• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

富硒土地资源研究进展与评价方法

周国华

周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336. DOI: 10.15898/j.cnki.11-2131/td.201911140158
引用本文: 周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336. DOI: 10.15898/j.cnki.11-2131/td.201911140158
ZHOU Guo-hua. Research Progress of Selenium-enriched Land Resources and Evaluation Methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336. DOI: 10.15898/j.cnki.11-2131/td.201911140158
Citation: ZHOU Guo-hua. Research Progress of Selenium-enriched Land Resources and Evaluation Methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336. DOI: 10.15898/j.cnki.11-2131/td.201911140158

富硒土地资源研究进展与评价方法

基金项目: 

中国地质调查局地质调查项目“珠江下游及浙江基本农田土地质量地球化学调查与应用示范”(DD2016320)

中国地质调查局地质调查项目“珠江下游及浙江基本农田土地质量地球化学调查与应用示范” DD2016320

详细信息
    作者简介:

    周国华, 博士, 教授级高级工程师, 从事生态环境地球化学调查研究。E-mail:zhouguohua@igge.cn

  • 中图分类号: X142

Research Progress of Selenium-enriched Land Resources and Evaluation Methods

  • 摘要: 硒是重要的生命必需元素,开发富硒农产品是提升我国人体硒摄入水平的安全有效途径,富硒土地资源评价与利用规划是土地质量地球化学调查成果服务于特色农产品发展与脱贫攻坚的重要切入点。本文评述了近年来在土壤和作物硒含量、土壤硒成因来源、土壤硒赋存形态及其生物有效性影响因素、土壤-作物系统硒吸收运移、硒与重金属镉等元素之间的相互作用等调查研究成果。针对我国土壤硒背景值约0.20mg/kg,远低于世界土壤背景值0.40mg/kg,整体上处于低硒水平的实际情况,认为采用0.40mg/kg Se作为富硒土壤标准具有较强的科学依据;多数情况下土壤硒主要来源于成土地质背景,部分地区与人为活动密切有关;富硒土壤可分为地质高背景、次生富集作用、人为输入及其多种作用的叠加成因,元素地球化学性质决定了硒与镉等重金属元素共生的普遍性;土壤硒成因来源以及pH、Eh、有机质、铁铝氧化物等土壤理化条件决定了硒和重金属赋存形态与生物有效性,进而影响到富硒土地的可利用性,成为制定富硒土壤地方标准的理论基础与考虑因素;不同作物种类对硒吸收富集能力不同,筛选适应当地农田生态环境、富硒低镉的农作物具有实际意义;现有的部分富硒农产品标准未充分考虑人体补硒目的,并存在标准间协调性差等问题,急需加强富硒农产品标准的制定。本文提出,富硒土地资源评价不仅需要考虑土壤硒和重金属含量,而且需综合土壤硒成因来源及其生物有效性、土壤-作物系统硒迁移累积、硒与重金属镉等元素之间的相互作用机制,以及当地气候、土壤和景观条件下作物种植的适宜性,依据富硒土地资源可利用性进行分类分区、科学规划和合理种植管理。同时建议,为满足富硒土地资源调查评价与可利用性分析、富硒农产品健康效应研究的需要,需要加强土壤和作物硒含量及其形态的提取分离与分析测试方法技术研究与应用。
    要点

    (1) 成因、形态、吸收迁移机理等是富硒土地资源评价的科学基础。

    (2) 土壤硒有效性、环境质量、作物种植适宜性是富硒土地资源可利用性的关键要素。

    (3) 急需加强富硒农产品标准的制定,完善土壤和作物硒形态分析测试技术。

    HIGHLIGHTS

    (1) The origin, species, uptake and transport mechanism were bases for selenium-enriched land resource assessment.

    (2) Bio-availability, soil environmental quality and plantation suitability were the key factors for the ultilization of selenium-enriched land resources.

    (3) It was urgent to enhance research on selenium-enriched agricultural product standards and speciation analysis methods.

  • 以沉积岩为主要容矿岩石的卡林型金矿是目前世界上储量最大的金矿类型之一,其中的金以“不可见金”或颗粒极细状(纳米级)存在是该类型金矿最重要的特点之一。主要载金矿物有黄铁矿、毒砂和黏土矿物,尤以黄铁矿最为重要。氧化矿石中主要载金矿物是褐铁矿和黏土矿,自然金粒度很细,大多为次显微金[1]。国内外对该类型金矿载金矿物开展了较系统的电子探针分析,结合X射线光电子能谱对黄铁矿和毒砂进行了表面元素的定性和定量分析,对探讨矿床的成矿条件、成矿过程及成矿机理具有重要的依据和信息[2-4]

    甘肃省陇南赵家庄金矿是近年来在西秦岭南部地区发现的此类型金矿之一,该地区卡林型金矿又有与国内外同类型矿床不同的特点,受构造破碎带控制。从已研究的资料来看,前人对该地区金的成矿模式与机理研究较多,积累了很多含矿层位、控矿构造、地球化学等成果,但是对含金矿物的组分和赋存状态研究较少,加之该地区的矿山开采较少,限制了矿石的综合开发利用。故本文应用偏光显微镜与电子探针相结合的手段,对该地区含金矿物的含量、矿物种类、赋存状态及其嵌布特征进行研究,并利用电子探针进行微粒金定性和定量测定,拟为研究矿床的成因、成矿过程和成矿机理提供依据,也为金矿床的选矿提供理论指导,具有重要的经济意义。

    研究区地处西秦岭褶皱带南秦岭被动陆缘褶皱带南侧,位于扬子板块西北缘的次一级大地构造单元,夹持于文县—康县大断裂和枫相—铜钱区域韧性剪切带之间,碧口古陆西北缘大断裂通过本区,区域构造线呈NEE向展布[2, 5-6]

    研究区东西长8 km,南北宽7 km,面积约55 km2,主要包括昌河坝、馍馍山及巩家山三个矿段。

    地层主要为古生界中泥盆统三河口群,由老至新依次为桥头组(Dq)、屯寨组下、中、上段(Dt1、Dt2、Dt3)和羊汤寨组下岩段(Dy1),岩性为含碳微粒灰岩、中厚层灰岩夹绢云石英千枚岩、含碳千枚岩及含铁石英岩、片理化不等粒斜长石英砂岩、中基性火山岩、含白云质灰岩、绢云石英灰质片岩等。矿化产于屯寨组,含矿岩性以片岩、千枚岩、板岩为主,个别为石英碳酸盐化韧性变形含碳白云母构造片岩。

    区内断裂构造发育(图 1),总体构造形态表现为一北西倾斜的单斜构造,受韧性剪切带及F5断裂的影响,局部表现为背斜,按照走向大致可划分为近东西向和北东向两组,其中东西向F5断裂为主要的导矿断裂,其旁侧的次级断裂为主要的控矿断裂,如F2、F6及F9等。

    图  1  赵家庄金矿区域地质简图
    1—全新统;2—更新统;3—石炭系—泥盆系益洼沟组;4—泥盆系羊汤寨组上岩段;5—泥盆系羊汤寨组下岩段;6—泥盆系屯寨组上岩段;7—泥盆系屯寨组中岩段;8—泥盆系屯寨组下岩段;9—泥盆系桥头组;10—寒武—震旦系临江组;11—震旦系关家沟组上岩段;12—震旦系关家沟组中岩段;13—震旦系关家沟组下岩性段;14—长城系白杨岩组下岩段;15—花岗闪长斑岩;16—黑云母闪长岩脉;17—石英脉;18—逆断层;19—性质不明断层;20—韧性剪切带。
    Figure  1.  Regional geology sketch map of Zhaojiazhuang gold deposit

    区域上岩浆活动强烈,研究区内主要以规模较小的岩脉产出,在巩家山、馍馍山及昌河坝矿段均发育有长10余米、宽2~5 m不等的花岗斑岩脉及闪长玢岩脉,且在部分见矿钻孔中发现了花岗斑岩,发育粗粒-细粒黄铁矿,部分钻孔花岗斑岩具有金异常,由此可见区内岩浆活动与金矿化关系密切。

    围岩蚀变较发育,常见有黄铁矿化、硅化、碳酸盐化、赤铁矿化、褐铁矿化、高岭土化、绢云母化等,多沿断裂或构造裂隙面呈带状分布。其中,硅化、黄铁矿化、褐铁矿化、碳酸盐化与金矿化呈正相关;高岭土化、绢云母化与金矿化关系不明显。

    研究区分别在昌河坝、馍馍山、巩家山三个地段圈定出金矿(化)体数十条,矿体一般长68~85 m,厚度1.03~7.51 m,金品位3.04~8.04 g/t。矿体产状与地产产状一致,走向近东西向,矿体顶底板以结晶灰岩为主。

    电子探针分析技术是微束分析中的常规测试技术之一。电子探针因其分析区域小、绝对及相对灵敏度高、分析元素范围广等优点,为地质科学研究提供了重要的研究手段,目前已经成为地学领域中矿物学、岩石学、矿床学及相关学科的重要研究工具[7]。本次研究的样品均是采自赵家庄金矿的钻孔中矿石样品,电子探针和能谱分析样品均为含有黄铁矿的金矿石,样品的显微照片如图 2所示。

    图  2  矿石矿物特征
    a—平行构造片理排列的他形粒状黄铁矿;b—重结晶黄铁矿;c—次生草莓状黄铁矿;d—重结晶的黄铁矿包裹的黄铜矿。
    Figure  2.  Characteristics of ore minerals

    本次研究共分析166点,黄铁矿的电子探针分析在长安大学电子探针实验室完成,仪器型号为JXA-8100电子探针分析仪(日本电子公司),在几百到上千的放大倍数下重点寻找粒径小的金银矿物、硫化物矿物,同时对其成分进行测定,补缺显微镜的局限性,更准确地探讨其赋存状态。仪器分析条件为:加速电压15 kV(硫化物);束流1×10-8 A;束斑直径5 μm;检出角40°;校正ZAF;温度25℃,湿度55%~60%。分析方法依据国家标准GB/T 15617—2002《硅酸盐矿物的电子探针定量分析方法》和GB/T 15246—2002《硫化物矿物的电子探针定量分析方法》。

    通过大量岩石光薄片的镜下观察,初步判断金银矿物的赋存状态,为下一步电子探针分析做准备。对样品进行显微镜下鉴定,根据矿物组成,矿石中金属矿物成分主要为黄铁矿、褐铁矿,少量黄铜矿及自然金,含量约2%;非金属矿物主要有石英、方解石、白云母,少量碳质成分等,含量约95%。

    金属矿物中含金矿物主要为黄铁矿。黄铁矿具有三种成因:第一种为早期的破碎黄铁矿(图 2a),主要分布于变形带中,粒径小于0.02 mm,大多数以碎粒结构为主,分布比较均匀;第二种为变形后重结晶的黄铁矿(图 2b),粒径0.1~0.25 mm,全部呈重结晶结构,具有半自形特征,其中可见包裹的黄铜矿,粒径0.02 mm;第三种为次生黄铁矿(图 2c),具有生物结构,以草莓状集合体为主,粒径小于0.002 mm。其中第一种及第三种黄铁矿与成矿作用密切,是金矿物的主要载体。黄铜矿(图 2d)较少,主要被粗粒黄铁矿包裹,粒径0.02 mm,他形粒状结构,包裹黄铁矿平行片理分布。

    通过对赵家庄金矿载金矿物开展较为系统的显微照相和电子探针分析,矿石中金属矿物主要为黄铁矿、黄铜矿、毒砂,其次为闪锌矿、方铅矿,并见有少量银金矿。电子探针分析结果表明,赵家庄金矿自然金主要呈“不可见”超显微包裹金形式存在,载金矿物主要为黄铁矿(图 3a),其次为黄铜矿(图 3b)、闪锌矿(图 3c)。自然金具有较高的成色,颜色为红黄色,包裹于脉石矿物中,粒径0.005 mm;裂隙金显微微细粒嵌布在黄铁矿、黄铜矿、绢云母、石英晶隙及裂隙中,主要赋存于黄铁矿、黄铜矿中,少量赋存于绢云母等黏土矿物之中。

    图  3  载金矿物特征
    a—黄铁矿;b—黄铜矿;c—闪锌矿(2, 3探针点);d—毒砂(2探针点)。
    Figure  3.  Characteristics of gold-bearing minerals

    赵家庄金矿主要载金矿物黄铁矿和黄铜矿中Au、Fe、S、Cu、As等元素的电子探针波谱分析结果列于表 1,数据表明赵家庄金矿各类载金矿物中除了主含量元素外,还有一些微量元素。

    表  1  主要载金矿物元素含量分析结果
    Table  1.  Analytical results of elements in gold-bearing minerals
    测试对象 点号 含量(%)
    As S Fe Pb Zn Ag Cu Au 总计
    黄铜矿 67-1b3-3 - 25.44 9.98 0.11 - 0.02 62.65 0.11 98.31
    71-2b1-4 - 33.56 0.58 0.10 64.21 - - 0.15 98.62
    闪锌矿 67-1b1-4 0.05 33.03 3.23 0.09 61.75 - - 0.26 98.42
    平均值 0.05 33.30 1.91 0.10 62.98 - - 0.20 98.52
    67-1b2-5 0.03 49.45 44.31 0.63 - - 0.04 0.13 94.59
    67-1b2-5 0.00 52.95 44.49 0.21 0.01 - 0.08 0.16 97.89
    67-1b2-5 0.01 51.91 45.68 0.24 - - 0.00 0.10 97.94
    67-1b2-6 0.18 51.03 45.05 0.22 0.02 0.06 0.02 0.12 96.70
    67-1b2-6 0.13 51.11 43.48 0.30 0.01 0.09 0.04 0.23 95.39
    71-2b1-1 0.06 53.81 45.06 0.21 - - - 0.21 99.35
    粗晶黄铁矿
    (100~200 μm)
    71-2b1-3 0.04 55.27 45.15 0.17 0.07 0.00 - 0.18 100.87
    71-1b1-3 - 51.03 45.59 0.20 0.01 0.02 0.02 0.12 96.98
    71-1b1-4 0.02 50.96 45.49 0.28 0.04 - 0.00 0.13 96.92
    67-1b1-2 0.00 53.49 46.34 0.23 0.11 - 0.04 0.11 100.31
    67-1b1-3 0.01 53.34 45.81 0.18 0.04 - - 0.14 99.52
    67-1b1-4 - 53.18 45.64 0.20 - - - 0.15 99.17
    平均值 0.05 52.29 45.17 0.26 0.04 0.04 0.03 0.15 97.97
    67-1b4-4 - 53.20 45.94 0.15 0.03 - - 0.22 99.54
    67-1b4-4 - 53.00 45.57 0.17 - 0.02 0.01 0.23 99.00
    67-1b4-3 - 53.31 45.49 0.24 0.03 0.03 - 0.23 99.33
    67-1b4-2 - 52.41 45.69 0.12 0.02 - - 0.11 98.35
    67-1b4-1 0.02 53.31 45.93 0.19 0.07 - - 0.14 99.67
    67-1b4-1 0.02 52.96 45.95 0.16 - 0.02 0.03 0.19 99.32
    细晶黄铁矿
    (20~50 μm)
    67-1b4-1 0.01 53.12 45.71 0.14 - 0.01 - 0.12 99.11
    71-2b3-1 0.02 52.68 46.78 0.18 0.02 - 0.03 0.11 99.82
    71-2b3-3 - 51.31 46.02 0.24 0.04 0.01 - 0.21 97.84
    67-1b1-3 - 53.33 45.91 0.19 - 0.04 - 0.22 99.69
    平均值 0.02 52.86 45.90 0.18 0.03 0.02 0.02 0.18 99.17
    71-2b2-3 2.99 50.11 44.10 0.20 - 0.03 0.01 0.19 97.62
    71-2b2-4 1.10 49.86 45.85 0.21 - 0.01 0.01 0.10 97.14
    草莓状黄铁矿
    (15~30 μm)
    71-2b2-4 2.12 50.91 45.40 0.12 0.04 - - 0.14 98.73
    71-2b2-5 2.06 51.52 46.15 0.26 0.12 0.03 - 0.15 100.27
    平均值 2.07 50.60 45.38 0.20 0.08 0.02 0.01 0.14 98.44
    下载: 导出CSV 
    | 显示表格

    黄铜矿中Au的含量为0.11%,Pb和Ag含量分别为0.11%、0.02%;闪锌矿中Au平均含量为0.20%,As和Pb平均含量分别为0.05%、0.10%;粗晶黄铁矿中Au平均含量为0.15%,As、Pb、Zn、Ag、Cu平均含量分别为0.05%、0.26%、0.04%、0.04%、0.03%;细晶黄铁矿中Au平均含量为0.18%,As、Pb、Zn、Ag、Cu平均含量分别为0.02%、0.18%、0.03%、0.02%、0.02%;草莓黄铁矿中Au平均含量为0.14%,As、Pb、Zn、Ag、Cu平均含量分别为2.07%、0.20%、0.08%、0.02%、0.01%。

    载金矿物中存在金的富集点,如闪锌矿中67-1b1-4点Au含量为0.26%;粗晶黄铁矿67-1b2-6点Au含量为0.175%;细晶黄铁矿中67-1b4-3、67-1b4-4点Au含量为0.23%;草莓状黄铁矿中71-2b2-3点Au含量为0.19%。在500倍显微镜下,几乎未发现显微可见金,显示金矿中Au以机械混入的“不可见”显微-超显微包体金形式存在于载金矿物中[8-12]。赵家庄金矿各主要载金矿物中Au含量依次为:闪锌矿>细晶黄铁矿>粗晶黄铁矿>草莓状黄铁矿>黄铜矿,但由于闪锌矿较少,电子探针点少,数据出现偶然较高的现象,不具有普遍性,总体金含量依次为:细晶黄铁矿>粗晶黄铁矿>草莓状黄铁矿>黄铜矿。

    根据各脉体及矿物之间的穿切关系,矿石标本、光薄片观察到的矿石组构、矿物组合及其特征,结合前人的数据,赵家庄金矿的成矿作用可分为沉积成岩期、热液期和表生氧化阶段[3]。沉积成岩期主要以少量草莓状黄铁矿为主(图 2b),零星分布于含矿地层中;热液期黄铁矿大多数以细晶黄铁矿为主,少量为草莓状、粗晶黄铁矿,热液阶段的黄铁矿主要呈自形(图 4a)和半自形的晶型(图 4b),赋金黄铁矿又以细粒自形为主,莓球状、粗粒以及条带状次之。这些黄铁矿成因复杂,并且可能普遍受到热液蚀变作用影响,产于石英脉裂隙中;表生氧化期主要是沉积成岩期和热液阶段的黄铁矿在表生条件下发生氧化,形成褐铁矿等,可产生金的次生富集[3]

    图  4  热液期呈自形(a)和半自形(b)黄铁矿
    Figure  4.  Automorphic (a) and subhedral (b) crystal pyrites of hydrothermal stage

    本次研究主要对赵家庄金矿12件探针片中的粗晶黄铁矿(100~200 μm)、细晶黄铁矿(20~50 μm)、草莓状黄铁矿(15~30 μm)及黄铜矿等主要载金矿物进行了电子探针面扫描图像及元素定量分析。在黄铁矿和黄铜矿等载金矿物中,Fe、S、Cu等主要组成元素较均匀地分布,清楚地显示了黄铁矿中主要组成元素Fe、S以及黄铜矿中Fe、S、Cu的分布状态。在粗晶黄铁矿、细晶黄铁矿以及黄铜矿中均可见到Au的分布,并且Au的含量比其周边非金属矿物要高出许多。但在这些金属硫化物的内部,Au分布并不均匀[3, 13-15]。不同时期的黄铁矿(粗晶黄铁矿、细晶黄铁矿、草莓状黄铁矿)中Au的分布也不均匀,存在差异性,主要表现为在细晶黄铁矿和草莓状黄铁矿中的Au含量有增加趋势,这种现象说明此类黄铁矿为后期构造热液阶段形成,金含量更高[4, 16-17]

    显微镜下和电子探针分析显示,研究区矿石中金的存在形式主要有两种:一种为“可见金”,另一种为“不可见金”[6, 18]。其中,可见金(一般扫描电镜下可见,粒度>0.001 mm)包裹于脉石矿物中,或者以裂隙金的形式嵌布在黄铁矿、黄铜矿、绢云母、石英晶隙及裂隙中,主要赋存于黄铁矿、黄铜矿中,少量赋存于绢云母等黏土矿物之中,颗粒粒径为0.002~0.005 mm。

    “不可见金”指的是在一般扫描电镜下不能检出的次显微金(<0.001 mm)[18],国内外研究者对此开展了大量工作,大多数学者认为金主要以Au+和Au0的价态存在,少数学者认为金的价态是Au3+和Au-。近年来许多光谱技术及高分辨率分析研究结果都表明,金在含砷黄铁矿中以两种形式存在:Au+和Au0[3, 18-21],Reich(2005)将美国多个低温热液型和卡林型金矿黄铁矿分析数据投入logAu-logAs图中,总结出一条被称为“溶解度限度线”(CAu=0.02CAs+4×10-5),并以此来判断含砷黄铁矿中金的存在形式[18];溶解度线以上的含砷黄铁矿中的金为纳米级自然金(Au0),溶解度线以下的含砷黄铁矿中的金主要以固溶体(Au+)形式存在。如图 5所示,研究区金矿含砷黄铁矿分析数据点全都位于溶解度线以上,表明含砷黄铁矿中的金主要以纳米级颗粒金形式存在。

    图  5  含砷黄铁矿金溶解度曲线
    Figure  5.  Gold solubility curve of arsenic-bearing pyrite

    综上,研究区金主要有两种存在形式:“可见金”包裹于脉石矿物中,或以裂隙金的形式嵌布在矿物晶隙及裂隙中;“不可见金”以纳米级颗粒金的形式存在于载金矿物中。

    通过电子探针面扫描图像及元素定量分析技术,对赵家庄金矿床主要载金矿物黄铁矿的元素含量、形态特征及矿物之间的空间分布关系进行研究,分析显示主要载金矿物为黄铁矿、黄铜矿、毒砂、闪锌矿等,主要载金矿物中Au含量依次为:细晶黄铁矿>粗晶黄铁矿>草莓状黄铁矿>黄铜矿。不同时期的黄铁矿(粗晶黄铁矿、细晶黄铁矿、草莓状黄铁矿)中Au的分布均匀,但也存在差异性,主要表现为在细晶黄铁矿和草莓状黄铁矿中Au的含量有增加趋势,这种现象表明此类黄铁矿的金含量更高,为后期构造热液阶段形成。金主要有两种存在形式,“可见金”包裹于脉石矿物中,或以裂隙金的形式嵌布在矿物晶隙及裂隙中;“不可见金”以纳米级颗粒金的形式存在于载金矿物中。

    通过本次研究,为研究矿床成因、成矿过程及成矿机理提供了佐证,且该技术为一些微细矿物分布、组合规律及其与非矿石的关系研究提供了一套方法,同时对后期矿石的选冶提供了技术基础,易于根据含金矿物的特征选择合适的选冶方法。

  • 图  1   土壤硒化学形态及其生物有效性的主控因素(引自Fordyce,2013[4])

    Figure  1.   Schematic diagram showing the main controls on the chemical speciation and bioavailability of selenium in soils (Cited from Fordyce, 2013[4])

    图  2   富硒土地资源评价与规划利用工作流程示意图

    Figure  2.   Brief chart of selenium-enriched land resources assessment and land-use planning

  • World Health Organization.Trace elements in human nutrition and health[M].Geneva:World Health Organization, 1996.

    Sharma V K, McDonald T J, Sohn M, et al.Assessment of toxicity of selenium and cadmium selenium quantum dots:A review[J].Chemosphere, 2017, 188:403-413. https://www.sciencedirect.com/science/article/pii/S004565351731353X

    Smits J E, Krohn R M, Akhtar E, et al.Food as med-icine:Selenium enriched lentils offer relief against chronic arsenic poisoning in Bangladesh[J].Environmental Research, 2019, 176:108561. https://doi.org/10.1016/j.envres.2019.108561.

    Fordyce F M.Selenium deficiency and toxicity in the environment[M]//Selinus O.Essentials of medical geology (revised edition).British Geological Survey, 2013: 373-416.

    谭见安.中华人民共和国地方病与环境图集[M].北京:科学出版社, 1989.

    Tan J A.The atlas of endemic diseases and their environments in the People's Republic of China[M].Beijing:Science Press, 1989.

    Dinh Q T, Cuia Z W, Huang J, et al.Selenium distribution in the Chinese environment and its relationship with human health:A review[J].Environment International, 2018, 112:294-309.

    Dai Z H, Imtiaz M, Rizwan M, et al.Dynamics of sele-nium uptake, speciation, and antioxidant response in rice at different panicle initiation stages[J].Science of the Total Environment, 2019, 691:827-834.

    Andrade F R, da Silva G N, Guimarães K C, et al.Selenium protects rice plants from water deficit stress[J].Ecotoxicology and Environmental Safety, 2018, 164:562-570. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b15c712a4fa2e381ed129545e16fd6af

    Ulhassan Z, Ali G R, Skhawat A, et al.Dual behavior of selenium:Insights into physico-biochemical, an atomical and molecular analyses of four Brassica napus cultivars[J].Chemosphere, 2019, 225:329-341. https://www.sciencedirect.com/science/article/pii/S0045653519304643

    Kolbert Z, Molnár Á, Feigl G, et al.Plant selenium toxicity:Proteome in the crosshairs[J].Journal of Plant Physiology, 2019, 232:291-300. https://www.sciencedirect.com/science/article/pii/S0176161718306370

    国土资源部中国地质调查局.中国耕地地球化学调查报告(2015年)[R].北京: 中国地质调查局, 2015.

    China Geological Survey, Ministry of Land and Resources.Geochemical survey report of cultivation land in China (2015)[R].Beijing: China Geological Survey, 2015.

    王云, 魏复盛.土壤环境元素化学[M].北京:中国环境科学出版社, 1995:217-230.

    Wang Y, Wei F S.Environmental element chemistry in soil[M].Beijing:China Environmental Science Press, 1995:217-230.

    Reimann C, Birke M, Demetriades A, et al.Chemistry of Europe's agricultural soils-Part A: Methodology and interpretation of the GEMAS data set[R].Hannover, 2014: 389-399.

    Swaine J D.The trace-element content of soil[J].Journal of Geophysical Research Oceans, 1956, 101(12):28615-28625. http://d.old.wanfangdata.com.cn/Periodical/trtb201606020

    魏复盛, 吴燕玉, 郑春江, 等.中国土壤元素背景值[M].北京:中国环境科学出版社, 1990.

    Wei F S, Wu Y Y, Zheng C J, et al.Soil element background in China[M].Beijing:China Environmental Science Press, 1990.

    鄢明才, 迟清华.中国东部地壳与岩石的化学组成[M].北京:科学出版社, 1997.

    Yan M C, Chi Q H.Crustal and rock chemical component in East China[M].Beijing:Science Press, 1997.

    王学求, 刘东盛, 韩志轩, 等.全国地球化学基准网建立与土壤地球化学基准值特征[J].中国地质, 2016, 43(5):1469-1480. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201605001

    Wang X Q, Liu D S, Han Z X, et al.China soil geochemical baselines networks:Data characteristics[J].Geology in China, 2016, 43(5):1469-1480. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201605001

    杨光圻, 王淑贞, 周瑞华, 等.湖北恩施地区原因不明脱发脱甲症病因的研究[J].中国医学科学院学报, 1981(增刊):1-6. http://www.cnki.com.cn/Article/CJFD1981-ZYKX1981S2000.htm

    Yang G Q, Wang S Z, Zhou R H, et al.Study on the cause of unknown alopecia and fingernail loose in Enshi, Hubei[J].Acta Academiae Medicinae Sinicae, 1981(Supplement):1-6. http://www.cnki.com.cn/Article/CJFD1981-ZYKX1981S2000.htm

    徐春燕, 丁晓英, 闫加力.湖北省富硒资源的地质特征及利用区划[J].世界地质, 2018, 37(1):340-347. http://d.old.wanfangdata.com.cn/Periodical/sjdz201801012

    Xu C Y, Ding X Y, Yan J L.Geological characteristics and usage regionalization of Se-enriched resources in Hubei[J].Global Geology, 2018, 37(1):340-347. http://d.old.wanfangdata.com.cn/Periodical/sjdz201801012

    袁知洋, 项剑桥, 吴冬妹, 等.恩施富硒土壤区主要农作物硒镉特征以及和根系土硒镉关系研究[J].资源环境与工程, 2017, 31(6):706-712. http://d.old.wanfangdata.com.cn/Periodical/hbdk201706008

    Yuan Z Y, Xiang J Q, Wu D M, et al.The characteristics of selenium and cadmium in crops and its root soil in the area of Se and Cd-enriched soil in Enshi[J].Resources Environment and Engineering, 2017, 31(6):706-712. http://d.old.wanfangdata.com.cn/Periodical/hbdk201706008

    Fang W X, Wu P W.Elevated selenium and other min-eral element concentrations in soil and plant tissue in bone coal sites in Haoping area, Ziyang County, China[J].Plant and Soil, 2004, 261:135-146.

    黄森.贵州地区富硒土壤地球化学特征及成因探讨[J].云南化工, 2018, 45(7):147-148. http://d.old.wanfangdata.com.cn/Periodical/ynhg201807063

    Huang S.Geochemical characteristics and genesis of Se rich soil in Guizhou area[J].Yunnan Chemical Technology, 2018, 45(7):147-148. http://d.old.wanfangdata.com.cn/Periodical/ynhg201807063

    任海利, 高军波, 龙杰, 等.贵州开阳地区富硒地层及风化土壤地球化学特征[J].地球与环境, 2012, 40(2):161-170. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201202005

    Ren H L, Gao J B, Long J, et al.Geochemical characteristics of selenium-rich strata and weathered soil from Kaiyang County, Guizhou Province[J].Earth and Environment, 2012, 40(2):161-170. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201202005

    罗思亮.台山市土壤Se来源的研究[J].安徽农业科学, 2013, 41(12):5333-5334. http://www.cnki.com.cn/Article/CJFDTotal-AHNY201312058.htm

    Luo S L.Source analysis of selenium in soil in Taishan City[J].Journal of Anhui Agricultural Science, 2013, 41(12):5333-5334. http://www.cnki.com.cn/Article/CJFDTotal-AHNY201312058.htm

    宋明义, 李恒溪, 魏迎春, 等.浙江省龙游志棠地区硒的地球化学研究[J].贵州地质, 2005, 22(3):176-180. http://d.old.wanfangdata.com.cn/Periodical/gzdz200503006

    Song M Y, Li H X, Wei Y C, et al.Geochemistry of the selenium, Zhitang Town, Longyou County, Zhejiang Province[J].Guizhou Geology, 2005, 22(3):176-180. http://d.old.wanfangdata.com.cn/Periodical/gzdz200503006

    吴俊.福建省寿宁县富硒土壤地球化学特征[J].物探与化探, 2018, 42(2):386-391. http://d.old.wanfangdata.com.cn/Periodical/wtyht201802024

    Wu J.Geochemical characteristics of selenium-rich soil in Shouning County of Fujian Province[J].Geophysical and Geochemical Exploration, 2018, 42(2):386-391. http://d.old.wanfangdata.com.cn/Periodical/wtyht201802024

    杨生吉.福建周宁县表层土壤硒含量分布及影响因素[J].资源环境与工程, 2019, 33(1):42-45. http://d.old.wanfangdata.com.cn/Periodical/hbdk201901008

    Yang S J.Distribution of soil selenium in Zhouning County of Fujian and its influencing factors[J].Resources Environment and Engineering, 2019, 33(1):42-45. http://d.old.wanfangdata.com.cn/Periodical/hbdk201901008

    李兆谊, 罗映林, 赵喜林, 等.桂东南地区兴业县富Se土壤地球化学特征及来源浅析[J].南方农业, 2018, 12(20):189-191. http://d.old.wanfangdata.com.cn/Periodical/nfny201820097

    Li Z Y, Luo Y L, Zhao X L, et al.Selenium-rich geochemical characteristics and source discussion in south-east Guangxi, Xingyue County[J].South China Agriculture, 2018, 12(20):189-191. http://d.old.wanfangdata.com.cn/Periodical/nfny201820097

    黄子龙, 林清梅, 范汝海.广西全州县富硒土壤地球化学特征[J].物探与化探, 2018, 42(2):381-385. http://d.old.wanfangdata.com.cn/Periodical/wtyht201802023

    Huang Z L, Lin Q M, Fan R H.Geochemical characteristics of selenium-rich soil in Quanzhou County of Guangxi[J].Geophysical and Geochemical Exploration, 2018, 42(2):381-385. http://d.old.wanfangdata.com.cn/Periodical/wtyht201802023

    Tabelin C B, Igarashi T, Villacorte-Tabelin M, et al.Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks:A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies[J].Science of the Total Environment, 2018, 645:1522-1553. https://www.sciencedirect.com/science/article/pii/S0048969718325476

    Xu Y F, Li Y H, Li H R, et al.Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction):A case study in Yongjia County, China[J].Science of the Total Environment, 2018, 633:240-248. https://www.sciencedirect.com/science/article/pii/S0048969718309495

    Mervi S, Juhani V, Stellan H, et al.Sorption and speci-ation of selenium in boreal forest soil[J].Journal of Environmental Radioactivity, 2016, 64:220-231. https://www.ncbi.nlm.nih.gov/pubmed/27521902

    陈秋菊, 甘义群, 张若雯.江汉平原沙洋地区表层土壤中硒的分布特征及富硒原因分析[J].安全与环境工程, 2019, 26(4):8-14. http://d.old.wanfangdata.com.cn/Periodical/dzktaq201904003

    Chen Q J, Gan Y Q, Zhang R W.Distribution characteristics of selenium in surface soil of Shayang area in Jianghan Plain and the cause analysis of selenium richness[J].Safety and Environmental Engineering, 2019, 26(4):8-14. http://d.old.wanfangdata.com.cn/Periodical/dzktaq201904003

    Matos R P, Lima V M P, Windmöller C C, et al.Correlation between the natural levels of selenium and soil physicochemical characteristics from the Jequitinhonha Valley (MG), Brazil[J].Journal of Geochemical Exploration, 2017, 172:195-202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=21a5a4ae012b866562d2815ff15313ab

    杨志强, 李杰, 郑国东, 等.广西北部湾沿海经济区富硒土壤地球化学特征[J].物探与化探, 2014, 38(6):1260-1264, 1269. http://d.old.wanfangdata.com.cn/Periodical/wtyht201406030

    Yang Z Q, Li J, Zheng G D, et al.Geochemical characteristics of selenium-rich soil in Beibu Gulf coastal economic zone of Guangxi[J].Geophysical and Geochemical Exploration, 2014, 38(6):1260-1264, 1269. http://d.old.wanfangdata.com.cn/Periodical/wtyht201406030

    韩笑, 周越, 吴文良, 等.富硒土壤硒含量及其与土壤理化性状的关系——以江西丰城为例[J].农业环境科学学报, 2018, 37(6):1177-1183. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201806018

    Han X, Zhou Y, Wu W L, et al.Selenium contents of farmland soils and their relationship with main soil properties in Fengcheng, Jiangxi[J].Journal of Agro-Environment Science, 2018, 37(6):1177-1183. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201806018

    周国华, 孙彬彬, 方金梅.福建龙海生态地球化学研究[M].北京:地质出版社, 2018:169.

    Zhou G H, Sun B B, Fang J M.Eco-geochemistry research in Longhai, Fujian Province[M].Beijing:Geological Publishing House, 2018:169.

    曹容浩.福建省龙海市表层土壤硒含量及影响因素研究[J].岩矿测试, 2017, 36(3):282-288. doi: 10.15898/j.cnki.11-2131/td.201606130084

    Cao R H.Study on selenium content of surface soils in Longhai, Fujian and its influencing factors[J].Rock and Mineral Analysis, 2017, 36(3):282-288. doi: 10.15898/j.cnki.11-2131/td.201606130084

    方金梅.福州市土壤硒形态分析及其迁移富集规律[J].岩矿测试, 2008, 27(2):103-107. http://www.ykcs.ac.cn/article/id/ykcs_20080238

    Fang J M.Selenium speciation analysis and its transformation and enrichment in soils of Fuzhou City[J].Rock and Mineral Analysis, 2008, 27(2):103-107. http://www.ykcs.ac.cn/article/id/ykcs_20080238

    Li Z, Liang D L, Peng Q, et al.Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability:A review[J].Geoderma, 2017, 295:69-79. https://www.sciencedirect.com/science/article/abs/pii/S0016706116305018

    Cheng H X, Li M, Zhao C D, et al.Overview of trace metals in the urban soil of 31 metropolises in China[J].Journal of Geochemical Exploration, 2014, 139:31-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ec857151ed5b7b54c611ee72486c68a

    张秀芝, 马忠社, 王荫楠, 等.河北平原土壤Se异常成因及其生态效应[J].地球与环境, 2012, 40(4):541-547. http://www.cnki.com.cn/Article/CJFDTotal-DZDQ201204013.htm

    Zhang X Z, Ma Z S, Wang Y N, et al.The origin and ecological effects of selenium abnormity in soil in Hebei Plain[J].Earth and Environment, 2012, 40(4):541-547. http://www.cnki.com.cn/Article/CJFDTotal-DZDQ201204013.htm

    谢薇, 杨耀栋, 侯佳渝, 等.天津市蓟州区富硒土壤成因与土壤硒来源研究[J].物探与化探, 2019, 43(6):1373-1381. http://d.old.wanfangdata.com.cn/Periodical/wtyht201906026

    Xie W, Yang Y D, Hou J Y, et al.Studies on causes and influential factors of selenium-enriched soils in Jizhou District of Tianjin[J].Geophysical and Geochemical Exploration, 2019, 43(6):1373-1381. http://d.old.wanfangdata.com.cn/Periodical/wtyht201906026

    Shaheen S M, Kwon E E, Biswas J K, et al.Arsenic, chromium, molybdenum, and selenium:Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt[J].Chemosphere, 2017, 180:553-563. https://www.sciencedirect.com/science/article/abs/pii/S0045653517305908

    Tolu J, Tullo P D, Hécho I L, et al.A new methodology involving stable isotope tracer to compare simultaneously short- and long-term selenium mobility in soils[J].Analytical and Bioanalytical Chemistry, 2014, 406:1221-1231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=edc68c25eb7148dee69c569aa0790c5b

    Di T P, Pannier F, Thiry Y, et al.Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer[J].Science of the Total Environment, 2016, 562:280-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8bc23d3cb009f492bb988bf38b4523e1

    Li J, Peng Q, Liang D L, et al.Effects of aging on the fraction distribution and bioavailability of selenium in three different soils[J].Chemosphere, 2016, 144:2351-2359. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9367c2f16a801e8f9d250b836a3d20a0

    Almahayni T, Bailey E, Crout N M J, et al.Effects of incubation time and filtration method on Kd of indigenous selenium and iodine in temperate soils[J].Journal of Environmental Radioactivity, 2017, 177:84-90.

    Jia M M, Zhang Y X, Huang B, et al.Source appor-tionment of selenium and influence factors on its bioavailability in intensively managed greenhouse soil:A case study in the east bank of the Dianchi Lake, China[J].Ecotoxicology and Environmental Safety, 2019, 170:238-245.

    Statwick J, Sher A A.Selenium in soils of western Colorado[J].Journal of Arid Environments, 2017, 137:1-6. https://www.sciencedirect.com/science/article/abs/pii/S0140196316301811

    郝应龙, 李崇博, 安永刚, 等.乌鲁木齐市某蔬菜基地富硒土壤地球化学特征及生物效应研究[J].新疆地质, 2019, 37(2):167-171. http://d.old.wanfangdata.com.cn/Periodical/xjdz201902004

    Hao Y L, Li C B, An Y G, et al.Study on geochemical characteristics and bio-effects of selenium-rich soil in a vegetable base in Urumqi, Xinjiang[J].Xinjiang Geology, 2019, 37(2):167-171. http://d.old.wanfangdata.com.cn/Periodical/xjdz201902004

    Joy E J M, Broadley M R, Young S D, et al.Soil type influences crop mineral composition in Malawi[J].Science of the Total Environment, 2015, 505:587-595. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bb7a1cd293c0e4300bbb6012115fd08a

    Silva J E C, Wadt L H O, Silva K E, et al.Natural variation of selenium in Brazil nuts and soils from the Amazon Region[J].Chemosphere, 2017, 188:650-658. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c5cd845ab18fd63c22402f3fd7979115

    尹宗义, 任蕊, 晁旭, 等.三原-阎良地区富硒土壤中硒形态特征研究[J].陕西地质, 2016, 34(1):31-37. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=ZXQX201602230

    Yin Z Y, Ren R, Chao X, et al.Selenium speciation in selenium-rich soil of Sanyuan-Yanliang Area[J].Geology of Shaanxi, 2016, 34(1):31-37. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=ZXQX201602230

    杨奎, 李湘凌, 张敬雅, 等.安徽庐江潜在富硒土壤硒生物有效性及其影响因素[J].环境科学研究, 2018, 31(4):715-724. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201804014

    Yang K, Li X L, Zhang J Y, et al.Selenium bioavailability and the influential factors in potentially selenium enriched soils in Lujiang County, Anhui Province[J].Research of Environmental Sciences, 2018, 31(4):715-724. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201804014

    Supriatin S, Weng L P, Comans R N J.Selenium speciation and extractability in Dutch agricultural soils[J].Science of the Total Environment, 2015, 532:368-382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2cc428ada54a92cff6da00c8c64cd5f3

    Fordyce F M, Brereton N, Hughes J, et al.An initial study to assess the use of geological parent materials to predict the Se concentration in overlying soils and in five staple foodstuffs produced on them in Scotland[J].Science of the Total Environment, 2010, 408(22):5295-5305. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1b4c41d3811354b30356583d4f324872

    Supriatin S, Weng L P, Comans R N J.Selenium-rich dissolved organic matter determines selenium uptake in wheat grown on low-selenium arable land soils[J].Plant Soil, 2016, 408:73-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef6fb5905782569263b15a3986e70874

    Chistophersen O A, Lyons G, Haug A, et al.Selenium[M]//Alloway B J.Heavy metals in soils: Tarce metals and metalloids in soils and their bioavailability.Springer Science, 2013: 429-463.

    Dinh Q T, Li Z, Tran T A T, et al.Role of organic acids on the bioavailability of selenium in soil:A review[J].Chemosphere, 2017, 184:618-635. https://www.ncbi.nlm.nih.gov/pubmed/28624740

    Chang C Y, Yin R S, Wang X, et al.Selenium translocation in the soil-rice system in the Enshi seleniferous area, central China[J].Science of the Total Environment, 2019, 669:83-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=790ae9d421d2cb0c71ae69033e30ac91

    Xiao K C, Tang J J, Chen H, et al.Impact of land use/land cover change on the topsoil selenium concentration and its potential bioavailability in a karst area of southwest China[J].Science of the Total Environment, 2020, 708:1-8. https://www.sciencedirect.com/science/article/pii/S0048969719351939

    Wang D, Dinh Q T, Thu T T A, et al.Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil[J].Chemosphere, 2018, 199:417-426. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=61990379ebd79879307b56e3f583720f

    Supriatin S, Terrones C A, Bussink W, et al.Drying effects on selenium and copper in 0.01M calcium chloride soil extractions[J].Geoderma, 2015, 255-256:104-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fc6c5edf02608cb7ad163004b68bf11f

    Lessa J H L, Araujo A M, Silva G N T, et al.Adsorption-desorption reactions of selenium(Ⅵ) in tropical cultivated and uncultivated soils under Cerrado biome[J].Chemosphere, 2016, 164:271-277.

    姜超强, 沈嘉, 祖朝龙.水稻对天然富硒土壤硒的吸收及转运[J].应用生态学报, 2015, 26(3):809-816. http://d.old.wanfangdata.com.cn/Periodical/yystxb201503022

    Jiang C Q, Shen J, Zu C L.Selenium uptake and transport of rice under different Se-enriched natural soils[J].Chinese Journal of Applied Ecology, 2015, 26(3):809-816. http://d.old.wanfangdata.com.cn/Periodical/yystxb201503022

    李瑜.安康富硒土壤中不同农作物富硒能力比较研究[J].陕西农业科学, 2015, 61(11):13-14. http://d.old.wanfangdata.com.cn/Periodical/sxnykx201511003

    Li Y.Comparison on Se uptake ability of different crops in Se-rich soil at Ankong[J].Shaanxi Journal of Agricultural Sciences, 2015, 61(11):13-14. http://d.old.wanfangdata.com.cn/Periodical/sxnykx201511003

    李正文, 张艳玲, 潘根兴, 等.不同水稻品种籽粒Cd、Cu和Se的含量差异及其人类膳食摄取风险[J].环境科学, 2003, 24(3):112-115. http://d.old.wanfangdata.com.cn/Periodical/hjkx200303022

    Li Z W, Zhang Y L, Pan G X, et al.Grain contents of Cd, Cu and Se by 57 rice cultivars and the risk significance for human dietary uptake[J].Environmental Science, 2003, 24(3):112-115. http://d.old.wanfangdata.com.cn/Periodical/hjkx200303022

    王家伟, 陈雄波, 黄起东, 等.不同水稻品种对硒的吸收转化试验[J].农业工程, 2016, 6(4):82-84. http://d.old.wanfangdata.com.cn/Periodical/nygch201604027

    Wang J W, Chen X B, Huang Q D, et al.Test on absorption and transformation of selenium in different rice varieties[J].Agricultural Engineering, 2016, 6(4):82-84. http://d.old.wanfangdata.com.cn/Periodical/nygch201604027

    Natasha, Shahid M, Niazi N K, et al.A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health[J].Environmental Pollution, 2018, 234:915-934. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5debd9cfc7370ab143540aafe16e32da

    姜超强, 沈嘉, 徐经年, 等.不同富硒土壤对烤烟生长及硒吸收转运的影响[J].西北植物学报, 2014, 34(11):2303-2308. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201411021

    Jiang C Q, Shen J, Xu J N, et al.Effects of Se-enriched soils on the plant growth, selenium uptake and transport in flue-cured tobacco[J].Acta Botany Boreal-Occident Sinica, 2014, 34(11):2303-2308. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201411021

    王雅玲, 潘根兴, 刘洪莲, 等.皖南茶区土壤硒含量及其与茶叶中硒的关系[J].农业生态环境, 2005, 21(2):54-57. http://d.old.wanfangdata.com.cn/Periodical/ncsthj200502012

    Wang Y L, Pan G X, Liu H L, et al.Soil and tea selenium in tea gardens in south Anhui[J].Rural Eco-Environment, 2005, 21(2):54-57. http://d.old.wanfangdata.com.cn/Periodical/ncsthj200502012

    Miguel N A, Carmen C V.Selenium in food and the human body:A review[J].Science of the Total Environment, 2008, 400:115-141. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_684a79b215da568e22abd01c52158e7b

    Yin H Q, Qi Z Y, Li M Q, et al.Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L.[J].Ecotoxicology and Environmental Safety, 2019, 169:911-917. https://www.ncbi.nlm.nih.gov/pubmed/30597791

    Shultz C D, Bailey R T, Gates T K, et al.Simulating selenium and nitrogen fate and transport in coupled stream-aquifer systems of irrigated regions[J].Journal of Hydrology, 2018, 560:512-529. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=021279d571e489abde1e015aeeb24aba

    de Feudis M, D'Amato R, Businelli D, et al.Fate of selenium in soil:A case study in a maize (Zea mays L.) field under two irrigation regimes and fertilized with sodium selenite[J].Science of the Total Environment, 2019, 659:131-139.

    Hussein H A A, Darwesh O M, Mekki B B, et al.Evaluation of cytotoxicity, biochemical profile and yield components of groundnut plants treated with nano-selenium[J].Biotechnology Reports, 2019, 24. https://doi.org/10.1016/j.btre.2019.e00377.

    Ullah H, Liu G J, Yousaf B, et al.Developmental sele-nium exposure and health risk in daily foodstuffs:A systematic review and meta-analysis[J].Ecotoxicology and Environmental Safety, 2018, 149:291-306. https://www.sciencedirect.com/science/article/pii/S0147651317308096

    郑小江, 胡蔚红, 孙必发, 等.富硒食品标准标签研究[J].中国标准化, 2003(5):19-21. http://d.old.wanfangdata.com.cn/Periodical/zgbzh200305009

    Zheng X J, Hu W H, Sun B F, et al.Study on the standard and label of selenium-rich food[J].Standardization in China, 2003(5):19-21. http://d.old.wanfangdata.com.cn/Periodical/zgbzh200305009

    辜世伟, 胡云均, 刘方菁, 等.不同加工精度对稻谷中镉含量的影响[J].中国粮油学报, 2019(8):33-39. http://d.old.wanfangdata.com.cn/Periodical/zglyxb201908003

    Gu S W, Hu Y J, Liu F J, et al.Effect of different processing precision on cadmium content in paddy rice[J].Journal of the Chinese Cereals and Oil Association, 2019(8):33-39. http://d.old.wanfangdata.com.cn/Periodical/zglyxb201908003

    World Health Organization.Environmental health criterion 58-Selenium[R].Geneva: World Health Organization, 1987.

    Liang R Y, Shuai S A, Shi Y J, et al.Comprehensive assessment of regional selenium resources in soils based on the analytic hierarchy process:Assessment system construction and case demonstration[J].Science of the Total Environment, 2017, 605-606:618-625. https://www.sciencedirect.com/science/article/pii/S0048969717315693

    Zhou X B, Li Y Y, Lai F.Effects of different water management on absorption and accumulation of selenium in rice[J].Saudi Journal of Biological Sciences, 2018, 25:1178-1182. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201801051

    Wang D, Xue M Y, Wang Y K, et al.Effects of straw amendment on selenium aging in soils:Mechanism and influential factors[J].Science of the Total Environment, 2019, 657:871-881. https://www.sciencedirect.com/science/article/pii/S0048969718348617

    宋明义, 黄春雷, 董岩翔, 等.浙江富硒土壤成因分类及开发利用现状[J].上海地质, 2010, 31(增刊1):107-110. http://d.old.wanfangdata.com.cn/Periodical/shdz2010z1028

    Song M Y, Huang C L, Dong Y X, et al.Genetic classification and utilization situation of selenium-rich soil in Zhejiang Province[J].Shanghai Geology, 2010, 31(Supplement 1):107-110. http://d.old.wanfangdata.com.cn/Periodical/shdz2010z1028

    谢邦廷, 贺灵, 江官军, 等.中国南方典型富硒区土壤硒有效性调控实验[J].岩矿测试, 2017, 36(3):273-281. doi: 10.15898/j.cnki.11-2131/td.201610100152

    Xie B T, He L, Jiang G J, et al.Regulation and evaluation of selenium availability in Se-rich soils in southern China[J].Rock and Mineral Analysis, 2017, 36(3):273-281. doi: 10.15898/j.cnki.11-2131/td.201610100152

    Shahid M A, Balal R M, Khan N, et al.Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism[J].Ecotoxicology and Environmental Safety, 2019, 180:588-599. https://www.sciencedirect.com/science/article/pii/S0147651319305780

    Ren M M, Qin Z J, Li X, et al.Selenite antagonizes the phytotoxicity of Cd in the cattail Typha angustifolia[J].Ecotoxicology and Environmental Safety, doi.org/10.1016/j.ecoenv.2019.109959.

    Dai H P, Wei S H, Skuza L D, et al.Selenium spiked in soil promoted zinc accumulation of Chinese cabbage and improved its antioxidant system and lipid peroxidation[J].Ecotoxicology and Environmental Safety, 2019, 180:179-184. https://www.sciencedirect.com/science/article/abs/pii/S0147651319305469

    Anirban B, Saroni B, Arabinda D, et al.Spatial vari-ability and competing dynamics of arsenic, selenium, iron and bioavailable phosphate from ground water and soil to paddy plant parts[J].Groundwater for Sustainable Development, 2018, 7:328-335.

    王建伟, 王朝辉, 毛晖, 等.硒锌钼对黄土高原马铃薯和小白菜产量及营养元素与硒镉含量的影响[J].农业环境科学学报, 2012, 31(11):2114-2120. http://www.cnki.com.cn/Article/CJFDTotal-NHBH201211010.htm

    Wang J W, Wang Z H, Mao H, et al.Effect of Se, Zn and Mo on yield and contents of nutrient elements and selenium and cadmium of potato and cabbage on the loess plateau[J].Journal of Agro-Environment Science, 2012, 31(11):2114-2120. http://www.cnki.com.cn/Article/CJFDTotal-NHBH201211010.htm

    梁程, 林匡飞, 张雯, 等.不同浓度硫处理下硒镉交互胁迫对水稻幼苗的生理特性影响[J].农业环境科学学报, 2012, 31(5):857-866. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201205002

    Liang C, Lin K F, Zhang W, et al.Effects of sulfur and selenium treatment on plant growth and some physiological characteristics of rice under cadmium stress[J].Journal of Agro-Environment Science, 2012, 31(5):857-866. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201205002

    铁梅, 刘阳, 李华为, 等.硒镉处理对萝卜硒镉吸收的影响及其交互作用[J].生态学杂志, 2014, 33(6):1587-1593. http://d.old.wanfangdata.com.cn/Periodical/stxzz201406024

    Tie M, Liu Y, Li H W, et al.Uptake of Se and Cd in radish and their effects on growth[J].Chinese Journal of Ecology, 2014, 33(6):1587-1593. http://d.old.wanfangdata.com.cn/Periodical/stxzz201406024

    Zhang Z Z, Yuan L X, Qi S H, et al.The threshold effect between the soil bioavailable molar Se:Cd ratio and the accumulation of Cd in corn (Zeamays L.) from natural Se-Cd rich soils[J].Science of the Total Environment, 2019, 688:1228-1235.

    Feng R W, Wei C Y, Tu S X, et al.A dual role of Se on Cd toxicity:Evidences from the uptake of Cd and some essential elements and the growth responses in paddy rice[J].Biology Trace Element Resource, 2013, 151:113-121.

    Li Y Y, Hu W J, Zhao J T, et al.Selenium decreases methylmercury and increases nutritional elements in rice growing in mercury-contaminated farmland[J].Ecotoxicology and Environmental Safety, 2019, 182:109447.doi.org/10.1016/j.ecoenv.2019.109447. https://www.sciencedirect.com/science/article/pii/S014765131930778X

    Wang X N, Wang S, Pan X L, et al.Heteroaggregation of soil particulate organic matter and biogenic selenium nanoparticles for remediation of elemental mercury contamination[J].Chemosphere, 2019, 221:486-492. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=311e52f042111dc60dd157c64f0266c6

    Wang X N, Pan X L, Gadd G M.Soil dissolved organic matter affects mercury immobilization by biogenic selenium nanoparticles[J].Science of the Total Environment, 2019, 658:8-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0757818a40173b24f1b33eebc9b62dac

    Wang X N, Zhang D Y, Pan X L, et al.Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil[J].Chemosphere, 2017, 170:266-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f87b2db845a755593dc815810444bcea

    Yu Y, Yuan S L, Zhuang J, et al.Effect of selenium on the uptake kinetics and accumulation of and oxidative stress induced by cadmium in Brassica Chinensis[J].Ecotoxicology and Environmental Safety, 2018, 162:571-580. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9ec53ed23293a8713d508350e7c26bf0

    薛超群, 郭敏.氢化物发生-原子荧光光谱法测定土壤样品中不同价态的硒[J].岩矿测试, 2012, 31(6):980-984. http://www.ykcs.ac.cn/article/id/ykcs_20120613

    Xue C Q, Guo M.Analysis of different valence states of selenium in geological samples by hydride generation-atomic fluorescence spectrometry[J].Rock and Mineral Analysis, 2012, 31(6):980-984. http://www.ykcs.ac.cn/article/id/ykcs_20120613

    秦冲, 施畅, 万秋月, 等.高效液相色谱-电感耦合等离子体质谱联用检测土壤中的无机硒形态[J].岩矿测试, 2018, 37(6):664-670. doi: 10.15898/j.cnki.11-2131/td.201803200024

    Qin C, Shi C, Wan Q Y, et al.Speciation analysis of inorganic selenium in soil by high performance liquid chromatography-inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2018, 37(6):664-670. doi: 10.15898/j.cnki.11-2131/td.201803200024

    Wang M K, Cui Z W, Xue M Y, et al.Assessing the uptake of selenium from naturally enriched soils by maize (Zeamays L.) using diffusive gradients in thin-films technique (DGT) and traditional extractions[J].Science of the Total Environment, 2019, 689:1-9.

    Vinceti M, Filippini T, Malagoli C, et al.Amyotrophic lateral sclerosis incidence following exposure to inorganic selenium in drinking water:A long-term follow-up[J].Environmental Research, 2019, 179:108742. doi.org/10.1016/j.envres.2019.108742. https://www.ncbi.nlm.nih.gov/pubmed/31629180

    龚如雨, 钟松臻, 张宝军, 等.富硒非富硒大米有机硒的组成及硒的可利用度分析[J].食品研究与开发, 2017, 38(20):11-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spyjykf201720003

    Gong R Y, Zhong S Z, Zhang B J, et al.Composition of the organic selenium (Se) and the accessible Se in Se-enriched and non Se-enriched rice[J].Food Research and Development, 2017, 38(20):11-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spyjykf201720003

    Lusa M, Help H, Honkanen A P, et al.The reduction of selenium(Ⅵ) by boreal Pseudomonas sp.strain T5-6-Ⅰ-Effects on selenium(Ⅳ) uptake in Brassica Oleracea[J].Environmental Research, 2019, 177:108642. doi.org/10.1016/j.envres.2019.108642.

    Both E B, Stonehouse G C, Lima L W, et al.Selenium tolerance, accumulation, localization and speciation in a cardamine hyperaccumulator and a non-hyperaccumulator[J].Science of the Total Environment, doi.org/10.1016/j.scitotenv.2019.135041.

    Qin H B, Zhu J M, Lin Z Q, et al.Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy[J].Environmental Pollution, 2017, 225:361-369. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ef417f598f4f30687b6adceb6285715

    Alexander P, Miriam S, Susanne V A, et al.Charac-terization of selenium speciation in selenium-enriched button mushrooms (Agaricus bisporus) and selenized yeasts (dietary supplement) using X-ray absorption near-edge structure (XANES) spectroscopy[J].Journal of Trace Elements in Medicine and Biology, 2019, 51:164-168.

  • 期刊类型引用(11)

    1. 夏涵,李霞,罗丽卉,王棚,游蕊. 王水提取ICP-OES法测定土壤全硫含量的不确定度评定. 四川农业科技. 2025(02): 47-51 . 百度学术
    2. 卢志琴,姚洵,顾佳旺. 红外吸收光谱法测定复合肥中总硫含量. 磷肥与复肥. 2024(02): 38-40 . 百度学术
    3. 王勇,李子敬,刘林,李国伟. 攀西地区钒钛磁铁矿中硫含量测定方法优化. 岩矿测试. 2024(03): 524-532 . 本站查看
    4. 张世涛,许刚,宋帅娣,徐晓欣,王俊龙. 燃烧-碘酸钾吸收-ICP-OES测定地质样品中的微量硫. 化学与粘合. 2024(04): 420-423 . 百度学术
    5. 王斌,毛静,张勇,巩琪. 电感耦合等离子体光谱法测定土壤中的全硫. 中国土壤与肥料. 2024(05): 227-231 . 百度学术
    6. 张玲玲. 三种分析方法测定锡铜矿石中硫的对比. 化工设计通讯. 2024(09): 12-14 . 百度学术
    7. 蒲景阳,李根生,宋先知,罗嗣慧,王斌. 温控型过硫酸铵纳米胶囊的构筑及对滑溜水残留堵塞物的降解性能. 油田化学. 2024(04): 602-609 . 百度学术
    8. 茅昌平,杜苏明,贾志敏,于刚,王耀,饶文波. 快速连续提取沉积物中还原性无机硫的实验方法与应用. 岩矿测试. 2023(03): 576-586 . 本站查看
    9. 王莹. 电感耦合等离子体发射光谱法测定生态地质样品中的有效硅. 现代盐化工. 2023(03): 27-29 . 百度学术
    10. 聂高升,石友昌,阿米娜·胡吉,孙阳阳,贠庥宇,陈林. 高频红外碳硫仪测定区域地球化学样品中的硫. 中国无机分析化学. 2023(11): 1215-1220 . 百度学术
    11. 何雨珊. 利用高频碳硫分析仪测定合金钢中的硫. 化学分析计量. 2023(11): 53-56 . 百度学术

    其他类型引用(1)

图(3)
计量
  • 文章访问数:  3572
  • HTML全文浏览量:  970
  • PDF下载量:  149
  • 被引次数: 12
出版历程
  • 收稿日期:  2019-11-13
  • 修回日期:  2020-01-07
  • 录用日期:  2020-04-15
  • 发布日期:  2020-04-30

目录

/

返回文章
返回