Effect of Laser Energy Density on Data Quality during LA-ICP-MS Measurement
-
摘要: LA-ICP-MS分析矿物元素含量时激光能量密度会影响样品的剥蚀速率,从而影响测试过程的信号强度。激光能量密度变化对测试数据精确度的影响,以及不同天然矿物对激光能量密度的响应尚需进一步明确。本文测定了不同莫氏硬度天然矿物可稳定剥蚀的最小激光能量密度,评估了193nm ArF准分子激光系统中能量密度对地质标准样品(NIST SRM614、USGS BCR-2G、USGS GSC-1G)和天然矿物测试数据质量的影响。研究结果表明:①稳定剥蚀石英和萤石所需的最小激光能量密度为4~5J/cm2,低于前人的报道值(10J/cm2),而稳定剥蚀其他矿物(如滑石、磷灰石、刚玉等)所需的最小能量密度一般在1~2J/cm2;②不同激光能量密度剥蚀条件下,标准样品中大部分微量元素测试结果与推荐值的相对误差小于20%,相对标准偏差(RSD)小于10%,而天然矿物中含量>1μg/g的大部分微量元素测试数据的RSD小于20%;③在一定范围内,激光能量密度越大,数据平均相对误差越小,整体质量更好。要点
(1) 测试了LA-ICP-MS稳定剥蚀不同莫氏硬度矿物的最小激光能量密度值。
(2) 分析了不同激光能量密度对标准样品和天然矿物测试数据质量的影响。
(3) 研究结果显示一定范围内激光能量密度越大,数据平均相对误差越小。
HIGHLIGHTS(1) The minimum laser energy density for stable denudating minerals of different Mohs hardness was determined during LA-ICP-MS measurement.
(2) The effects of various laser energy densities on the data quality for standard samples and natural minerals were evaluated.
(3) The greater the laser energy density in the appropriate range, the smaller the average relative error of the data.
Abstract:BACKGROUNDLaser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a frequent instrument for the analysis of trace element content. When LA-ICP-MS is used to analyze the element content of minerals, the laser energy density will affect the denudation rate of the sample and thus affect the signal intensity during the analysis.OBJECTIVESTo further clarify the impact of laser energy density changes on the quality of test data and the response of different natural minerals to laser energy density.METHODSThe element content data of standard samples and nature minerals with different Mohs hardness under different laser energy densities were determined using LA-ICP-MS. Then authors analyzed the relative error (RE) between the test data and the reference values of the standard samples, average of the relative error of elements with RE within the limits of -20%-10% in the same standard sample, and the relative standard deviation of the standard samples and nature minerals test results to evaluate the effect of laser energy density on the test results.RESULTSThe minimum laser energy density required to stabilize ablated quartz and fluorite was 4-5J/cm2, which was lower than the previously reported value (10J/cm2), whereas stable denudation of other minerals such as talc, apatite, and corundum require the minimum energy density of generally 1-2J/cm2. Under the different condition of laser energy density, the relative error of most trace elements in standard samples between analytical results and recommended values was less than 20% and the relative standard deviation was less than 10%. The relative standard deviation of most trace element test data was less than 20% for natural minerals with most element contents >1μg/g. Within a certain range, the greater the laser energy density, the smaller the average relative error of the data, and the better the overall quality.CONCLUSIONSQuartz and fluorite require higher laser energy density for stable ablation than other minerals. Within the appropriate range, laser energy density has little effect on the quality of the individual element data, but it affects the overall quality of the data.-
Keywords:
- LA-ICP-MS /
- laser energy density /
- standard samples /
- natural minerals /
- data quality
-
水(H2O)是自然岩浆体系中最主要的挥发组分,显著影响岩浆的黏度、熔点和结晶行为,从而控制岩浆分异演化的趋势[1-3]。而熔体包裹体是在岩浆活动过程中捕获在结晶矿物晶格缺陷中的岩浆熔体[4-5],一定程度上保留了所捕获岩浆的组分状态,可以提供岩浆作用过程的直接信息[6-8]。前人通过大量研究证实了应用熔体包裹体确定岩浆挥发份的可靠性[2,8-10]。借助熔体包裹体研究岩浆中的挥发份含量,不仅可以揭示岩浆的分异演化过程,还能为理解岩浆活动特征提供重要依据。
目前应用于测定硅酸盐熔体包裹体中的H2O的原位分析技术主要有[11-12]:电子探针(EPMA)、离子探针(SIMS)、傅里叶变换红外光谱和显微激光拉曼光谱。相较于其他方法,显微激光拉曼光谱分析具有高空间分辨率、快速、无损分析、样品制备简单等优点[13-15],可应用于分析暴露在表面或包裹于内部的样品,并且能够在0%~20%(含水量)浓度范围内精确测定[16-19]。Thomas[16]利用显微激光拉曼光谱技术研究了26个已知成分的人工合成玻璃和天然硅酸盐熔体包裹体样品,在水含量0%~16%范围内获得与实测值基本一致的结果;Chabiron等[17]通过显微激光拉曼光谱法测试熔体包裹体水含量,该方法得到的结果与红外光谱测试结果基本一致;王玉琪等[12]使用显微激光拉曼光谱快速标定了花岗质玻璃样品,其测试结果与红外光谱水含量结果的相对误差小于10%;Tu等[19]建立了一种基于激光共聚焦拉曼光谱测定硅酸盐熔体中总溶解水及不同形态水含量的方法。上述研究进一步证实了显微激光拉曼光谱技术在测定熔体包裹体水含量方面的独特优势和可靠性。
髫髻山组火山岩是燕山造山带中生代最具代表性的钙碱性火山岩之一,代表了燕山期大规模火山喷发的开始[20]。前人的研究主要集中在燕山造山带中生代火山岩的地球化学特征[21-25],而水作为影响岩浆形成及演化的重要因素,目前对髫髻山组火山岩中的水含量尚不清楚。柳江盆地向斜核部出露了中侏罗统髫髻山组(J2t)下部的凝灰岩[24,26],作为火山活动早期产物,研究其岩浆中的水含量对于了解火山活动有重要意义。因此,对该凝灰岩开展岩石地球化学分析和岩浆水含量定量研究,可以为深入认识和理解该地区的岩浆活动提供重要依据。本文以柳江盆地侏罗系髫髻山组下部凝灰岩为研究对象,以岩石学、岩石地球化学和包裹体岩相学分析为基础,应用显微激光拉曼光谱法定量测定了凝灰岩中熔体包裹体的水含量,并讨论了岩浆中的水对火山喷发行为的影响。
1. 研究区地质概况
柳江盆地位于河北省秦皇岛市,其大地构造位置位于华北陆块北缘中朝地块燕山褶皱造山带东段(图1a)。盆地是一个近南北向不对称的短轴向斜(图1b),西翼地层紧凑且直立倒转,东翼地层舒展而平缓,主要构造线偏于盆地西部,其走向大致为南北向。
柳江盆地髫髻山组地层岩性特征[26]表现为:下部主要发育灰绿色、浅黄色的安山质、流纹质火山集块岩夹凝灰岩和火山熔岩;中部发育灰绿色安山质、角闪安山质、粗安山质火山熔岩与集块岩、角砾岩互层;上部发育黑绿色、紫红色、青灰色玄武质、玄武安山质、辉石安山质火山熔岩与熔结集块岩、集块岩互层,夹有少量的火山角砾岩及凝灰岩。由下向上,岩性由偏酸性逐渐过渡为中性、中基性。
2. 实验部分
2.1 样品及处理
本文所采集的凝灰岩样品取自河北省秦皇岛市柳江盆地髫髻山组下部野外露头。将采集的新鲜凝灰岩样品分别制备成厚约0.03mm的普通岩石薄片和厚约0.1mm双面抛光的流体包裹体薄片多张,用于显微观察和显微激光拉曼光谱测试。挑选新鲜的凝灰岩样品2块,用于全岩主量和微量元素分析。
2.2 样品测试
2.2.1 显微观察
样品的显微观察在中国石油大学(华东)深层油气全国重点实验室完成。镜下观察使用仪器为徕卡DM2700P显微镜,在透光条件下观察和记录样品的岩石学特征和熔体包裹体岩相学特征,并在镜下挑选、标记保存完好的熔体包裹体,以备显微激光拉曼光谱测试。
2.2.2 主量和微量元素分析
样品全岩主量和微量元素分析测试在中国石油大学(华东)深层油气全国重点实验室完成。全岩主量元素采用IRIS Intrepid Ⅱ XSP电感耦合等离子体发射光谱仪(ICP-OES)进行测试;微量元素和稀土元素使用ELAN9000电感耦合等离子体质谱仪(ICP-MS)进行测试。用于本次测试的凝灰岩样品为TJS-1和TJS-2,对每块样品分别进行两次测试,以保证数据可靠性,测试偏差小于1%。
2.2.3 显微激光拉曼光谱分析
人工合成硅酸盐玻璃标准样品和髫髻山组熔体包裹体样品的显微激光拉曼光谱测试在中国石油大学(华东)深层油气全国重点实验室完成。用于测试的人工合成玻璃标样依次命名为标样1~标样4,熔体包裹体则按照MI-1至MI-9顺序依次编号。为降低实际样品薄片中的黏合剂对实验的干扰,测试前使用丙酮溶液浸泡清洗薄片,风干后进行实验测试分析。实验仪器为LABRAM HR EVO型激光拉曼光谱仪(法国HORIBA FRANCE SAS公司),使用的激光光源波长为532nm,光栅1800gr/mm,光谱分辨率≤0.65cm−1,测试精度小于±0.1cm−1,实验环境温度为20℃,湿度为50%。
2.3 测试数据质量控制
显微激光拉曼光谱法定量熔体包裹体水含量的准确性会受到拉曼光谱仪参数、拉曼图谱数据处理方法、标准样品、标定参数等方面的影响。因此,本文在使用该方法进行熔体包裹体水含量定量分析时,对上述四个方面的影响因素进行了优化,从而提高实验测试结果的准确度和精度。
2.3.1 拉曼光谱参数设置
由于过高的激光功率和积分时间可能会导致玻璃中水的丢失[11-12,19],通过比较不同条件下的水峰强度,最终采用的实验条件为激光功率30mW,积分时间30s,积分次数3次。在使用激光拉曼光谱仪对包裹体进行测试之前,用单晶硅标准样对该仪器进行校正以确保实验结果的准确性。
2.3.2 拉曼图谱数据处理
由于拉曼光谱在测试过程中会受到硅酸盐成分、仪器及测试环境等方面的影响,需要对测试得到的拉曼光谱进行数据处理。本文结合强度校正和基线校正对实验获得的拉曼光谱进行校正,以消除上述影响。具体校正程序见2.4.2节。
2.3.3 标准样品应用
为尽可能地提高测试结果准确性,在建立熔体包裹体中水的特征峰强度与浓度之间的线性关系时,首先需要借助标准物质建立实验室标定曲线。本文通过对中国科学技术大学壳幔物质与环境重点实验室人工合成的11个不同水含量的含水玻璃标准样品测试结果进行校正(包括11个参考样品[19]和4个实测样品),建立了实验室水含量标定曲线。
2.3.4 参数标定
拉曼光谱仪定量限定硅酸盐玻璃水含量的校正方法包括外标法和内标法[11,16]。相较于外标法,内标法在标定含水硅酸盐玻璃中水含量时更为准确且可靠,可以通过选取合适的标定参数和公式消除硅酸盐玻璃成分差异产生的影响[11]。样品的岩石学和地球化学特征表明,髫髻山组凝灰岩为酸性火山岩,而酸性硅酸盐玻璃具有较强的LF470拉曼峰高度/强度比(图2),优先选择AWF/ALF作为最佳标定参数[11,19]。
图 2 不同水含量人工合成流纹质玻璃的拉曼光谱红色实线为5.27% H2O人工合成标准样品的拉曼谱图;橙色实线为4.09% H2O人工合成标准样品的拉曼谱图;绿色实线为2.26% H2O人工合成标准样品的拉曼谱图;蓝色实线为1.48% H2O人工合成标准样品的拉曼谱图。LF-250cm−1~700cm−1为低波段谱带;HF-850cm−1~1300cm−1为高波段谱带;WF-3000cm−1~3800cm−1为总水谱带。Figure 2. Raman spectra of artificially synthesized rhyolitic glasses with different water content2.4 熔体包裹体水含量定量分析
2.4.1 含水玻璃标样拉曼光谱特征谱带
人工合成含水玻璃标准样品由中国科学技术大学壳幔物质与环境重点实验室提供,标样1~标样4分别为5.27% H2O、4.09% H2O、2.26% H2O 和1.48% H2O的实际测试样品,分别对应Tu等[19]的样品RH-8、RH-7、RH-5和RH-4。对人工合成含水玻璃标准样品进行显微激光拉曼光谱测试,拉曼光谱图显示,含水玻璃拉曼光谱具有三个特征谱带(图2),与前人实验结果一致[16-17,19]。在硅酸盐玻璃的低波段谱带中,最明显的谱带在470cm−1处,这是由于桥氧(T—O—T;T=Si,Al)的弯曲振动引起的[16-17]。而高波段谱带则与非桥氧(T—O;T=Si,Al)的拉伸振动有关[28-32]。在总水谱带中,在3540~3620cm−1的宽带则是因为O—H和H2Om伸缩振动的共同作用[33-34]。
2.4.2 拉曼图谱数据处理方法
使用Origin 2018软件对拉曼光谱图进行以下光谱处理。
第一步:强度校正。对原始拉曼光谱进行Long[35]校正以获得真实的光谱强度,校正方程表示为:
$$ I=I_{{\mathrm{o b s}}}\left\{\dfrac{v_{0}^{3}\left[1-\exp \left(-\dfrac{h c v}{K T}\right)\right] v}{\left(v_{\mathrm{0}}-v\right)^{4}}\right\} $$ (1) 式中:Iobs为测量强度;v0为入射激光的波数(v0=18797cm−1);h为普朗克常数(6.62607×10−34J·s);c为光速(2.9979×1010cm/s);K为玻尔兹曼常数(1.38065×10−23J/K);T为绝对温度。
第二步,基线校正。根据样品的光谱特征分段式固定部分基线,而后使用三次样条插值法扣除基线。
第三步,谱带积分。含水玻璃拉曼光谱具有三个特征谱带,即LF、HF、WF(图2),对基于前两步得到的拉曼光谱进行峰面积积分,分别得到LF、HF、WF的积分面积,简写为ALF、AHF、AWF。
2.4.3 熔体包裹体水含量标定曲线
前人研究证明,硅酸盐玻璃的水含量与其拉曼参数之间存在良好的线性关系[16-17,19],但由于不同激光拉曼光谱仪的效率因子不同,其线性关系的系数会存在差异。因此,不同仪器的AWF/ALF值之间也存在良好的线性关系。通过4个人工合成标准样品确定本文实际测量值AWF/ALF与Tu等[19]测得的AWF/ALF*之间的线性关系,可以得到11个标准样品的AWF/ALF值(表1),然后使用Origin 2018软件对标准样品进行AWF/ALF-CH2O线性拟合,得到的熔体包裹体水含量(CH2O)标定曲线如图3所示,其方程表示如下:
表 1 不同水含量人工合成含水硅酸盐玻璃标准样品的积分面积等参数测量结果Table 1. Measurement results of integrated area and other parameters of artificially synthesized water-containing silicate glasses standard samples with different water content人工合成含水玻璃
标准样品编号ALF AWF AWF/ALF*
(Tu等[19]测量值)AWF/ALF
(转换值或实测值)CH2O
(%)RH-1(Tu等,2023) / / 1.0700 0.3726 0.33 RH-2(Tu等,2023) / / 1.3300 0.4631 0.41 RH-3(Tu等,2023) / / 1.8400 0.6407 0.58 RH-4(Tu等,2023) / / 3.2600 1.1351 1.48 RH-5(Tu等,2023) / / 4.9400 1.7201 2.26 RH-6(Tu等,2023) / / 6.3100 2.1971 3.01 RH-7(Tu等,2023) / / 8.5100 2.9632 4.09 RH-8(Tu等,2023) / / 11.7800 4.1018 5.27 RH-9(Tu等,2023) / / 14.3000 4.9793 6.35 RH-10(Tu等,2023) / / 15.4400 5.3762 6.84 RH-11(Tu等,2023) / / 21.3100 7.4201 9.05 标准样品1 292.6424 1264.846 / 4.3222 5.27 标准样品2 244.9186 776.2908 / 3.1696 4.09 标准样品3 229.9241 374.9651 / 1.6308 2.26 标准样品4 189.5898 250.3734 / 1.3206 1.48 注:RH-1至RH-11为Tu等[19]测试样品;标样1至标样4为本文中的实际测试样品,分别对应Tu等[19]的样品RH-8、RH-7、RH-5、RH-4。“/”代表本文未使用的数据。 $$ C_{\mathrm{H}_2\mathrm{O}_t}=1.26\times\left(\frac{A_{\mathrm{WF}}}{A_{\mathrm{LF}}}\right)\quad R^2=0.998 $$ (2) 3. 结果与讨论
3.1 岩石学与地球化学特征
3.1.1 岩石学特征
样品新鲜面呈灰白色,具凝灰结构、块状构造。岩石主要由晶屑(35%)、岩屑(25%)和基质(40%)组成。晶屑成分以石英、长石为主,粒径可达1.8mm;岩屑以流纹岩岩屑为主,粒径约0.5~2mm;基质由尘屑和火山灰构成。镜下观察表明,岩石发育凝灰结构、假流纹构造,发生轻微蚀变。岩石定名为流纹质岩屑-晶屑凝灰岩。
3.1.2 岩石主量和微量元素地球化学特征
柳江盆地髫髻山组凝灰岩样品全岩主量元素分析结果见表2。样品中SiO2含量为75.18%~77.14%,Fe2O3含量1.06%~2.28%,Al2O3含量12.61%~13.02%,CaO含量0.14%~1.10%,MgO含量0.65%~1.29%,TiO2含量0.14%,全碱(Na2O+K2O)含量4.04%~4.24%,Na2O/K2O值为0.56~0.65。里特曼指数(σ)为0.51~0.53,属钙碱性系列。TAS图解投图落点在流纹岩区域中(图4a),符合样品中流纹质岩屑发育的岩石学特征,表明研究区髫髻山组下部凝灰岩的形成与酸性岩浆活动之间存在密切联系。
表 2 髫髻山组凝灰岩全岩主量元素测试结果Table 2. Analytical results of major elements in tuff of the Tiaojishan Formation凝灰岩样品
编号Na2O
(%)MgO
(%)Al2O3
(%)SiO2
(%)P2O5
(%)K2O
(%)CaO
(%)TiO2
(%)MnO
(%)Fe2O3
(%)烧失量
(%)Na2O+K2O
(%)主量元素含量
合计(%)TJS-1 1.45 1.29 13.02 75.18 0.03 2.60 1.10 0.14 0.04 2.28 3.38 4.04 100.48 TJS-2 1.67 0.65 12.61 77.14 0.02 2.58 0.14 0.14 0.03 1.06 3.04 4.24 99.07 注:为确保测试结果的可靠性,实验数据取同一样品两次测试结果的平均值。 柳江盆地髫髻山组凝灰岩样品全岩微量元素分析结果见表3。原始地幔标准化蛛网图(图4b)显示,大离子亲石元素(Rb、Th、U、K)富集,高场强元素(Ta、Nb、Ti、Zr、P)亏损,具明显Pb正异常,Sr负异常,弱Ba、La、Ce负异常;稀土元素球粒陨石标准化曲线(图4c)呈海鸥式展布,具明显Eu负异常,说明岩浆演化过程中存在明显的斜长石分离结晶作用;稀土元素配分模式为右倾型,呈现轻稀土富集、重稀土亏损的特点。(La/Sm)N平均值为6.77,(Gd/Yb)N平均值为1.88,表明轻稀土分馏程度高而重稀土分馏程度较低;(La/Yb)N平均值为15.65,轻重稀土分馏明显。李伍平等[21]对燕山造山带中-晚侏罗世髫髻山期火山岩进行研究发现,冀北髫髻山期流纹岩样品具有轻稀土元素强烈富集、重稀土元素强烈亏损、负Eu异常、Sr含量低(94~135μg/g)等特征,与本研究中凝灰岩样品的岩石地球化学特征相似。Ta/Yb-Th/Yb图解(图4d)投点落在活动大陆边缘,指示该时期研究区受洋壳俯冲的影响,岩浆活动强烈。(La/Nb)N平均值为1.06[原始地幔(La/Nb)N值约为0.96,平均大陆壳(La/Nb)N值为2.5[39]],指示成岩过程中受到一定地壳混染作用。上述地球化学特征与前人的研究结果[20,40-41]一致,即实验样品可以在一定程度上反映研究区髫髻山期早期的岩浆活动特征。
表 3 髫髻山组凝灰岩全岩微量元素测试结果Table 3. Analytical results of trace elements in tuff of the Tiaojishan Formation凝灰岩样品
编号Li
(μg/g)Be
(μg/g)B
(μg/g)Sc
(μg/g)V
(μg/g)Cr
(μg/g)Co
(μg/g)Ni
(μg/g)Cu
(μg/g)Zn
(μg/g)Ga
(μg/g)Ge
(μg/g)As
(μg/g)Rb
(μg/g)Sr
(μg/g)TJS-1 29.75 4.72 17.15 3.84 6.09 7.14 1.26 3.90 2.57 36.30 19.25 1.68 0.41 76.35 139.50 TJS-2 10.46 3.78 15.55 4.89 6.59 4.43 0.72 1.69 2.39 18.56 17.55 0.80 0.47 74.13 97.87 凝灰岩样品
编号Y
(μg/g)Zr
(μg/g)Nb
(μg/g)Mo
(μg/g)Cd
(μg/g)Cs
(μg/g)Ba
(μg/g)La
(μg/g)Ce
(μg/g)Pr
(μg/g)Nd
(μg/g)Sm
(μg/g)Eu
(μg/g)Gd
(μg/g)Tb
(μg/g)TJS-1 16.75 112.50 26.30 2.24 0.09 1.39 451.50 32.45 63.90 7.16 23.90 4.84 0.31 4.04 0.61 TJS-2 13.50 100.77 27.64 1.80 0.04 0.99 386.05 24.29 52.86 5.53 17.92 3.56 0.24 2.80 0.45 凝灰岩样品
编号Dy
(μg/g)Ho
(μg/g)Er
(μg/g)Tm
(μg/g)Yb
(μg/g)Lu
(μg/g)Hf
(μg/g)Ta
(μg/g)W
(μg/g)Tl
(μg/g)Pb
(μg/g)Bi
(μg/g)Th
(μg/g)U
(μg/g)TJS-1 2.95 0.63 1.65 0.27 1.91 0.31 3.97 2.02 0.51 0.63 24.40 0.16 22.40 6.35 TJS-2 2.45 0.50 1.44 0.25 1.70 0.27 3.68 2.04 0.70 0.60 20.70 0.10 21.60 5.50 注:为确保测试结果的可靠性,实验数据取同一样品两次测试结果的平均值。 3.2 凝灰岩熔体包裹体与水含量特征
3.2.1 熔体包裹体岩相学特征
对采集样品的包裹体薄片进行镜下显微观察,熔体包裹体较发育,呈孤立状随机分布在石英斑晶的晶格缺陷中,未见到边界层、破裂或泄露等明显的成分改造现象,表现出原生成因的岩相学特征[7,42]。熔体包裹体颜色复杂,呈无色或淡黄色,其形态具有多样性,发育多边形(图5中a,b)、橄榄球形(图5中c,d)及椭圆形(图5e),直径为30~165μm。根据熔体包裹体相态特征,可将其划分为三类:①玻璃质+结晶质熔体包裹体(图5a);②玻璃质+气泡熔体包裹体(图5中b,d);③玻璃质熔体包裹体(图5中c,e)。熔体包裹体内部不含或只含少量真空气泡,属于冷却速率较快的喷发火山岩相[6,43-44]。其中,呈孤立状分布在石英晶屑中、无破裂和泄露现象、不含或仅含单个气泡的熔体包裹体是岩浆迅速淬火冷凝而成,所捕获的熔体没有发生物理或化学成分改造,能代表矿物结晶时周围的熔体特征。
3.2.2 熔体包裹体拉曼光谱特征
髫髻山组凝灰岩中9个熔体包裹体样品的显微激光拉曼光谱测试结果显示:各熔体包裹体在3100~3800cm−1处均检测到水峰,未检测到CO2等其他挥发组分(图5f)。根据鲍文反应序列[45],石英形成于岩浆分离结晶作用晚期,其捕获的熔体包裹体组成接近于喷发前的熔浆成分,熔体包裹体中挥发份含量可以代表喷发前岩浆中挥发份含量[2]。
3.2.3 凝灰岩熔体包裹体水含量特征
按照2.3.2节所述步骤对9个熔体包裹体样品的显微激光拉曼图谱进行处理,并将处理结果(即AWF、ALF)代入建立的水含量标定曲线方程,即2.4.3中的方程(2),使用Excel进行计算,得到的熔体包裹体水含量结果列于表4。测定结果显示,柳江盆地髫髻山组凝灰岩石英晶屑中熔体包裹体水含量为0.99%~4.98%,平均含量为2.62%(表4)。
表 4 髫髻山组凝灰岩中熔体包裹体LF、WF积分面积及水含量计算结果Table 4. Integrated areas of LF and WF, and water content of the melt inclusions in tuff of the Tiaojishan Formation包裹体样品编号 熔体包裹体类型 ALF AWF AWF/ALF 峰位(cm−1) CH2Ot (%) MI-1 玻璃质 120.2732 203.0257 1.6880 3631 2.13 MI-2 玻璃质 119.9589 208.9559 1.7419 3631 2.19 MI-3 玻璃质 297.2329 233.0028 0.7839 3643 0.99 MI-4 玻璃质 198.5294 276.1755 1.3911 3636 1.75 MI-5 玻璃质 180.3690 306.9109 1.7016 3631 2.14 MI-6 玻璃质+气泡 78.6287 288.6345 3.6709 3636 4.63 MI-7 玻璃质+气泡 222.9093 237.9510 1.0675 3637 1.35 MI-8 玻璃质+气泡 526.2989 1446.2396 2.7479 3541 3.46 MI-9 玻璃质+结晶质 186.4130 737.1156 3.9542 3568 4.98 根据李福春等[1]的熔体包裹体水含量统计数据,大多数超基性基性岩浆中的水含量在0~0.8%;大部分中性岩浆水含量为0.4%~2.8%,平均为2.26%;酸性岩浆水含量范围主要集中在0.8%~5.6%,平均为2.712%。对比测定结果与统计数据可以看出,柳江盆地髫髻山组下部凝灰岩中熔体包裹体呈现高水含量的特点,反映了岩浆演化后期为酸性岩浆,这与岩石地球化学特征反映的岩浆性质一致,进一步验证了该时期研究区存在由地壳浅部酸性岩浆活动引发的火山爆发。
柳江盆地位于燕山褶皱造山带东段(图1a),在中侏罗世(160±5Ma前后)受到燕山造山运动的影响强烈,研究区处于大陆边缘活动阶段(图4d),上地幔发生部分熔融[25,40-41],形成的岛弧拉斑玄武质岩浆随着基性矿物的分离结晶,逐渐向富硅、富水的酸性岩浆演化。水含量的增加促进了斜长石等矿物的分离结晶,导致负Eu异常(图4c)的形成[46];高含水量的岩浆也可以促进流体相的形成,使得大离子亲石元素更容易在岩浆中富集,而高场强元素则因难以进入流体相而在残余熔体中表现为亏损[47](图4b),从而使其形成的火山岩具有特定的地球化学特征。此外,水作为岩浆中最主要的挥发份,控制着岩浆的脱气过程,从而显著影响了岩浆系统的喷发动力[43,48]。根据样品的熔体包裹体水含量测定结果,可以推测,高水含量岩浆是研究区髫髻山期早期爆发性火山喷发的重要驱动因素之一。
4. 结论
柳江盆地髫髻山组下部发育流纹质岩屑-晶屑凝灰岩,在地球化学上表现出富水酸性岩浆的特征:大离子亲石元素(LILEs)富集,高场强元素(HFSEs)亏损,稀土元素(REEs)配分模式呈现轻稀土(LREEs)富集、重稀土(HREEs)亏损的特点,并出现负Eu异常和明显Pb正异常、Sr负异常,代表了研究区髫髻山期早期的岩浆特征。基于人工合成标样,本文建立了显微激光拉曼光谱定量熔体包裹体水含量标定曲线,并对柳江盆地髫髻山组下部凝灰岩石英斑晶内的熔体包裹体开展了水含量定量分析。测定结果表明,该凝灰岩中熔体包裹体水含量为0.99%~4.98%,平均为2.62%,介于酸性岩浆水含量范围,指示了研究区髫髻山期早期为富水酸性岩浆。凝灰岩地球化学特征和熔体包裹体水含量测定结果均反映了柳江盆地髫髻山早期岩浆具有富水、富硅的特点。结合样品的熔体包裹体水含量测定结果和大规模火山喷发背景,推测高水含量岩浆可能是导致此次爆发性火山喷发的重要条件之一。
今后的研究中,可利用显微激光拉曼光谱法对研究区髫髻山期不同阶段的火山岩开展水含量系统分析,这对于探讨燕山造山带髫髻山期火山岩成因和岩浆演化具有重要意义。
致谢:感谢中国科学技术大学壳幔物质与环境重点实验室(合肥)高晓英教授团队提供的帮助。
致谢: 感谢合肥工业大学陈天虎教授提供的天然矿物样品。感谢审稿老师对本文提出的重要修改意见。 -
图 2 不同能量密度下天然矿物中部分主微量元素测试数据的相对标准偏差(RSD)与该元素含量的趋势图(主量元素的含量大于0.01%,微量元素的含量大于0.1μg/g)
Figure 2. Trend chart of relative standard deviation (RSD) and the content of some major and trace elements in natural minerals under different energy densities (major elements content is greater than 0.01%, and trace elements content of is greater than 0.1μg/g)
图 5 不同激光能量密度下标准样品中部分主微量元素测试数据相对标准偏差(RSD)分布图(主量元素的含量大于0.01%,微量元素的含量大于0.1μg/g)
Figure 5. Relative standard deviation (RSD) distribution maps of experimental data of some main and trace elements in standard samples under different laser energy densities (major elements content is greater than 0.01%, and trace elements content is greater than 0.1μg/g)
表 1 LA-ICP-MS微量元素分析工作参数
Table 1 Equipment parameters for LA-ICP-MS trace elemental analysis
ICP-MS工作参数 设定值 激光工作参数 设定值 射频功率 1350W 波长 193nm 等离子体流量 15L/min 能量密度 以实测为准 辅助气流量 0.92L/min 载气 He 检测器 Dual(脉冲和模拟计数) 剥蚀方式 点剥蚀 扫描模式 跳峰 剥蚀束斑大小 60μm 单位质量扫描时间 8ms 剥蚀频率 8Hz 获取模式 时间分辨率分析 脉冲数 320 表 2 不同莫氏硬度矿物可稳定剥蚀的最小激光能量密度
Table 2 Minimum laser energy density for stable ablation of different Mohs hardness minerals
矿物 莫氏硬度 可产生稳定信号的最小激光能量密度(J/cm2) 石英 7 5 萤石 4 4 刚玉 9 2 黄玉 8 2 钠长石 6 2 钠铁闪石 5.5~6 2 透闪石 5~6 2 磷灰石 5 2 白云母 2.5~4 2 方解石 3 1 石膏 2 1 滑石 1 1 -
Durrant S F.Feasibility of improvement in analytical per-formance in laser-ablation inductively-coupled plasma-mass spectrometry (LA-ICP-MS) by addition of nitrogen to the argon plasma[J].Fresenius Journal of Analytical Chemistry, 1994, 349(10-11):768-771. doi: 10.1007/BF00325655
Kozono S, Haraguchi H.Determination of ultratrace im-purity elements in high purity niobium materials by on-line matrix separation and direct injection/inductively coupled plasma mass spectrometry[J].Talanta, 2007, 72(5):1791-1799. doi: 10.1016/j.talanta.2007.02.021
Zhang W, Hu Z, Liu Y, et al.Improved in situ Sr isotopic analysis by a 257nm femtosecond laser in combination with the addition of nitrogen for geological minerals[J].Chemical Geology, 2018, 479(none):10-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5819ee64271c8a80c3bbba21c4ad40b5
Gray A L.Solid sample introduction by laser ablation for inductively coupled plasma source-mass spectrometry[J].Analyst, 1985, 110(5):551-556. doi: 10.1039/an9851000551
Miliszkiewicz N, Walas S, Tobiasz A.Current approaches to calibration of LA-ICP-MS analysis[J].Journal of Analytical Atomic Spectrometry, 2015, 30(2):327-338. doi: 10.1039/C4JA00325J
袁洪林, 高山, 戴梦宁, 等.流体包裹体中Sr同位素的激光剥蚀多接收等离子体质谱原位微区分析[J].矿物岩石地球化学通报, 2009, 28(4):313-317. doi: 10.3969/j.issn.1007-2802.2009.04.001 Yuan H L, Gao S, Dai M N, et al.In situ strontium isotope analysis of fluid inclusion using LA-MC-ICPMS[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(4):313-317. doi: 10.3969/j.issn.1007-2802.2009.04.001
Eggins S M.Laser ablation ICP-MS analysis of geo-logical materials prepared as lithium borate glasses[J].Geostandards Newsletter, 2003, 27(2):147-162. doi: 10.1111/j.1751-908X.2003.tb00642.x
Liu Y S, Hu Z C, Li M, et al.Applications of LA-ICP-MS in the elemental analyses of geological samples[J].Chinese Science Bulletin, 2013, 58(32):3863-3878. doi: 10.1007/s11434-013-5901-4
Garcia de Madinabeitia S, Sanchez Lorda M E, Ibarguchi J I.Simultaneous determination of major to ultratrace elements in geological samples by fusion-dissolution and inductively coupled plasma mass spectrometry techniques[J].Analytica Chimica Acta, 2008, 625(2):117-130. doi: 10.1016/j.aca.2008.07.024
Upadhyay N, Majestic B J, Prapaipong P, et al.Evalua-tion of polyurethane foam, polypropylene, quartz fiber, and cellulose substrates for multi-element analysis of atmospheric particulate matter by ICP-MS[J].Analytical & Bioanalytical Chemistry, 2009, 394(1):255-266. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM19242682
汪奇, 张文, 王立云, 等.激光剥蚀-电感耦合等离子体质谱测定植物样品中的元素[J].光谱学与光谱分析, 2011, 31(12):3379-3383. doi: 10.3964/j.issn.1000-0593(2011)12-3379-05 Wang Q, Zhang W, Wang L Y, et al.Quantitative determination of elements in plant samples by laser ablation inductively coupled plasma mass spectrometry[J].Spectroscopy and Spectral Analysis, 2011, 31(12):3379-3383. doi: 10.3964/j.issn.1000-0593(2011)12-3379-05
Löhr K, Traub H, Wanka A J, et al.Quantification of metals in single cells by LA-ICP-MS:Comparison of single spot analysis and imaging[J].Journal of Analytical Atomic Spectrometry, 2018, 33(9):1579-1587. doi: 10.1039/C8JA00191J
Ren H D, Wang T, Zhang L, et al.Ages, sources and tectonic settings of the triassic igneous rocks in the easternmost segment of the East Kunlun Orogen, Central China[J].Acta Geologica Sinica (English Edition), 2016, 90(2):641-668. doi: 10.1111/1755-6724.12696
Li W, Liu Y Q, Dong Y P, et al.The geochemical cha-racteristics, geochronology and tectonic significance of the Carboniferous volcanic rocks of the Santanghu area in Northeastern Xinjiang, China[J].Science China (Earth Sciences), 2013, 56(8):1318-1333. doi: 10.1007/s11430-012-4483-3
Xiao X, Zhou T F, Fan Y, et al.LA-ICP-MS in situ trace elements and FE-SEM analysis of pyrite from the Xinqiao Cu-Au-S deposit in Tongling, Anhui and its constraints on the ore genesis[J].Acta Petrologica Sinica, 2016, 32(2):369-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201602007
Zhang L Y, Li N, Prelevic D.The research status of olivine trace elements in-situ analysis and perspectives of its application[J].Acta Petrologica Sinica, 2016, 32(6):1877-1890. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201606020
Pettke T, Oberli F, Audetat A, et al.Recent develop-ments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS[J].Ore Geology Reviews, 2012, 44:10-38. doi: 10.1016/j.oregeorev.2011.11.001
Li C Y, Jiang Y H, Zhao Y, et al.Trace element analyses of fluid inclusions using laser ablation ICP-MS[J].Solid Earth Sciences, 2018, 3(1):8-15. doi: 10.1016/j.sesci.2017.12.001
Fusswinkel T, Giehl C, Beermann O, et al.Combined LA-ICP-MS microanalysis of iodine, bromine and chlorine in fluid inclusions[J].Journal of Analytical Atomic Spectrometry, 2018, 33(5):768-783. doi: 10.1039/C7JA00415J
范晨子, 詹秀春, 曾普胜, 等.白云鄂博稀土氟碳酸盐矿物的LA-ICP-MS多元素基体归一定量分析方法研究[J].岩矿测试, 2015, 34(6):609-616. doi: 10.15898/j.cnki.11-2131/td.2015.06.002 Fan C Z, Zhan X C, Zeng P S, et al.Multi-element cont-ent analysis of rare earth fluorocarbonates from Bayan Obo deposit by laser ablation-inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2016, 34(6):609-616. doi: 10.15898/j.cnki.11-2131/td.2015.06.002
Drost K, Chew D, Petrus J A, et al.An image mapping approach to U-Pb LA-ICP-MS carbonate dating and applications to direct dating of carbonate sedimentation[J].Geochemistry, Geophysics, Geosystems, 2018, 19(12):4631-4648. doi: 10.1029/2018GC007850
Peng S, Hu Q, Ewing R P, et al.Quantitative 3-D elemental mapping by LA-ICP-MS of a basaltic clast from the Hanford 300 Area, Washington, USA[J].Environmental Science & Technology, 2012, 46(4):2025-2032. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=adc88081136a8ddaab91343cf30bdceb
Norman M D, Pearson N J, Sharma A, et al.Quantitative analysis of trace elements in geological materials by laser ablation ICPMS:Instrumental operating conditions and calibration values of NIST glasses[J].Geostandards Newsletter, 1996, 20(2):247-261. doi: 10.1111/j.1751-908X.1996.tb00186.x
周文喜, 王华建, 付勇, 等.基于LA-ICP-MS多元素成像技术的早寒武世磷结核成因研究[J].岩矿测试, 2017, 36(2):97-106. doi: 10.15898/j.cnki.11-2131/td.2017.02.002 Zhou W X, Wang H J, Fu Y, et al.Study on the formation mechanism of phosphate nodules in the Early Cambrian period using LA-ICP-MS multi-element imaging technology[J].Rock and Mineral Analysis, 2017, 36(2):97-106. doi: 10.15898/j.cnki.11-2131/td.2017.02.002
Chen Y T, Naessens K, Baets R, et al.Ablation of tran-sparent materials using excimer lasers for photonic applications[J].Optical Review, 2005, 12(6):427-441. doi: 10.1007/s10043-005-0427-x
何飞, 程亚.飞秒激光微加工:激光精密加工领域的新前沿[J].中国激光, 2007, 34(5):595-622. doi: 10.3321/j.issn:0258-7025.2007.05.001 He F, Cheng Y.Femtosecond laser micromachining:Frontier in laser precision micromachining[J].Chinese Journal of Laser, 2007, 34(5):595-622. doi: 10.3321/j.issn:0258-7025.2007.05.001
罗彦, 胡圣虹, 刘勇胜, 等.激光剥蚀电感耦合等离子体质谱微区分析新进展[J].分析化学, 2001, 29(11):1345-1352. doi: 10.3321/j.issn:0253-3820.2001.11.026 Luo Y, Hu S H, Liu Y S, et al.Recent trends in laser ablation inductively coupled plasma-mass spectrometric microanalysis[J].Chinese Journal of Analytical Chemistry, 2001, 29(11):1345-1352. doi: 10.3321/j.issn:0253-3820.2001.11.026
Günther D, Heinrich C A.Comparison of the ablation behaviour of 266nm Nd:YAG and 193nm ArF excimer lasers for LA-ICP-MS analysis[J].Journal of Analytical Atomic Spectrometry, 1999, 14(9):1369-1374. doi: 10.1039/A901649J
Günther D, Frischknecht R, Heinrich C A, et al.Capabi-lities of an argon fluoride 193nm excimer laser for laser ablation inductively coupled plasma mass spectometry microanalysis of geological materials[J].Journal of Analytical Atomic Spectrometry, 1997, 12(9):939-944. doi: 10.1039/A701423F
Güillong M, Horn I, Günther D.A comparison of 266nm, 213nm and 193nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2003, 18(10):1224-1230. doi: 10.1039/B305434A
Gaboardi M, Humayun M.Elemental fractionation during LA-ICP-MS analysis of silicate glasses:Implications for matrix-independent standardization[J].Journal of Analytical Atomic Spectrometry, 2009, 24(9):1188-1197. doi: 10.1039/b900876d
Russo R E, Mao X L, Borisov O V, et al.Influence of wavelength on fractionation in laser ablation ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2000, 15(9):1115-1120. doi: 10.1039/b004243i
柯于球, 张路远, 郑洪涛, 等.硫化物矿物LA-ICP-MS微区分析激光剥蚀行为研究[J].冶金分析, 2010, 30(增刊):417-419. http://d.old.wanfangdata.com.cn/Conference/7364294 Ke Y Q, Zhang L Y, Zheng H T, et al.An investigation on laser ablation behavior of sulfide mineral in LA-ICP-MS microanalysis[J].Metallurgical Analysis, 2010, 30(Supplement):417-419. http://d.old.wanfangdata.com.cn/Conference/7364294
Horn I, Günther D.The influence of ablation carrier gasses Ar, He and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols:Implications for LA-ICP-MS[J].Applied Surface Science, 2003, 207(1-4):144-157. doi: 10.1016/S0169-4332(02)01324-7
Garcia C C, Lindner H, Niemax K.Laser ablation induc-tively coupled plasma mass spectrometry-Current shortcomings, practical suggestions for improving performance, and experiments to guide future development[J].Journal of Analytical Atomic Spectrometry, 2009, 24(1):14-26. doi: 10.1039/B813124B
吴石头, 许春雪, Klaus S, 等.193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J].岩矿测试, 2017, 36(5):451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044 Wu S T, Xu C X, Klaus S, et al.Study on ablation behaviors and ablation rates of a 193nm ArF excimer laser system for selected substrates in LA-ICP-MS analysis[J].Rock and Mineral Analysis, 2017, 36(5):451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044
王辉, 汪方跃, 盛兆秋.LA-ICP-MS分析中不同莫氏硬度矿物激光剥蚀行为及剥蚀速率研究[J].岩石矿物学杂志, 2019, 38(1):113-120. doi: 10.3969/j.issn.1000-6524.2019.01.010 Wang H, Wang F Y, Sheng Z Q.The laser ablation behavior and rate of minerals with different Mohs hardnesses in LA-ICP-MS analysis[J].Acta Petrologica et Mineralogica, 2019, 38(1):113-120. doi: 10.3969/j.issn.1000-6524.2019.01.010
吴石头, 王亚平, 许春雪.激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J].岩矿测试, 2015, 34(5):503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002 Wu S T, Wang Y P, Xu C X.Research progress on reference materials for in situ elemental analysis by laser ablation-inductively coupled plasma-mass spectro-metry[J].Rock and Mineral Analysis, 2015, 34(5):503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002
Marcel G, Kathrin H, Eric R, et al.Preliminary charac-terisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193nm, 213nm and 266nm wavelengths[J].Geostandards and Geoanalytical Research, 2005, 29(3):315-331. doi: 10.1111/j.1751-908X.2005.tb00903.x
Regnery J, Stoll B, Jochum K P.High-resolution LA-ICP-MS for accurate determination of low abundances of K, Sc and other trace elements in geological samples[J].Geostandards and Geoanalytical Research, 2010, 34(1):19-38. doi: 10.1111/j.1751-908X.2009.00025.x
Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004
Bulska E, Wagner B.Quantitative aspects of inductively coupled plasma mass spectrometry[J].Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2016, 374(2079):20150369. doi: 10.1098/rsta.2015.0369
宁思远, 汪方跃, 薛维栋, 等.长江中下游铜陵地区宝山岩体地球化学研究[J].地球化学, 2017, 46(5):397-412. doi: 10.3969/j.issn.0379-1726.2017.05.001 Ning S Y, Wang F Y, Xue W D, et al.Geochemistry of the Baoshan Pluton in the Tongling region of the Lower Yangtze River Belt[J].Geochemical, 2017, 46(5):397-412. doi: 10.3969/j.issn.0379-1726.2017.05.001
汪方跃, 葛粲, 宁思远, 等.一个新的矿物面扫描分析方法开发和地质学应用[J].岩石学报, 2017, 33(11):3422-3436. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201711006 Wang F Y, Ge C, Ning S Y, et al.A new approach to LA-ICP-MS mapping and application in geology[J].Acta Petrologica Sinica, 2017, 33(11):3422-3436. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201711006
徐鸿志, 靳兰兰, 李爱荣, 等.激光剥蚀等离子体质谱分析中激光剥蚀参数对信号响应的影响[J].岩矿测试, 2005, 24(3):171-175. doi: 10.3969/j.issn.0254-5357.2005.03.003 Xu H Z, Jin L L, Li A R, et al.The effects of laser ablation operating parameters on signal response in LA-ICP-MS microanalysis[J].Rock and Mineral Analysis, 2005, 24(3):171-175. doi: 10.3969/j.issn.0254-5357.2005.03.003
Russo R E, Mao X L, Liu C, et al.Laser assisted plasma spectrochemistry:Laser ablation[J].Journal of Analytical Atomic Spectrometry, 2004, 19(9):1084-1089. doi: 10.1039/b403368j
陈玉红, 王海舟.激光剥蚀-电感耦合等离子体质谱法中元素分馏效应的影响因素及其评价[J].冶金分析, 2008, 28(8):1-6. doi: 10.3969/j.issn.1000-7571.2008.08.001 Chen Y H, Wang H Z.Influence factors and evaluation of elemental fractionation in laser ablation inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2008, 28(8):1-6. doi: 10.3969/j.issn.1000-7571.2008.08.001
Nadoll P, Koenig A E.LA-ICP-MS of magnetite:Methods and reference materials[J].Journal of Analytical Atomic Spectrometry, 2011, 26(9):1872-1877. doi: 10.1039/c1ja10105f
Kuhn H R, Günther D.Laser ablation-ICP-MS:Particle size dependent elemental composition studies on filter-collected and online measured aerosols from glass[J].Journal of Analytical Atomic Spectrometry, 2004, 19(9):1158-1164. doi: 10.1039/B404729J
Eggins S M, Shelley J M G.Compositional heterogeneity in NIST SRM610-617 glasses[J].Geostandards Newsletter, 2002, 26(3):269-286. doi: 10.1111/j.1751-908X.2002.tb00634.x
Pearce N J, Perkins W T, Westgate J A, et al.A compilation of new and published major and trace element data for NIST SRM610 and NIST SRM612 glass reference materials[J].Geostandards Newsletter, 1997, 21(1):115-144. doi: 10.1111/j.1751-908X.1997.tb00538.x
Jochum K P, Weis U, Stoll B, et al.Determination of reference values for NIST SRM610-617 glasses following ISO guidelines[J].Geostandards and Geoanalytical Research, 2011, 35(4):397-429. doi: 10.1111/j.1751-908X.2011.00120.x
Rocholl A B, Simon K, Jochum K P, et al.Chemical characterisation of NIST silicate glass certified reference material SRM610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE[J].Geostandards Newsletter, 1997, 21(1):101-114. doi: 10.1111/j.1751-908X.1997.tb00537.x
Jochum K P, Stoll B, Herwig K, et al.MPI-DING re-ference glasses for in situ microanalysis:New reference values for element concentrations and isotope ratios[J].Geochemistry, Geophysics, Geosystems, 2006, 7(2):1-44. http://www.researchgate.net/publication/42797954_MPI-DING_reference_glasses_for_in_situ_microanalysis_New_reference_values_for_element_concentrations_and_isotope_ratios
周亮亮, 魏均启, 王芳, 等.LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J].岩矿测试, 2017, 36(4):350-359. doi: 10.15898/j.cnki.11-2131/td.201701160007 Zhou L L, Wei J Q, Wang F, et al.Optimization of the working parameters of LA-ICP-MS and its application to zrcon U-Pb dating[J].Rock and Mineral Analysis, 2017, 36(4):350-359. doi: 10.15898/j.cnki.11-2131/td.201701160007
Bao Z, Zhang H, Yuan H, et al.Flux-free fusion technique using a boron nitride vessel and rapid acid digestion for determination of trace elements by ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2016, 31(11):2261-2271. doi: 10.1039/C6JA00269B
He Z, Huang F, Yu H, et al.A flux-free fusion technique for rapid determination of major and trace elements in slicate rocks by LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2016, 40(1):5-21. doi: 10.1111/j.1751-908X.2015.00352.x
Chen L, Liu Y, Hu Z, et al.Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%[J].Chemical Geology, 2011, 284(3-4):283-295. doi: 10.1016/j.chemgeo.2011.03.007
Hou Z H, Wang C X.Determination of 35 trace elements in geological samples by inductively coupled plasma mass spectrometry[J].Journal of University of Science and Technology of China, 2007, 37(8):940-944. http://cn.bing.com/academic/profile?id=e46988f1504e666bd22cf8df0783a476&encoded=0&v=paper_preview&mkt=zh-cn
Wagner B, Nowak A, Bulska E, et al.Complementary analysis of historical glass by scanning electron microscopy with energy dispersive X-ray spectroscopy and laser ablation inductively coupled plasma mass spectrometry[J].Microchimica Acta, 2007, 162(3-4):415-424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e0d8e391c46e621ab58b3c8473a51ded
-
期刊类型引用(0)
其他类型引用(2)