T, Hipfinger C, Ridard C, et al.A nickel phytomining field trial using Odontarrhena chalcidica and Noccaea goesingensis on an Austrian serpentine soil[J].Journal of Environmental Management, 2019, 242:522-528. doi: 10.1016/j.jenvman.2019.04.073

    Siebert S J, Schutte N C, Bester S P, et al.Senecio conrathii N.E.Br.(Asteraceae), a new hyperaccumulator of nickel from serpentinite outcrops of the Barberton Greenstone Belt, South Africa[J].Ecological Research, 2018, 33:651-658. doi: 10.1007/s11284-017-1541-5

    Yamaguchi T, Tomioka R, Takenaka C.Accumulation of cobalt and nickel in tissues of Clethra barbinervis in a metal dosing trial[J].Plant and Soil, 2017, 421:273-283. doi: 10.1007/s11104-017-3455-y

    Shu H Y, Zhang J, Liu F Y, et al.Comparative transcriptomic studies on a cadmium hyperaccumulator Viola baoshanensis and its non-tolerant counterpart V.inconspicua[J].International Journal of Molecular Sciences, 2019, 20:1906. doi: 10.3390/ijms20081906

    Potdukhe R M, Bedi P, Sarangi B K, et al.Root transcripts associated with arsenic accumulation in hyperaccumulator Pteris vittata[J].Journal of Biosciences, 2018, 43(1):105-115. doi: 10.1007/s12038-018-9735-8

    张云霞, 宋波, 宾娟, 等.超富集植物藿香蓟(Ageratum conyzoides L.)对镉污染农田的修复潜力[J].环境科学, 2019, 40(5):2453-2459. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201905055

    Zhang Y X, Song B, Bin J, et al.Remediation potential of Ageratum conyzoides L.on cadmium contaminated farmland[J].Environmental Science, 2019, 40(5):2453-2459. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201905055

    Willscher S, Jablonski L, Fona Z, et al.Phytoremediation experiments with Helianthus tuberosus under different pH and heavy metal soil concentrations[J].Hydrometallurgy, 2017, 168:153-158. doi: 10.1016/j.hydromet.2016.10.016

    Kabas S, Mella F S, Huynh T, et al.Metal uptake and organic acid exudation of native Acacia species in mine tailings[J].Australian Journal of Botany, 2017, 65(4):357-367. doi: 10.1071/BT16189

    Wang L W, Hou D Y, Shen Z T, et al.Field trials of phytomining and phytoremediation:A critical review of influencing factors and effects of additives[J].Critical Reviews in Environmental Science and Technology, 2019, 51. doi: 10.1080/10643389.2019.1705724

    Bhargava A, Fuentes F, Shukla S, et al.Genetic variability in vegetable Chenopodium for morphological and quality traits over different cuttings[J].Ciencia e Investigacion Agraria, 2019, 46(2):179-186. doi: 10.7764/rcia.v46i2.2145

    Ruiz O N, Daniell H.Genetic engineering to enhance mercury phytoremediation[J].Current Opinion in Biotechnology, 2009, 20:213-219. doi: 10.1016/j.copbio.2009.02.010

    Valdez E G, Alarcóna A, Cerrato R F, et al.Induced accumulation of Au, Ag and Cu in Brassica napus grown in a mine tailings with the inoculation of Aspergillus niger and the application of two chemical compounds[J].Ecotoxicology and Environmental Safety, 2018, 154:180-186. doi: 10.1016/j.ecoenv.2018.02.055

    Harris A T, Naidoo K, Nokes J, et al.Indicative assessment of the feasibility of Ni and Au phytomining in Australia[J].Journal of Cleaner Production, 2009, 17(2):194-200. doi: 10.1016/j.jclepro.2008.04.011

    刘婷婷, 彭程, 王梦, 等.海州香薷根细胞壁对铜的吸附固定机制研究[J].环境科学学报, 2014, 34(2):514-523. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201402033

    Liu T T, Peng C, Wang M, et al.Mechanism of fixation and adsorption of copper on root cell wall of Elsholtzia splendens[J].Acta Scientiae Circumstantiae, 2014, 34(2):514-523. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201402033

    何宇宁, 徐仲瑞, 熊治廷.铜胁迫对不同抗性种群海州香薷酸性转化酶基因启动子甲基化的影响[J].植物科学学报, 2017, 35(4):574-582. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whzwxyj201704013

    He Y N, Xu Z R, Xiong Z T.DNA methylation patterns of acid invertase gene promoters from Cu-tolerant and non-tolerant populations of Elsholtzia haichowensis under copper stress[J].Plant Science Journal, 2017, 35(4):574-582. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whzwxyj201704013

    Farjandi F, Faiziev A, Fozilov M, et al.The application of biogeochemistry for gold exploration in the Masjed-Daghi, Julfa, NW Iran[J].Arabian Journal of Geosciences, 2013, 6(5):1435-1446. doi: 10.1007/s12517-011-0448-7

  • 期刊类型引用(6)

    1. 陈星韵,张良,王豪帅,张瑞锐,孙思辰. 福建云霄石榴子石宝石矿物学特征. 岩石矿物学杂志. 2024(03): 673-684 . 百度学术
    2. 韩萧萧,梁涛,王思雨,熊竹楠,王凌青. 电感耦合等离子体质谱联用技术在稀土元素物源指示研究中的应用进展. 岩矿测试. 2023(01): 1-15 . 本站查看
    3. 毛金伟,冷成彪,赵严,李凯旋,陈涛亮,梁丰,高粉粉,张兴春. 云南中甸红牛-红山大型夕卡岩铜矿床石榴子石U-Pb年代学、元素地球化学及地质意义. 矿物岩石地球化学通报. 2023(06): 1329-1343+1-11 . 百度学术
    4. 胡靓,张德贤,娄威,胡子奇,刘金波. 含膏盐建造铁矿床中磁铁矿LA-ICP-MS微量元素测定与地球化学特征研究. 岩矿测试. 2022(04): 564-574 . 本站查看
    5. 王浩,杨岳衡,杨进辉. 矿物微区Lu-Hf同位素分析技术研究进展. 岩矿测试. 2022(06): 881-905 . 本站查看
    6. 朱丽,杨永琼,顾汉念,温汉捷,杜胜江,罗重光. 电感耦合等离子体质谱-X射线衍射法研究云南玉溪和美国内华达地区黏土型锂资源矿物学特征. 岩矿测试. 2021(04): 532-541 . 本站查看

    其他类型引用(5)

图(3)  /  表(3)
计量
  • 文章访问数:  13544
  • HTML全文浏览量:  5592
  • PDF下载量:  112
  • 被引次数: 11
出版历程
  • 收稿日期:  2020-04-13
  • 修回日期:  2020-05-19
  • 录用日期:  2020-05-28
  • 发布日期:  2020-08-31

目录

/

返回文章
返回