Progress of Analytical Techniques for Stable Iron Isotopes
-
摘要: 铁是地球上丰度最高的变价元素,在自然界大量分布于各类矿物、岩石、流体和生物体中,并广泛参与成岩作用、成矿作用、热液活动和生命活动过程。铁同位素组成对地球化学、天体化学和生物化学方面提供重要的信息,是同位素地球化学研究领域的热点。铁同位素的精确测量是开展相关研究的重要基础。本文评述了铁同位素测试技术的研究进展,主要包括:①溶液法测试铁同位素样品纯化过程中阴离子树脂的改进;②质谱分析从传统的热电离质谱法发展为多接收电感耦合等离子体质谱法;③激光微区原位测试技术的研发等。在此基础上,对测试过程中会导致产生铁同位素分馏的步骤和校正方法进行了总结,并对各种测试方法的优缺点进行了评述。本文认为:溶液法分析流程长且复杂,但分析精度高(0.03‰,2SD)、方法稳定;微区原位分析方法从纳秒激光剥蚀发展为飞秒激光剥蚀,脉冲持续时间更短、脉冲峰值强度更高(可达1012W),聚焦强度超过1020W/cm2,使其具有分析速度快、空间分辨率高的优势。微区原位法可以从微观角度去讨论铁同位素变化的地球化学过程,但基体效应的存在限制了微区原位铁同位素的广泛应用。因此,缩短溶液法分析流程,开发系列基体匹配的标准样品,是铁同位素分析方法研发的方向。要点
(1) 总结了铁同位素测试技术的研究进展。
(2) 归纳了测试过程产生同位素分馏的机制和校正方法。
(3) 对比了溶液法和微区原位铁同位素测试方法的优缺点。
HIGHLIGHTS(1) Recent advances in Fe isotope analyses were reviewed.
(2) The mechanism and correction method of isotopic fractionation during mass spectrometry analysis were summarized.
(3) The advantages and disadvantages of solution and in situ methods for Fe isotope analyses were compared.
Abstract:BACKGROUNDIron is the most abundant element on earth with variable valences. It is widely distributed in various minerals, rocks, fluids and organisms, and is involved in diagenesis, mineralization, hydrothermal activities and life activities. The study of iron isotope composition provides important information for geochemistry, astrochemistry and biochemistry. The accurate measurement of Fe isotopes is an important basis for the development of related research.OBJECTIVESTo summarize the research progress of Fe isotope measurement technology.METHODSThe current chemical separation and purification methods and main instrumental analysis techniques commonly used for iron isotopes, were compared and analyzed in this review, and the mechanism of different types of fractionations during mass spectrometry were discussed. These advances included:(1) Improvement of anion resin during determination of iron isotope by solution method; (2) Mass spectrometry development from traditional thermal ionization mass spectrometry to multi-collector inductively coupled plasma mass spectrometry; (3) Development of laser in situ analytical technology. On this basis, the steps and calibration methods that would cause iron isotope fractionation during the analysis were summarized, and the advantages and disadvantages of different analytical methods were reviewed.RESULTSThe analysis process of solution method was long and complicated, but the precision was high (0.03‰, 2SD) and the method was stable. In situ iron isotope analysis method developed from nanosecond laser denudation to femtosecond laser denudation, with shorter pulse duration, higher pulse peak intensity (up to 1012W), and focusing intensity exceeding 1020W/cm2. In situ iron isotope analysis method was fast and had high spatial resolution, which can be used to discuss the geochemical process from the microscopic perspective. However, the presence of matrix effects limited the widespread use of iron isotopes.CONCLUSIONSShortening solution analysis process and developing a series of matrix-matched standard samples are the research direction of iron isotope analysis.-
Keywords:
- iron isotope /
- chemical separation /
- solution method /
- mass spectrometry /
- laser ablation /
- matrix effect
-
电气石是一类化学成分、晶体结构复杂的,以含硼为特征的铝、钠、铁、锂环状结构的硅酸盐矿物的总称,主要有镁电气石、黑电气石和锂电气石等三种端员矿种。电气石具有热电性、压电性、表面活性和吸附性等性质,作为一种新型工业矿物广泛应用于环境保护、电子电器、化工建材等领域[1]。此外,电气石矿物能记录其形成时岩石与矿床的化学组成与结构特征,对成岩成矿过程的研究具有重要的示踪意义,可用来指导重要经济矿床的勘探工作[2-3]。因此,快速、准确地测定电气石的化学组成对其质量评价、资源利用、矿床勘探等方面的研究具有重要意义。
与一般硅酸盐矿物相比,电气石的化学性质稳定,不易分解,B2O3含量一般在10%以上,这使其主次量成分的测定有一定困难。例如,采用动物胶凝聚重量法测定电气石中SiO2时,在硅酸凝聚过程中硼被硅酸吸附,与SiO2同时产生沉淀,使测定结果偏高,因此需要反复多次用甲醇以硼甲基醚的形式蒸发除去硼[4]。采用中子活化分析法(INAA)测定电气石中的主次量元素时[5-7],由于10B的中子俘获截面积大,会降低待测元素的放射性活度,需要采用挥发除硼[5]或绘制干扰曲线[6]等方法消除或减弱硼的干扰,实验操作繁琐,且仪器设备昂贵,需要特殊的辐射防护措施,限制了其推广应用。采用电感耦合等离子体发射光谱法(ICP-OES)测定时,由于电气石化学性质稳定,敞开酸溶法难以完全分解样品,需要用高压密闭酸溶法[8]或碳酸钠-氧化锌熔融法[9]等进行样品分解。高压密闭酸溶法耗时很长,由于使用氢氟酸,一般不能准确测定样品中的SiO2;碱熔法的试液盐分高,测定时易堵塞雾化器,空白值较高。由于硼属于超轻元素,X射线荧光产额很低,荧光强度弱,如果使用X射线荧光光谱法(XRF)可以有效避免硼的干扰,也能克服样品不易湿法分解的问题。但也存在一些不足,如Tamer等[10]、Gullu等[11]采用XRF法测定电气石中SiO2、Al2O3、Fe2O3、MgO等主次微量元素,由于采用粉末压片法制样,在缺乏电气石标准物质的情况下,难以消除粒度效应和矿物效应,对测定结果的精密度和准确度会造成一定影响。
本文采用熔融玻璃片法制备电气石样品,对熔剂和稀释比的选择进行了考察,选择适当氧化剂及脱模剂制备玻璃熔片,消除了粒度效应和矿物效应,在缺少电气石标准物质的情况下,选择常用的土壤、水系沉积物及多种类型的岩石等标准物质建立校准曲线,扩大校准曲线的线性范围,建立了熔融制样-XRF法同时测定电气石中Na2O、MgO、Al2O3、SiO2、P2O5、K2O、CaO、TiO2、V2O5、Cr2O3、MnO、TFe2O3等主次量元素的分析方法。
1. 实验部分
1.1 仪器和工作条件
ZSX PrimusⅡ型X射线荧光光谱仪(日本理学公司),功率4 kW,端窗铑靶X光管,最大工作电压60 kV,最大工作电流130 mA,真空光路(真空度小于10 Pa),视野光栏Φ30 mm。分析元素的测量条件见表 1。Lifumat-2.0-Ox型高频熔样机(德国利恒热工有限公司)。
表 1 XRF仪器分析条件Table 1. Working conditions of the XRF instrument元素 分析线 分析晶体 准直器 探测器 电压(kV) 电流(mA) 2θ (°) 背景(°) PHA LL UL Na Kα RX25 S4 PC 55 60 47.492 48.900 100 350 Mg Kα RX25 S4 PC 55 60 39.060 40.500 100 350 Al Kα PET S4 PC 55 60 144.730 147.000 100 330 Si Kα PET S4 PC 55 60 109.042 111.000 100 320 P Kα Ge S4 PC 55 60 141.042 143.300 80 300 K Kα LiF1 S4 PC 55 60 136.588 139.500 100 300 Ca Kα LiF1 S4 PC 55 60 113.062 115.000 100 300 Ti Kα LiF1 S4 PC 55 60 86.106 88.500 100 320 V Kα LiF1 S4 PC 55 60 77.002 74.000 100 320 Cr Kα LiF1 S4 PC 55 60 69.306 74.000 130 320 Mn Kα LiF1 S4 SC 55 60 62.944 63.700 100 350 Fe Kα LiF1 S2 SC 55 60 57.476 58.800 80 350 Br Kα1 LiF1 S2 SC 55 60 29.928 31.000 100 300 Rh Rh-Kα1 LiF1 S2 SC 55 60 17.518 - 100 300 Rh Rh-KαC LiF1 S2 SC 55 60 18.442 - 100 300 注:均未使用滤光片, 衰减器均为1/1;Br用于校正Al的谱线重叠干扰;Rh为内标元素。 1.2 标准物质
XRF定量分析时,需要一组与待测样品化学组成类似、各元素具有足够宽含量范围及适当的含量梯度的标准物质来建立校准曲线。
在缺乏电气石标准物质的情况下,为满足样品测试的需要,本实验选择了土壤(GBW07401~GBW07408,GBW07423~GBW07430),水系沉积物(GBW07301~GBW07312),岩石(GBW 07101~GBW07114,GBW07120~GBW07125);硅质砂岩(GBW03112~GBW03114),软质黏土(GBW03115),钾长石(GBW03116),钠钙硅玻璃(GBW03117),高岭土(GBW03121~GBW03122),硅灰石(GBW03123),霞石正长岩(GBW03124~GBW03125),叶腊石(GBW03126~GBW03127),水镁石(GBW03128~GBW03129),滑石(GBW03130),硼硅酸盐玻璃(GBW03132)等国家一级标准物质,使各元素形成既有一定含量范围又有适当梯度的标准系列。各标准物质含量范围见表 2。
表 2 标准物质各元素含量范围Table 2. Content range of elements in the certified reference materials元素 含量范围(%) Na2O 0.0066~13.77 MgO 0.041~61.43 Al2O3 0.053~38.62 SiO2 0.62~98.51 P2O5 0.0030~0.92 K2O 0.0041~9.6 CaO 0.052~40.39 TiO2 0.0040~7.69 V2O5 0.0004~0.14 Cr2O3 0.0004~1.57 MnO 0.0015~0.32 TFe2O3 0.093~24.75 1.3 主要试剂
四硼酸锂+偏硼酸锂+氟化锂混合熔剂(质量比为4.5:1:0.4):优级纯,使用前经700℃灼烧2 h后备用。
溴化锂、硝酸锂:优级纯。
1.4 实验方法
称取样品0.7000 g(预先经105℃干燥2 h)和7.0000 g四硼酸锂-偏硼酸锂-氟化锂混合熔剂于瓷坩埚中,搅拌均匀,全部转入铂黄合金坩埚(95%铂+5%金)中,加入1 mL饱和硝酸锂溶液和1滴溴化锂溶液(1 g/mL),将坩埚置于熔样机上,在800℃预氧化2 min,升温至1050℃保持9 min(熔样同时充分摇动坩埚、赶尽气泡),再将熔融物倒入铸模中成型并与铸模脱离。放入干燥器中密闭保存,待测。
2. 结果与讨论
2.1 熔剂的选择
XRF分析中熔剂的选择要遵循酸碱平衡的原则,适宜的熔剂可使样品熔融后具有较好的流动性,并形成均匀、透明的样片[12]。硼酸盐类熔剂在XRF熔融制样中应用最广泛,常用的熔剂有四硼酸锂、偏硼酸锂及二者的混合物等[13]。本实验选择电气石实际样品,对几种常用熔剂进行熔片试验。结果表明,使用偏硼酸锂或四硼酸锂-偏硼酸锂(质量比为12:22)熔剂时,玻璃熔片在冷却过程中出现结晶、炸裂现象;使用四硼酸锂或四硼酸锂-偏硼酸锂(质量比为67:33)熔剂时,能制成透明的玻璃熔片,但熔体的流动性较差,不易混匀;使用四硼酸锂-偏硼酸锂-氟化锂(质量比为4.5:1:0.4)熔剂时,能制成均匀、透明的玻璃熔片,没有出现含不溶物、结晶或炸裂等现象。因此,本文选择四硼酸锂-偏硼酸锂-氟化锂(质量比为4.5:1:0.4)熔剂进行电气石样品熔融片的制备。
2.2 样品与熔剂的稀释比例
选择电气石实际样品,分别按稀释比1:2、1:3、1:5、1:10、1:15称取样品与熔剂混匀,进行熔片试验,比较不同稀释比对于熔片效果的影响。实验结果表明,稀释比为1:2、1:3时,熔体流动性不佳,所得玻璃熔片中有絮状物;稀释比为1:5、1:10、1:15时,熔体流动性较好,可以制备均匀、透明的玻璃熔片。考虑到电气石的种类较多、化学组成复杂、含量范围较广,采用低稀释比可能会降低方法的适应性。而稀释比过大又会使得元素分析强度下降,对Na、K等轻元素和V、Cr等低含量元素测定有影响,因此最终选择样品与熔剂的稀释比为1:10。
2.3 校准曲线方程和基体校正
采用玻璃熔片法制备样品,由于样品完全熔解,可以有效地消除粉末压片所具有的粒度效应和矿物效应,也降低了基体效应。本文用经验系数法进行基体校正和谱线重叠校正,各组分的校准曲线、相关系数及基体校正与重叠校正项见表 3。各组分的线性相关系数均为0.99以上,能够满足分析的要求。
表 3 各组分校准曲线及基体校正Table 3. Calibration curves of the components and matrix effect correction元素 校准曲线方程 相关系数 基体校正项 重叠校正项 Na2O y=2.64274x-0.114574 0.9999 - - MgO y=0.930348x+0.0357911 0.9998 - - Al2O3 y=0.420649x-0.0226954 0.9999 Fe Br SiO2 y=0.423045x-2.27949 0.9992 Na, Mg, Ca - P2O5 y=0.144936x-0.000210712 0.9987 - - K2O y=0.0585628x-0.0343324 0.9997 - - CaO y=0.0650356x-0.001972964 0.9999 Mg Ti TiO2 y=0.0757955x-0.00999133 0.9997 Al - V2O5 y=0.0567832x+0.0102023 0.9976 - Ti Cr2O3 y=0.0296265x-0.0221646 0.9999 - V MnO y=0.0234417x-0.0037977 0.9966 Mg - TFe2O3 y=22.2998x-0.0147243 (0%~0.5%) 0.9908 Si, Al - y=20.5091x+0.128553 (0.5%~30%) 0.9997 Si, Al - 注:y为组分含量(%),x为经校正后的计数率(kcps)或内标比;TFe2O3校准曲线是以Rh-KαC作内标,依据不同含量范围分段绘制校准曲线;“-”表示未作校正。 2.4 方法检出限
根据表 1的测量条件,首先按照文献[14]中的公式计算各元素的检出限,计算结果见表 4(计算值)。由于熔片制样本身存在的稀释效应及样品基体的影响,有研究者认为用上述理论公式计算出来的检出限通常偏低,无法反映出方法的真实检出限[14-15]。因此在确定本法检出限时,本文采取文献[14]的方法,选择4个标准物质GBW07106(石英砂岩)、GBW07109(霓霞正长岩)、GBW07114(白云岩)和GBW07127(碳酸盐岩石)各制备一个样片,按照表 1中的仪器工作条件重复测定12次,依据测定结果计算出每个标准物质中含量最低的元素对应的标准偏差σ,然后将3倍标准偏差(3σ)作为本方法的检出限,获得的检出限(测定值)见表 4。可见采用此法得出的检出限与实际能报出的结果基本相同。除Na2O外,本方法的检出限均低于或接近于文献[14]类似研究中报道的数据。
表 4 方法检出限Table 4. Detection limits of the method元素 方法检出限(μg/g) 计算值 测定值 Na2O 102 426 MgO 66 192 Al2O3 103 156 SiO2 21 180 P2O5 16 25 K2O 10 21 CaO 13 21 TiO2 9 27 V2O5 5 23 Cr2O3 3 15 MnO 5 17 TFe2O3 8 21 2.5 方法精密度和准确度
取1个电气石实际样品按1.4节实验方法制成11个样片,在选定的实验条件下进行测定,评价方法精密度。各元素测定结果的相对标准偏差(RSD)分别为Na2O(0.63%)、MgO(0.28%)、Al2O3(0.12%)、SiO2(0.19%)、P2O5(0.68%)、K2O(1.93%)、CaO(3.69%)、TiO2(0.24%)、V2O5(2.85%)、Cr2O3(4.18%)、MnO(3.39%)和TFe2O3(0.52%)。与文献[16]报道的采用四硼酸锂熔片-XRF测定电气石中的主次量元素得出的RSD数据相比,本文测量Na2O、MgO、Al2O3、SiO2和P2O5的RSD低于文献数据,TFe2O3的RSD与文献数据相当,K2O、CaO、TiO2和MnO的RSD比文献数据略差,但也能够满足《地质矿产实验室测试质量管理规范》(DZ/T 0130—2006)的要求。
由于目前缺少电气石国家标准物质,本实验选择了Si、Al等元素含量与电气石类似的GBW07180(铝土矿标准物质)、GBW07177(铝土矿标准物质)与GBW07103(岩石标准物质),按质量比5:9混合(校准样品1)及按质量比3:4混合(校准样品2),进行方法准确度验证。由表 5可见,测定结果与校准样品的理论值基本相符,表明本方法的准确度较好。
表 5 方法准确度Table 5. Accuracy tests of the method元素 GBW07180 校准样品1 校准样品2 本法(%) 推荐值(%) 本法(%) 推荐值(%) 本法(%) 推荐值(%) Na2O 0.034 0.040 2.03 2.03 1.83 1.81 MgO 0.36 0.31 0.34 0.32 0.31 0.30 Al2O3 43.37 42.97 33.91 33.99 38.02 38.11 SiO2 38.89 39.03 49.86 49.61 45.19 44.96 P2O5 0.14 0.14 0.15 0.15 0.16 0.16 K2O 0.22 0.19 3.28 3.29 2.95 2.95 CaO 0.096 0.12 1.15 1.14 1.07 1.06 TiO2 1.83 2.06 1.17 1.29 1.32 1.49 V2O5 0.011 0.013 - - - - Cr2O3 0.012 0.011 - - - - MnO 0.0016 0.0020 0.046 0.048 0.043 0.045 TFe2O3 0.35 0.41 1.80 2.03 1.75 2.00 注:“-”表示标准物质中该元素缺乏定值,未检测。 2.6 本法(熔融制样-XRF)与其他方法的比较
2.6.1 与粉末压片制样-XRF法的比较
选取电气石实际样品DQS-1(花岗伟晶岩型镁电气石,产自新疆阿尔泰矿区),分别采用本法和粉末压片-XRF法进行主次量元素的测定,并与样品推荐值进行比较(推荐值为多家不同实验室测定结果的平均值),粉末压片法的样品制备和测定方法参照文献[17]进行。实验结果(表 6)表明,本方法由于采用熔融法制样,消除了样品的粒度效应和矿物效应,与粉末压片法制样相比,相对误差较小,测量准确度更高。对于粉末压片法,由于其制样更加快速、简便,绿色环保,还可同时测定多种微量元素,对测定结果要求不高时可采用。
表 6 XRF分析不同制样方法的分析结果比对Table 6. A comparison of analytical results of tourmaline samples measured by fusion and powder pellet preparation in XRF method元素 推荐值(%) 粉末压片法 本法(熔融法) 测定值(%) 相对误差(%) 测定值(%) 相对误差(%) Na2O 2.43 2.22 -8.5 2.27 -6.6 MgO 8.40 8.34 -0.8 8.49 1.1 Al2O3 32.60 31.84 -2.3 32.76 0.5 SiO2 36.24 35.36 -2.4 36.07 -0.5 P2O5 0.14 0.19 35.7 0.15 7.1 K2O 0.11 0.13 18.2 0.12 9.1 CaO 0.55 0.72 30.2 0.59 7.3 TiO2 0.62 0.59 -4.8 0.61 -1.6 V2O5 0.027 0.036 32.0 0.026 -3.7 Cr2O3 0.012 0.014 16.7 0.014 16.7 MnO 0.024 0.030 20.8 0.025 4.2 TFe2O3 5.07 5.32 4.9 5.16 1.8 2.6.2 与化学法的比较
选取三种不同类型和产地的电气石实际样品DQS-2(岩浆热型铁镁电气石,产自山东邹城矿区)、DQS-3(岩浆热型铁电气石,产自广西恭城矿区)和DQS-4(花岗伟晶岩型锂电气石,产自河南卢氏矿区),采用本方法进行主次量元素的测定,并与化学法测定结果进行比对。化学法中,SiO2采用重量法测定,MgO、Al2O3、CaO采用容量法测定,TFe2O3、TiO2采用分光光度法测定,Na2O、K2O、MnO、V2O5、Cr2O3和P2O5采用高压密闭酸溶-电感耦合等离子体发射光谱法(ICP-OES)测定。实验结果(表 7)表明本法的测定值与化学法基本吻合,适用于测定不同类型电气石中的主次量元素。
表 7 本法与化学法的分析结果比对Table 7. A comparison of analytical results of tourmaline samples measured by this method with chemical method元素 DQS-2 DQS-3 DQS-4 本法(%) 化学法(%) 本法(%) 化学法(%) 本法(%) 化学法(%) Na2O 1.61 1.59 2.03 2.04 1.71 1.73 MgO 5.65 5.58 0.60 0.52 0.078 0.070* Al2O3 19.63 19.48 27.89 27.99 29.92 29.77 SiO2 40.79 40.65 39.57 39.69 52.99 52.74 P2O5 0.21 0.19 0.009 0.011 0.13 0.12 K2O 0.18 0.17 0.064 0.050 0.54 0.57 CaO 7.47 7.38 0.57 0.49 1.19 1.10 TiO2 0.47 0.45 0.18 0.18 0.010 0. 013* V2O5 0.033 0.034 - - - - Cr2O3 0.023 0.024 - - - - MnO 0.13 0.13 0.26 0.24 0.035 0.031 TFe2O3 8.77 8.64 17.71 17.52 0.10 0.10 注:标注“*”的数据表示该数据为高压密闭酸溶,ICP-OES法测定值;“-”表示低于检出限,没有提供测定值。 3. 结论
本文以四硼酸锂-偏硼酸锂-氟化锂混合熔剂(质量比为4.5:1:0.4)作为熔剂,采用熔融片法进行样品制备,建立了应用XRF法同时测定电气石中Na2O、MgO、Al2O3、SiO2、P2O5、K2O、CaO、TiO2、V2O5、Cr2O3、MnO、TFe2O3等12种主次量元素的分析方法。本法解决了电气石不易湿法分解和硼的干扰问题,克服了粉末压片制样无法消除的粒度效应和矿物效应,提高了测量准确度,精密度和检出限与前人方法相比也有一定改进;与高压密闭酸溶法相比,简化了样品前处理步骤,缩短了前处理时间,具有简便、快速的优势,适用于多种不同类型电气石样品的测定,有一定的推广应用价值。
本法由于使用硼酸盐作为熔剂,不能完成电气石重要组分B2O3的检测。选择适宜的非硼酸盐熔剂进行样品制备,实现XRF法测定电气石中的B2O3,还需进一步研究。
-
图 1 Fe与基质的化学分离淋洗曲线[33]
Figure 1. Elution curve for Fe element separation
-
Beard B L, Johnson C M.High precision iron isotope measurements of terrestrial and lunar materials[J]. Geochimica et Cosmochimica Acta, 1999, 63(11-12):1653-1660. doi: 10.1016/S0016-7037(99)00089-7
刘英俊, 曹励明, 李兆麟.元素地球化学[M].北京:科学出版社, 1984. Liu Y J, Cao L M, Li Z L.Element Geochemistry[M]. Beijing:Science Press, 1984.
牟保磊.元素地球化学[M]北京:北京大学出版社, 1999. Mu B L.Element Geochemistry[M]. Beijing:Peking University Press, 1999.
Dauphas N, John S G, Rouxel O.Iron isotope systematics[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1):415-510. doi: 10.2138/rmg.2017.82.11
何永胜, 胡东平, 朱传卫.地球科学中铁同位素研究进展[J].地学前缘, 2015, 22(5):54-71. http://d.old.wanfangdata.com.cn/Periodical/dxqy201505004 He Y S, Hu D P, Zhu C W.Progress of iron isotope geochemistry in geoscience[J.Earth Science Frontiers, 2015, 22(5):54-71. http://d.old.wanfangdata.com.cn/Periodical/dxqy201505004
Beard B L, Johnson C M, Skulan J L, et al.Application of Fe isotopes to tracing the geochemical and biological cycling of Fe[J]. Chemical Geology, 2003, 195(1):87-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=844fae4abeb031e1d538eb65e08bd2f2
Johnson C M, Beard B L, Roden E E.The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient earth[J]. Annual Review of Earth and Planetary Sciences, 2008, 36(1):457-493. doi: 10.1146/annurev.earth.36.031207.124139
Dauphas N, Rouxel O.Mass spectrometry and natural va-riations of iron isotopes[J]. Mass Spectrometry Reviews, 2006, 25:515-550. doi: 10.1002/mas.20078
Beard B L, Johnson C M, von Damm K L, et al.Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans[J]. Geology, 2003, 31(7):629-632. doi: 10.1130/0091-7613(2003)031<0629:IICOFC>2.0.CO;2
Kodolányi J, Stephan T, Trappitsch R, et al.Iron and nickel isotope compositions of presolar silicon carbide grains from supernovae[J]. Geochimica et Cosmochimica Acta, 2018, 221:127-144. doi: 10.1016/j.gca.2017.05.029
Conway T M, John S G.Quantification of dissolved iron sources to the North Atlantic Ocean[J]. Nature, 2014, 511(7508):212-215. doi: 10.1038/nature13482
Anbar A D.Iron stable isotopes:Beyond biosignatures[J]. Earth and Planetary Science Letters, 2004, 217(3):223-236. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025852629/
Labidi J.Iron Isotope Composition of Depleted MORB[C]//Proceedings of Agu Fall Meeting (AGU Fall Meeting Abstracts), 2015.
Teng F Z, Dauphas N, Huang S, et al.Iron isotopic systematics of oceanic basalts[J]. Geochimica et Cosmochimica Acta, 2013, 107:12-26. doi: 10.1016/j.gca.2012.12.027
Sossi P A, Nebel O, Anand M, et al.On the iron isotope composition of Mars and volatile depletion in the terrestrial planets[J]. Earth and Planetary Science Letters, 2016, 449:360-371. doi: 10.1016/j.epsl.2016.05.030
Sossi P A, O'Neill H St C.The effect of bonding environment on iron isotope fractionation between minerals at high temperature[J]. Geochimica et Cosmochimica Acta, 2016, 196:121-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=941cca5adb4430ecca32fd1de9314be6
Rouxel O, Toner B M, Manganini S J, et al.Geochemistry and iron isotope systematics of hydrothermal plume fall-out at East Pacific Rise 9°50'N[J]. Chemical Geology, 2016, 441:212-234. doi: 10.1016/j.chemgeo.2016.08.027
Weyer S, Ionov D A.Partial melting and melt percolation in the mantle:The message from Fe isotopes[J]. Earth and Planetary Science Letters, 2007, 259:119-133. doi: 10.1016/j.epsl.2007.04.033
Zhao Y, Xue C J, Liu S A, et al.Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni-Cu mineralization system[J]. Geochimica et Cosmochimica Acta, 2019, 249(15):42-58.
Syverson D D, Luhmann A J, Tan C, et al.Fe isotope fractionation between chalcopyrite and dissolved Fe during hydrothermal recrystallization:An experimental study at 350℃ and 500bars[J]. Geochimica et Cosmochimica Acta, 2017, 200:87-109. doi: 10.1016/j.gca.2016.12.002
Williams K B, Krawczynski M J, Nie N X, et al.The Role of Differentiation Processes in Mare Basalt Iron Isotope Signatures[C]//Proceedings of Lunar and Planetary Science Conference, 2016.
Bau M, von Blanckenburg F, Ohmoto H.Iron isotope stratification of Late Archean Seawater:Evidence from dolomites and banded iron-formations[J]. Nature Immunology, 2017, 16 (5):467-75.
McCoy V E, Asael D, Planavsky N.Benthic iron cycling in a high-oxygen environment:Implications for interpreting the Archean sedimentary iron isotope record[J]. Geobiology, 2017, 15(5):619-627. doi: 10.1111/gbi.12247
Liu K, Wu L L, Couture R M, et al.Iron isotope fractionation in sediments of an oligotrophic freshwater lake[J]. Earth and Planetary Science Letters, 2015, 423:164-172. doi: 10.1016/j.epsl.2015.05.010
Kurzweil F, Pasava J, Drost K, et al.Molybdenum (Mo) and Iron (Fe) Isotope Evidence of Tepla-Barrandian Black Shales against Widespread Deep Ocean Oxygenation in the Late Neoproterozoic[C]//Proceedings of the Fall Meeting 2014.American Geophysical Union, 2014.
Severmann S, Lyons T W, Anbar A, et al.Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans[J]. Geology, 2008, 36(6):487-490. doi: 10.1130/G24670A.1
Shollenberger Q R, Brennecka G A, Schuth S, et al.Iron Isotope Systematics of Refractory Inclusions and the Search for the Source of Nucleosynthetic Anomalies[C]//Proceedings of the 48th Lunar and Planetary Science Conference, 2017.
Poitrasson F, Halliday A N, Lee D C, et al.Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms[J]. Earth and Planetary Science Letters, 2004, 223(3-4):0-266.
Belshaw N S, Zhu X K, Guo Y, et al.High precision measurement of iron isotopes by plasma source mass spectrometry[J]. International Journal of Mass Spectrometry, 2000, 197(1-3):191-195. doi: 10.1016/S1387-3806(99)00245-6
唐索寒, 朱祥坤, 李津, 等.用于多接收器等离子体质谱测定的铁铜锌同位素标准溶液研制[J].岩矿测试, 2016, 35(2):127-133. doi: 10.15898/j.cnki.11-2131/td.2016.02.003 Tang S H, Zhu X K, Li J, et al.New standard solutions for measurement of iron, copper and zinc isotopic compositions by multi-collector inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(2):127-133. doi: 10.15898/j.cnki.11-2131/td.2016.02.003
孙剑, 朱祥坤, 陈岳龙.碳酸盐矿物铁同位素测试的选择性溶解方法研究——以白云鄂博矿床赋矿白云岩为例[J].岩矿测试, 2013, 32(1):28-33. doi: 10.3969/j.issn.0254-5357.2013.01.005 Sun J, Zhu X K, Chen Y L.The selective dissolution of carbonate minerals for Fe isotope determination:A case study on the ore-hosting dolomite marble in the Bayan Obo ore deposit[J]. Rock and Mineral Analysis, 2013, 32(1):28-33. doi: 10.3969/j.issn.0254-5357.2013.01.005
唐索寒, 闫斌, 朱祥坤, 等.玄武岩标准样品铁铜锌同位素组成[J].岩矿测试, 2012, 31(2):218-224. doi: 10.3969/j.issn.0254-5357.2012.02.004 Tang S H, Yan B, Zhu X K, et al.Iron, copper and zinc isotopic compositions of basaltic standard reference materials[J]. Rock and Mineral Analysis, 2012, 31(2):218-224. doi: 10.3969/j.issn.0254-5357.2012.02.004
侯可军, 秦燕, 李延河.Fe同位素的MC-ICP-MS测试方法[J].地球学报, 2012, 33(6):885-892. http://d.old.wanfangdata.com.cn/Periodical/dqxb201206008 Hou K J, Qin Y, Li Y H.High-precision measurements of Fe isotopes using MC-ICP-MS[J]. Acta Geoscientica Sinica, 2012, 33(6):885-892. http://d.old.wanfangdata.com.cn/Periodical/dqxb201206008
Zhu X K, Guo Y, Williams R J P, et al.Mass fractionation processes of transition metal isotopes[J].Earth and Planetary Science Letters, 2002, 200(1-2):47-62. doi: 10.1016/S0012-821X(02)00615-5
Rosman K J R, Taylor P D P.Isotopic compositions of the elements 1997 (Technical Report)[J]. Pure and Applied Chemistry, 1998, 70(1):217-235. doi: 10.1351/pac199870010217
Kraus K A, Moore G E.Anion exchange studies:The divalent transition elements manganese to zinc in hydrochloric acid[J]. Journal of the American Chemical Society, 1953, 75:1460-1462. doi: 10.1021/ja01102a054
Kosler J, Pedersen R B, Kruber C, et al.Comment on "Analysis of Fe isotopes in sulfides and iron meteorites by laser ablation high-mass resolution multi-collector-ICP mass spectrometry"—Reply[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(2):214-216. doi: 10.1039/B512647A
Strelow F W E.Improved separation of iron from copper and other elements by anion-exchange chromatography on a 4% cross-linked resin with high concentrations of hydrochloric acid[J]. Talanta, 1980, 27(9):727-732. doi: 10.1016/0039-9140(80)80166-4
Anbar A D.Nonbiological fractionation of iron isotopes[J]. Science, 2000, 288(5463):126-128. doi: 10.1126/science.288.5463.126
Dauphas N, Janney P E, Mendybaev R A, et al. Chromatographic separation and multicollection ICPMS analysis of iron.Investigating mass-dependent and independent isotope effects[J]. Analytical Chemistry, 2004, 76(19):5855-5863. doi: 10.1021/ac0497095
van der Walt T N, Strelow F W E, Haasbroek F J.Separation of iron-52 from chromium cyclotron targets on the 2% cross-linked anion-exchange resin AG1-X2 in hydrochloric acid[J]. Talanta, 1985, 32(4):313-317. doi: 10.1016/0039-9140(85)80086-2
Marechal C N.Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 156(1-4):251-273. doi: 10.1016/S0009-2541(98)00191-0
Archer C, Vance D.Mass discrimination correction in multiple-collector plasma source mass spectrometry:An example using Cu and Zn isotopes[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(5):656-665. doi: 10.1039/b315853e
Sossi P A, Halverson G P, Nebel O, et al.Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination[J]. Geostandards and Geoanalytical Research, 2015, 39(2):129-149. doi: 10.1111/j.1751-908X.2014.00298.x
Poitrasson F, Freydier R.Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS[J]. Chemical Geology, 2005, 222(1):132-147.
唐索寒, 闫斌, 李津.少量AG1-X4阴离子交换树脂分离地质标样中的铁及铁同位素测定[J].地球化学, 2013(1):46-52. doi: 10.3969/j.issn.0379-1726.2013.01.006 Tang S H, Yan B, Li J.Separation of Fe using a small amount of AG1-X4 anion exchange resin and Fe isotope compositions of geological reference materials[J]. Geochimica, 2013(1):46-52. doi: 10.3969/j.issn.0379-1726.2013.01.006
马信江, 梁细荣, 涂相林, 等.AG MP-1M阴离子分离Cu、Fe、Zn及其在Fe同位素测定上的应用[J].地球化学, 2009, 38(5):70-76. http://d.old.wanfangdata.com.cn/Periodical/dqhx200905007 Ma X J, Liang X R, Tu X L, et al.Separation of Cu, Fe and Zn using AG MP-1M anion exchange resin and applications for Fe isotope determination[J]. Geochimica, 2009, 38(5):70-76. http://d.old.wanfangdata.com.cn/Periodical/dqhx200905007
孙剑, 朱祥坤, 唐索寒, 等.AG MP-1阴离子交换树脂元素分离方法再研究[J].高校地质学报, 2006, 24(3):398-403. doi: 10.3969/j.issn.1006-7493.2006.03.014 Sun J, Zhu X K, Tang S H, et al.Further investigation on elemental separation using AG MP-1 anion exchange resin[J]. Geological Journal of China Universities, 2006, 24(3):398-403. doi: 10.3969/j.issn.1006-7493.2006.03.014
Craddock P R, Dauphas N.Iron isotopic compositions of geological reference materials and chondrites[J]. Geostandards and Geoanalytical Research, 2011, 35(1):101-123. doi: 10.1111/j.1751-908X.2010.00085.x
Sossi P A, Halverson G P, Nebel O, et al.Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination[J]. Geostandards and Geoanalytical Research, 2015, 39(2):129-149. doi: 10.1111/j.1751-908X.2014.00298.x
Liu S A, Li D, Li S, et al.High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2013, 29(1):122-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be3cff31ad013d50e69a4d2225615a6b
Taylor P D P, Maeck R, Bièvre P D.Determination of the absolute isotopic composition and atomic weight of a reference sample of natural iron[J]. International Journal of Mass Spectrometry and Ion Processes, 1992, 121(1-2):111-125. doi: 10.1016/0168-1176(92)80075-C
Rudge J F, Reynolds B C, Bourdon B.The double spike toolbox[J]. Chemical Geology, 2009, 265(3-4):0-431. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e97d8b2ef9fa6c95a32479f7de88e1bb
Zhu X K, Makishima A, Guo Y, et al.High precision measurement of titanium isotope ratios by plasma source mass spectrometry[J]. International Journal of Mass Spectrometry, 2002, 220(1):21-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9099dd076fb6a250206f149ef5360336
Kehm K, Hauri E H, Alexander C M O, et al.High precision iron isotope measurements of meteoritic material by cold plasma ICP-MS[J]. Geochimica et Cosmochimica Acta, 2003, 67(15):2879-2891. doi: 10.1016/S0016-7037(03)00080-2
Weyer S, Schwieters J.High precision Fe isotope measurements with high mass resolution MC-ICPMS[J]. International Journal of Mass Spectrometry, 2003, 226:355-368. doi: 10.1016/S1387-3806(03)00078-2
朱祥坤, 李志红, 赵新苗, 等.铁同位素的MC-ICP-MS测定方法与地质标准物质的铁同位素组成[J].岩石矿物学杂志, 2008, 27(4):263-272. doi: 10.3969/j.issn.1000-6524.2008.04.001 Zhu X K, Li Z H, Zhao X M, et al.High-precision measurement of Fe isotopes isotopes using MC-ICP-MS and Fe isotope compositons of geological regerence materials[J]. Acta Petrologica et Mineralogica, 2008, 27(4):263-272. doi: 10.3969/j.issn.1000-6524.2008.04.001
唐索寒, 朱祥坤, 蔡俊军, 等.用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法[J].岩矿测试, 2006, 25(1):5-8. doi: 10.3969/j.issn.0254-5357.2006.01.002 Tang S H, Zhu X K, Cai J J, et al.Chromatographic separation of Cu, Fe and Zn using AG MP-1 anion exchange resin for isotope determination by MC-ICPMS[J]. Rock and Mineral Analysis, 2006, 25(1):5-8. doi: 10.3969/j.issn.0254-5357.2006.01.002
Zhu X K, O'Nions R K, Guo Y, et al.Determination of natural Cu-isotope variation by plasma-source mass spectrometry:Implications for use as geochemical tracers[J]. Chemical Geology, 2000, 163(1):139-149.
Arnold T, Markovic T, Kirk G J D, et al.Iron and zinc isotope fractionation during uptake and translocation in rice (Oryza sativa) grown in oxic and anoxic soils[J]. Comptes Rendus Geoscience, 2015, 347(7-8):397-404. doi: 10.1016/j.crte.2015.05.005
Dideriksen K, Baker J A, Stipp S L S.Iron isotopes in natural carbonate minerals determined by MC-ICP-MS with a 58Fe-54Fe double spike[J]. Geochimica et Cosmochimica Acta, 2006, 70(1):0-132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd9632e7ee81087155324249c10d032b
Rudge J F, Reynolds B C, Bourdon B.The double-spike toolbox[J]. Chemical Geology, 2009, 265(3-4):420-431. doi: 10.1016/j.chemgeo.2009.05.010
Dauphas N, Pourmand A, Teng F Z.Routine isotopic analysis of iron by HR-MC-ICPMS:How precise and how accurate?[J]. Chemical Geology, 2009, 267(3-4):0-184.
丁悌平.激光探针稳定同位素分析技术的现状及发展前景[J].地学前缘, 2003, 10(2):263-268. doi: 10.3321/j.issn:1005-2321.2003.02.001 Ding T P.The present status and prospect on laser-microprobe analysis techiques for stable isotopes[J]. Earth Science Frontiers, 2003, 10(2):263-268. doi: 10.3321/j.issn:1005-2321.2003.02.001
Gray A L.Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry[J]. Analyst, 1985, 110:551. doi: 10.1039/an9851000551
Horn I, Hinton R W, Jackson S E, et al.Ultra-trace element analysis of NIST SRM 616 and 614 using laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS):A comparison with secondary ion mass spectrometry (SIMS)[J]. Geostandards and Geoanalytical Research, 2010, 21(2):191-203.
Horn I, Rudnick R L, Mcdonough W F.Precise elemen-tal and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS:Application to U-Pb geochronology[J]. Chemical Geology, 2000, 164(3):281-301.
Mank A J G, Mason P R D.A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples[J]. Journal of Analytical Atomic Spectrometry, 1999, 14(8):1143-1153. doi: 10.1039/a903304a
Günther D, Heinrich C A.Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier[J]. Journal of Analytical Atomic Spectrometry, 1999, 14(9):1363-1368. doi: 10.1039/A901648A
Arrowsmith P.Laser ablation of solids for elemental analysis by inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 1987, 59:10(10):1437-1444. doi: 10.1021-ac00137a014/
Norman M D, Pearson N J, Sharma A, et al.Quantitative analysis of trace elements in geological materials by laser ablation ICPMS:Instrumental operating conditions and calibration values of NIST glasses[J]. Geostandards and Geoanalytical Research, 2010, 20(2):247-261. doi: 10.1111-j.1751-908X.1996.tb00186.x/
Horn I, von Blanckenburg F, Schoenberg R, et al.In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes[J]. Geochimica et Cosmochimica Acta, 2006, 70:3677-3688. doi: 10.1016/j.gca.2006.05.002
Hirata T, Ohno T.In-situ isotopic ratio analysis of iron using laser ablation-multiple collector-inductively coupled plasma mass spectrometry (LA-MC-ICP-MS)[J]. Journal of Analytical Atomic Spectrometry, 2001, 16(5):487-491. doi: 10.1039/b100946j
Graham S, Pearson N, Jackson S, et al.Tracing Cu and Fe from source to porphyry:In situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit[J]. Chemical Geology, 2004, 207(3):147-169.
Kosler J, Pedersen R B, Kruber C, et al.Analysis of Fe isotopes in sulfides and iron meteorites by laser ablation high-mass resolution multi-collector ICP mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2005, 21:192-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbe86928b9161dcc69d2fd2ceeda6743
Horn I, Schoenberg R, Blanckenburg F V.Comment on "Analysis of Fe isotopes in sulfides and iron meteorites by laser ablation high-mass resolution multi-collector-ICP mass spectrometry" by J.Košler, R.B.Pedersen, C.Kruber and P.J.Sylvester[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(2):211-213. doi: 10.1039/B504720J
d'Abzac F X, Beard B L, Czaja A D, et al.Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbononates[J]. Analytical Chemistry, 2013, 85(24):11885-11892. doi: 10.1021/ac402722t
d'Abzac F X, Czaja A D, Beard B L, et al.Iron dis-tribution in size-resolved aerosols generated by UV-femtosecond laser ablation:Influence of cell geometry and implications for in situ isotopic determination by LA-MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2014, 38 (3):293-309. doi: 10.1111/j.1751-908X.2014.00281.x
Oeser M, Weyer S, Horn I, et al.High-precision Fe and Mg isotope ratios of silicate reference glasses determined in situ by femtosecond LA-MC-ICP-MS and by solution nebulisation MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2014, 38:311-328. doi: 10.1111/j.1751-908X.2014.00288.x
Oeser M, Dohmen R, Horn I, et al.Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines[J]. Geochimica et Cosmochimica Acta, 2015, 154:130-150. doi: 10.1016/j.gca.2015.01.025
Teng F Z, Dauphas N, Helz R T, et al.Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine[J]. Earth and Planetary Science Letters, 2011, 308(3-4):0-324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=026e55831e6dece4fad57dbaa02498a1
Corliss K I S, Dauphas N.Thermal and crystallization histories of magmatic bodies by Monte Carlo inversion of Mg-Fe isotopic profiles in olivine[J]. Geology, 2017, 45(1):67-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4058f6d0500f4241e8d4196792fd28e9
Collinet M, Charlier B, Namur O, et al.Crystallization history of enriched shergottites from Fe and Mg isotope fractionation in olivine megacrysts[J]. Geochimica et Cosmochimica Acta, 2017, 207:277-297. doi: 10.1016/j.gca.2017.03.029
Horn I, von Blanckenburg F.Investigation on elemental and isotopic fractionation during 196nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry[J]. Spectrochim Acta Part B:Atomic Spectroscopy, 2007, 62:410-422. doi: 10.1016/j.sab.2007.03.034
Öder H R.Laser-generated aerosols in laser ablation for inductively coupled plasma spectrometry[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2006, 61(3):284-300. doi: 10.1016/j.sab.2006.02.001
Momma C, Chichkov B N, Nolte S, et al.Short-pulse laser ablation of solid targets[J]. Optics Communications, 1996, 129(1-2):134-142. doi: 10.1016/0030-4018(96)00250-7
Russo R E, Mao X, Gonzalez J J, et al.Femtosecond vs.nanosecond laser pulse duration for laser ablation chemical analysis[J]. Spectroscopy, 2013, 28(1):24-39.
Günther D, Hattendorf B.Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry[J]. TrAC Trends in Analytical Chemistry, 2005, 24(3):255-265. doi: 10.1016/j.trac.2004.11.017
Koch J, von Bohlen A, Hergenröder R, et al.Particle size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(2):267-272. doi: 10.1039/B310512A
陈开运, 范超, 袁洪林, 等.飞秒激光剥蚀-多接收电感耦合等离子质谱原位微区分析青铜中铅同位素组成——以古铜钱币为例[J].光谱学与光谱分析, 2013, 32(5):1342-1349. doi: 10.3964/j.issn.1000-0593(2013)05-1342-08 Chen K Y, Fan C, Yuan H L, et al.High-precision in situ analysis of the lead isotopic composition in copper using femtosecond laser ablation MC-ICP-MS and the application in ancient coins[J]. Spectroscopy and Spectral Analysis, 2013, 32(5):1342-1349. doi: 10.3964/j.issn.1000-0593(2013)05-1342-08
杨文武, 史光宇, 商琦, 等.飞秒激光剥蚀电感耦合等离子体质谱在地球科学中的应用进展[J].光谱学与光谱分析, 2017, 37(7):208-214. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201707036 Yang W W, Shi G Y, Shang Q, et al.Applications of femtosecond (fs) laser ablation-inductively coupled plasma-mass spectrometry in Earth sciences[J]. Spectroscopy and Spectral Analysis, 2017, 37(7):208-214. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201707036
Zheng X Y, Beard B L, Lee S, et al.Contrasting particle size distributions and Fe isotope fractionations during nanosecond and femtosecond laser ablation of Fe minerals:Implications for LA-MC-ICP-MS analysis of stable isotopes[J]. Chemical Geology, 2017, 450:235-247. doi: 10.1016/j.chemgeo.2016.12.038
Zheng X Y, Beard B L, Johnson C M.Assessment of matrix effects associated with Fe isotope analysis using 266nm femtosecond and 193nm nanosecond laser ablation multi-collector inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2018, 33:68-83. doi: 10.1039/C7JA00272F
Teng F Z, Li W Y, Ke S, et al.Magnesium isotopic com-position of the Earth and chondrites[J]. Geochimica et Cosmochimica Acta, 2010, 74(14):4150-4166. doi: 10.1016/j.gca.2010.04.019
Janney P E, Richter F M, Mendybaev R A, et al.Matrix effects in the analysis of Mg and Si isotope ratios in natural and synthetic glasses by laser ablation-multicollector ICPMS:A comparison of single- and double-focusing mass spectrometers[J]. Chemical Geology, 2011, 281(1-2):26-40. doi: 10.1016/j.chemgeo.2010.11.026
Sio C K I, Dauphas N, Teng F Z, et al.Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg-Fe isotopic analyses[J]. Geochimica et Cosmochimica Acta, 2013, 123(2):302-321. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=313c4f174cc4f182644f09f4292f62ad
-
期刊类型引用(11)
1. 夏涵,李霞,罗丽卉,王棚,游蕊. 王水提取ICP-OES法测定土壤全硫含量的不确定度评定. 四川农业科技. 2025(02): 47-51 . 百度学术
2. 卢志琴,姚洵,顾佳旺. 红外吸收光谱法测定复合肥中总硫含量. 磷肥与复肥. 2024(02): 38-40 . 百度学术
3. 王勇,李子敬,刘林,李国伟. 攀西地区钒钛磁铁矿中硫含量测定方法优化. 岩矿测试. 2024(03): 524-532 . 本站查看
4. 张世涛,许刚,宋帅娣,徐晓欣,王俊龙. 燃烧-碘酸钾吸收-ICP-OES测定地质样品中的微量硫. 化学与粘合. 2024(04): 420-423 . 百度学术
5. 王斌,毛静,张勇,巩琪. 电感耦合等离子体光谱法测定土壤中的全硫. 中国土壤与肥料. 2024(05): 227-231 . 百度学术
6. 张玲玲. 三种分析方法测定锡铜矿石中硫的对比. 化工设计通讯. 2024(09): 12-14 . 百度学术
7. 蒲景阳,李根生,宋先知,罗嗣慧,王斌. 温控型过硫酸铵纳米胶囊的构筑及对滑溜水残留堵塞物的降解性能. 油田化学. 2024(04): 602-609 . 百度学术
8. 茅昌平,杜苏明,贾志敏,于刚,王耀,饶文波. 快速连续提取沉积物中还原性无机硫的实验方法与应用. 岩矿测试. 2023(03): 576-586 . 本站查看
9. 王莹. 电感耦合等离子体发射光谱法测定生态地质样品中的有效硅. 现代盐化工. 2023(03): 27-29 . 百度学术
10. 聂高升,石友昌,阿米娜·胡吉,孙阳阳,贠庥宇,陈林. 高频红外碳硫仪测定区域地球化学样品中的硫. 中国无机分析化学. 2023(11): 1215-1220 . 百度学术
11. 何雨珊. 利用高频碳硫分析仪测定合金钢中的硫. 化学分析计量. 2023(11): 53-56 . 百度学术
其他类型引用(1)