• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

四酸敞口溶解-电感耦合等离子体发射光谱法测定土壤中的硫

姜云军, 李星, 姜海伦, 张宁, 韩雪, 朱永晓

姜云军, 李星, 姜海伦, 张宁, 韩雪, 朱永晓. 四酸敞口溶解-电感耦合等离子体发射光谱法测定土壤中的硫[J]. 岩矿测试, 2018, 37(2): 152-158. DOI: 10.15898/j.cnki.11-2131/td.201704010048
引用本文: 姜云军, 李星, 姜海伦, 张宁, 韩雪, 朱永晓. 四酸敞口溶解-电感耦合等离子体发射光谱法测定土壤中的硫[J]. 岩矿测试, 2018, 37(2): 152-158. DOI: 10.15898/j.cnki.11-2131/td.201704010048
Yun-jun JIANG, Xing LI, Hai-lun JIANG, Ning ZHANG, Xue HAN, Yong-xiao ZHU. Determination of Sulfur in Soil by Inductively Coupled Plasma-Optical Emission Spectrometry with Four Acids Open Dissolution[J]. Rock and Mineral Analysis, 2018, 37(2): 152-158. DOI: 10.15898/j.cnki.11-2131/td.201704010048
Citation: Yun-jun JIANG, Xing LI, Hai-lun JIANG, Ning ZHANG, Xue HAN, Yong-xiao ZHU. Determination of Sulfur in Soil by Inductively Coupled Plasma-Optical Emission Spectrometry with Four Acids Open Dissolution[J]. Rock and Mineral Analysis, 2018, 37(2): 152-158. DOI: 10.15898/j.cnki.11-2131/td.201704010048

四酸敞口溶解-电感耦合等离子体发射光谱法测定土壤中的硫

基金项目: 

河北省地勘局国土与海洋资源调查项目(201403)

河北省地勘局国土与海洋资源调查项目 201403

详细信息
    作者简介:

    姜云军, 高级工程师, 主要从事光谱分析和样品前处理技术研究。E-mail:jiangyunjun3@sina.com

  • 中图分类号: O657.31;O613.51

Determination of Sulfur in Soil by Inductively Coupled Plasma-Optical Emission Spectrometry with Four Acids Open Dissolution

  • 摘要: 当前土壤中硫元素的测定方法主要是X射线荧光光谱法和燃烧法,上述两种方法分析速度慢,对高、低含量样品的分析精度较差,难以满足大批量样品快速、准确分析的要求。为提高分析速度和结果的准确度,本文建立了用盐酸-硝酸-氢氟酸-高氯酸(四酸)溶解土壤样品,电感耦合离子体发射光谱法测定硫的方法。通过考察王水消解、王水水浴消解和四酸消解的溶样效果,测定结果表明采用四酸能更好地溶解土壤样品中的硫。方法检出限为10 μg/g,测量范围为33.3~50000 μg/g,相对标准偏差为0.47%~4.05%。本方法简单快速,准确度高,已经过数千件实际样品验证,在不增加分析成本的情况下,一份溶液还可以同时测定钾钠钙镁铁锰铍锂镧铈钪钒钴镍钛等元素,适合在地质行业推广应用。
    要点

    (1) 土壤样品中的硫能被盐酸-硝酸-氢氟酸-高氯酸充分溶解。

    (2) 溶液中的硫和钾、钠、钙、镁等元素可以通过ICP-OES同时测定。

    (3) 该方法中,一份溶液可以同时测定15余种元素,分析效率高。

    HIGHLIGHTS

    (1) Sulfur in soil samples can be well dissolved by HCl-HNO3-HF-HClO4 acid system.

    (2) Sulfur and K, Na, Ca, Mg or other elements in the solution can be simultaneously measured by ICP-OES.

    (3) In this method, a solution can simultaneously determine more than 15 kinds of elements with high analytical efficiency.

  • 硫是地壳中含量最丰富的元素之一,也是一切生物必需的营养元素。硫通过在水、土壤、生物及大气圈内永不停息地循环,对生态环境和植物生长产生一系列的影响。土壤是水、生物和大气圈的交汇中心,并且硫与土壤环境和肥力、植物生长和地球变化有着密切联系,对土壤中硫的快速、准确分析具有非常重要的指导意义。土壤中的硫含量变化较大,一般在30~10000 μg/g之间,其平均值约700 μg/g[1]。土壤是一个复杂而多相的物质系统,它主要由硅酸盐颗粒和有机物组成,硫在土壤中的形态多样。据报道,在干旱土壤中,硫以水溶性硫酸盐和不溶性的硫化物(CaSO4·2H2O、MgSO4·7H2O、ZnSO4、CaFeS2和FeS2等)为主;在排水良好的温带农用土壤中,硫以有机束缚态为主;在温润、半温润的牧场和草原土壤中,绝大多数的硫为有机态[2]

    测定样品中的全硫主要采用管式炉燃烧法[3-4]、X射线荧光光谱法(XRF)[5-10]、硫酸钡重量法[11-12]、离子色谱法[13-15]等。其中重量法和离子色谱法因流程长、流程繁琐,难以满足行业大批量样品的快速分析需求;应用燃烧法测定低含量的硫,精密度、准确度较差;XRF法虽然可以同时测定二氧化硅、氧化钾、氧化钠及硫等主次量元素,但对于土壤样品中硫的分析结果不令人满意[16],并且分析速度较慢[17]。电感耦合等离子体发射光谱法(ICP-OES)具有灵敏度高、检出限低、精密度好、线性范围广的特点,适合大批量样品的分析。目前已经建立了多种应用酸溶或碱熔分解样品,ICP-OES测定不同样品中硫含量的方法[18-28]。例如,马生凤等[26]用四酸溶样测定铁铜锌铅矿石中的硫等22个元素;苏凌云[18]在低温下用逆王水和溴水溶解测定铁矿石中的硫磷;李清彩等[22]以高氯酸、硝酸和氢氟酸溶解试样测定多金属矿中的砷铬铟硫锑;高小山等[23]用过氧化钠熔融测定黑钨矿中的硫;胡璇等[25]用过氧化钠熔融测定高硫铝土矿中的硫。上述方法中,分析对象均以矿石和矿物为主,其中一些方法采用了不完全分解法。由此可见,样品前处理是准确测定硫的前提条件。

    本文试验了王水、王水水浴和盐酸-硝酸-氢氟酸-高氯酸(四酸)三种酸溶方法,认为盐酸-硝酸-氢氟酸-高氯酸体系比其他两种方法更具优势,建立了四酸敞口溶解ICP-OES测定硫的方法。

    VISTA-MPX全谱直读电感耦合等离子体发射光谱仪(美国Varian公司)。仪器工作条件为:射频功率1200 W,辅助气(Ar)流量1.5 L/min, 冷却气流量15.0 L/min,雾化器压力200 kPa, 观察高度10 mm,蠕动泵转速15 r/min,清洗时间30 s,进样稳定延时20 s,读数稳定延时10 s,读数时间10 s,读数次数3次。

    CT1461-35智能电热板(天津拓至明实验仪器有限公司)。

    硫标准溶液(1000 mg/L):准确称取2.2139 g于105℃干燥2 h的基准无水硫酸钠于100 mL烧杯中,加适量水溶解完全,加5 mL盐酸,转移至500 mL容量瓶中,定容。

    硫标准溶液:由硫标准溶液用10%盐酸逐级稀释至所需浓度。

    所需的盐酸、硝酸、氢氟酸、高氯酸均为优级纯(国药集团化学试剂有限公司)。

    实验用水为二次去离子水(电阻率≥18 MΩ·cm)。

    将土壤样品中各种形态的硫定量转入溶液是样品前处理的关键,本研究首先借鉴了苏凌云[18]采用王水溶矿的方案(方法1),实验发现样品在最后蒸干阶段易跳溅;进而对上述方法进行了改进,试验了王水水浴溶矿方法(方法2),部分土壤标准物质的测定结果偏低比较严重,并且样品溶液需放置、澄清较长时间才能上机测定。可见,上述两种前处理方法对有些土壤样品不太适用。

    本研究拟定了四酸全溶方法(方法3),土壤中的二氧化硅是主量元素,在二氧化硅晶格中经常包裹着一些元素,可以通过加入氢氟酸打开晶格并挥发除去硅来解决。土壤中大部分硫为有机硫,加入高氯酸可以分解破坏有机物且将低价硫氧化为硫酸根。

    准确称取0.2500 g样品置于100 mL玻璃烧杯中,用少量去离子水润湿样品,加入5 mL硝酸和15 mL盐酸,将烧杯放置于电热板上,盖上表面皿,于150℃加热分解,蒸至湿盐状,取下加入15 mL盐酸,微热溶解盐类,用少量水冲洗杯壁和表面皿,取下烧杯,冷却,并将溶液转移至25 mL聚乙烯比色管中,去离子水定容至25 mL,静置8 h后测定。

    准确称取0.2500 g样品置于25 mL比色管中,加入新配制的王水25 mL,沸水浴2 h, 取出比色管,冷却,去离子水定容至25 mL,静置8 h后测定。

    准确称取0.2500 g样品置于50 mL聚四氟乙烯烧杯中,用少量去离子水润湿样品,加入2.5 mL硝酸、2.5 mL盐酸、5 mL氢氟酸和1 mL高氯酸,盖好盖子,轻轻摇动,置于排风橱中放置过夜。将聚四氟乙烯烧杯放置于电热板上, 取下盖子,用少量水冲洗,于190~210℃加热分解,蒸干至白烟冒尽(若样品分解不完全,可在未蒸干之前补加硝酸、氢氟酸继续蒸干);关闭电源,然后加入5 mL 50%的盐酸,在电热板上利用余温继续加热至固体盐类完全溶解,用大约5 mL的去离子水冲洗杯壁,继续加热5~10 min至溶液清亮;取下烧杯冷却,并将溶液转移至25 mL聚乙烯比色管中,去离子水定容至25 mL,静置4 h后测定。

    王水溶解、王水水浴溶解和四酸敞口溶解三种前处理方法的测定结果见表 1。王水溶样和王水水浴溶样的测定结果系统偏低,对于个别标准样品的相对误差甚至达到27%, 可能与王水不能完全破坏硅酸盐晶格造成样品分解不完全及硫元素不能全部进入溶液有关。刘峰等[29]研究了不同混合酸消解土壤样品对土壤中重金属含量测定的影响,认为完全消解体系(盐酸、硝酸、氢氟酸和高氯酸)的测定结果高于不完全消解体系。四酸溶样测定结果优于王水溶解、王水水浴溶解,所以本文采用四酸溶解。

    表  1  四酸、王水、王水水浴溶解结果
    Table  1.  Analytical results of samples disoluted with four acids, aqua regia and aqua waterbath methods
    标准物质编号 硫含量(μg/g) 三种溶解方法测定值与标准值的相对误差(%)
    标准值 四酸溶解测定值 王水溶解测定值 王水水浴溶解测定值 四酸溶解 王水溶解 王水水浴溶解
    GBW07446 108±14 112 99 103 3.70 -8.33 -4.63
    GBW07451 440±42 436 390 410 -0.91 -11.36 -6.82
    GBW07456 254±12 257 238 246 1.18 -6.30 -3.15
    GBW07457 281±26 279 203 214 -0.71 -27.76 -23.84
    下载: 导出CSV 
    | 显示表格

    用国家标准物质GBW07446和GBW07453加入四酸溶样,考察了11种电热板温度(表面温度)对测定结果的影响。表 2测定结果表明,电热板的温度低于140℃,硫的溶出率最低为68.52%;电热板的温度高于220℃,硫的溶出率最低为70.37%;电热板的最佳温度在150~210℃。考虑到温度过低,溶解时间较长并且不利于赶除氟离子,所以温度选择190~210℃。

    表  2  电热板温度的影响
    Table  2.  Effect of electric heating plate temperature
    电热板表面温度(℃) GBW07446 GBW07453
    硫标准值(μg/g) 硫测定值(μg/g) 硫溶出率(%) 硫标准值(μg/g) 硫测定值(μg/g) 硫溶出率(%)
    130 108±14 74 68.52 2000±300 1632 81.60
    140 108±14 98 90.74 2000±300 1730 86.50
    150 108±14 113 104.63 2000±300 1977 98.85
    160 108±14 107 99.07 2000±300 1993 99.65
    170 108±14 110 101.85 2000±300 1998 99.90
    180 108±14 116 107.41 2000±300 2013 100.65
    190 108±14 112 103.70 2000±300 2007 100.35
    200 108±14 110 101.85 2000±300 1987 99.35
    210 108±14 104 96.30 2000±300 1965 98.25
    220 108±14 87 80.56 2000±300 1891 94.55
    230 108±14 76 70.37 2000±300 1874 93.70
    下载: 导出CSV 
    | 显示表格

    为减少试剂用量,降低空白值,减少对环境的污染,本文根据二氧化硅含量选取了4个有代表性的土壤标准样品,用少量去离子水润湿样品,加入2.5 mL硝酸、2.5 mL盐酸、5 mL氢氟酸和1 mL高氯酸,盖好盖子,轻轻摇动,置于排风橱中,分别进行了0、4、8、12 h酸溶浸泡试验。表 3测定结果表明,浸泡12 h,一般样品基本溶解清亮,本文选择浸泡过夜。

    表  3  浸泡时间的选择
    Table  3.  Choice of soaking time
    标准物质编号 粗粒级主要矿物 不同浸泡时间下溶解情况
    0 h 4 h 8 h 12 h
    GBW07401 石英、长石 反应,冒泡 有少量固体 有极少量固体 基本清亮
    GBW07403 石英、长石 无明显反应 有少量固体 基本清亮 基本清亮
    GBW07407 褐铁矿、石英、高岭土 无明显反应 有少量固体 基本清亮 基本清亮
    GBW07408 碳酸盐物质、长石、石英、黑云母、白云母、褐铁矿、贝壳 反应剧烈,大量冒泡 有少量白色、黑色固体 有极少量固体 基本清亮
    下载: 导出CSV 
    | 显示表格

    实验配制了与样品浓度相近的硫、钾、钠、钙、镁、铁、锰、铍、锂、镧、铈、钪、钒、钴、镍、钛标准溶液,酸介质分别为10%的盐酸和硝酸,实验发现硝酸介质中大部分元素的谱线强度略高于盐酸介质,但锰、钛谱线除外。为了能在一份溶液中同时测定硫、钾、钠、钙、镁、铁、锰、铍、锂、镧、铈、钪、钒、钴、镍、钛等多个元素,本文采用10%的盐酸介质。

    硫元素主要分析谱线有两条,分别是180.669 nm和181.972 nm。在180.669 nm处,基体元素钙(180.672 nm)会对硫产生正干扰,181.972 nm的谱线没有干扰,并且其信背比高出180.669 nm谱线将近一倍,所以选择181.972 nm作为分析线。

    波长在10~200 nm远紫外光能被光路中的空气(氧、氮、二氧化碳和水气)所吸收,波长越短的远紫外光越容易被空气吸蚀[30],本文选定的硫的分析谱线181.972 nm处于远紫外区,需要用氩气对光路和接口进行吹扫。在VISTA-MPX光谱仪仪器说明书中推荐氩气吹扫时间不小于30 min,本文通过试验发现氩气吹扫50 min后,同一浓度硫标准的谱线强度在1 h内变化小于1%,所以氩气吹扫时间定在50 min。

    几乎所有的谱线强度随功率的增大而增大,但背景值也会增大,造成信背比变差,本文综合考虑采用功率1200 W。

    在仪器最佳实验条件下测定标准曲线溶液,硫的质量浓度在0~500 μg/mL范围内,硫标准曲线呈线性关系,相关系数为0.9993。

    在仪器最佳实验条件下连续测定12次试验空白溶液,检出限为0.1 μg/mL(3倍测量值的标准偏差),乘以稀释因子100,方法检出限为10 μg/g,方法测定下限(k=10)为33.3 μg/g,方法的最佳测量范围33.3~50000 μg/g。本方法的检出限0.1 μg/mL略高于马生凤等[26]获得的检出限0.04 μg/mL。其原因可能与曝光时间有关,马生凤等[26]采用的曝光时间为20 s,本文曝光时间为10 s。

    按照1.3.3节分析方法和1.1节仪器条件测定了GBW07446~GBW07457中的硫含量,测定结果见表 4,12次测定平均值与标准值的相对误差的绝对值在0.00%~2.93%,12次测定平均值与标准值的对数偏差小于0.01,相对标准偏差(RSD)在0.47%~4.05%,方法的精密度和准确度完全满足DZ/T 0258—2014《多目标区域地球化学调查规范》要求(规范要求土壤中硫的检出限为50 μg/g;硫含量在三倍检出限以上的对数值≤0.05,硫含量大于1%的对数值≤0.04;硫含量在三倍检出限以上的RSD≤10%,硫含量大于1%的RSD≤8)。

    表  4  国家标准物质中硫含量的分析结果
    Table  4.  Analytical results of sulfur in national standard references
    标准物质编号 硫含量(μg/g) 相对误差(%) RSD (%)
    标准值 本法测定平均值(n=12)
    GBW07446 108±14 108.4 0.37 4.05
    GBW07447 (7000) 7041.94 0.60 0.50
    GBW07448 (816) 820.06 0.50 2.00
    GBW07449 27000±2900 26995.59 -0.02 0.47
    GBW07450 (167) 171.17 2.50 3.66
    GBW07451 440±42 442.96 0.67 1.12
    GBW07452 (420) 422.02 0.48 1.46
    GBW07453 2000±300 2000.51 0.03 1.63
    GBW07454 170±22 170 0.00 3.02
    GBW07455 162±10 157.25 -2.93 3.59
    GBW07456 254±12 254.93 0.37 2.58
    GBW07457 281±21 281.36 0.13 2.04
    注:括号内数据为参考值。
    下载: 导出CSV 
    | 显示表格

    本文从实际样品中抽取了20件不同土壤类型、硫含量从低到高的土壤样品,分别用XRF法、管式炉燃烧碘量法和本法进行测试比较,每件样品用不同方法独立测定三次,结果见表 5。从分析结果来看,XRF法具有较高的精密度,但低含量和高含量样品与碘量法相比易超差(表 5中标注“*”的数据为超差值);管式炉碘量法的数值波动性较大;本法与碘量法相比有较好的准确度和精密度,并且分析速度和分析效率优于碘量法。

    表  5  三种分析方法的结果比较
    Table  5.  A comparison of the three analytical methods
    样品编号 XRF法 管式炉碘量法 本法(四酸溶样ICP-OES法)
    硫含量三次测定平均值(μg/g) RSD(%) 硫含量三次测定平均值(μg/g) RSD(%) 硫含量三次测定平均值(μg/g) RSD(%)
    1 112* 5.63 83.1 11.46 78.3 6.42
    2 143 2.42 124 8.97 136.7 3.82
    3 266 2.41 270 5.43 274.2 2.33
    4 355 1.62 349 4.32 343.1 2.67
    5 527 1.74 534 3.66 536.3 1.82
    6 832 0.86 827 4.22 816.4 0.69
    7 966 2.42 933 5.21 946.6 1.11
    8 1386 1.57 1276 4.14 1233 0.68
    9 5233 2.44 4320 3.12 4362 2.43
    10 5604* 1.87 7465 4.17 7654 3.26
    11 28335* 1.52 21364 3.13 21362 2.03
    12 55027* 1.62 42187 1.86 43227 2.74
    13 176 2.87 188 7.33 182.4 3.11
    14 256 2.11 263 4.87 261.2 2.46
    15 687 1.14 693 3.22 684.2 2.03
    16 778 1.06 786 4.16 781.4 1.06
    17 1125 1.68 1139 3.55 1132 0.97
    18 7864* 1.93 8546 3.68 8574 1.33
    19 29365* 1.44 24652 4.15 24468 2.36
    20 43225* 1.67 40271 2.87 40298 1.93
    下载: 导出CSV 
    | 显示表格

    本文用盐酸-硝酸-氢氟酸-高氯酸溶解样品,ICP-OES法测定硫含量,解决了采用现有分析方法测定多目标区域地球化学调查样品时,分析效率低和高、低含量段分析质量问题。应用本方法,样品溶解完全,硫没有损失,并且可以在不增加分析成本和分析时间的情况下,在一份溶液中同时测定钾、钠、钙、镁、铁、锰、铍、锂、镧、铈、钪、钒、钴、镍、钛等元素,提高了分析效率,适合于大批量土壤样品中硫及主次量元素的测定。该方法已进行了实际样品测试,硫元素的成图及接图效果良好,外部控制样(256件)合格率为99%。方法上报给中国地质调查局区化样品质量检查组并获得批准,在地质行业进行了推广。

    本方法的不足之处在于某几个岩石标准样品测定结果不尽如人意,其原因需要进一步实验研究。

  • 表  1   四酸、王水、王水水浴溶解结果

    Table  1   Analytical results of samples disoluted with four acids, aqua regia and aqua waterbath methods

    标准物质编号 硫含量(μg/g) 三种溶解方法测定值与标准值的相对误差(%)
    标准值 四酸溶解测定值 王水溶解测定值 王水水浴溶解测定值 四酸溶解 王水溶解 王水水浴溶解
    GBW07446 108±14 112 99 103 3.70 -8.33 -4.63
    GBW07451 440±42 436 390 410 -0.91 -11.36 -6.82
    GBW07456 254±12 257 238 246 1.18 -6.30 -3.15
    GBW07457 281±26 279 203 214 -0.71 -27.76 -23.84
    下载: 导出CSV

    表  2   电热板温度的影响

    Table  2   Effect of electric heating plate temperature

    电热板表面温度(℃) GBW07446 GBW07453
    硫标准值(μg/g) 硫测定值(μg/g) 硫溶出率(%) 硫标准值(μg/g) 硫测定值(μg/g) 硫溶出率(%)
    130 108±14 74 68.52 2000±300 1632 81.60
    140 108±14 98 90.74 2000±300 1730 86.50
    150 108±14 113 104.63 2000±300 1977 98.85
    160 108±14 107 99.07 2000±300 1993 99.65
    170 108±14 110 101.85 2000±300 1998 99.90
    180 108±14 116 107.41 2000±300 2013 100.65
    190 108±14 112 103.70 2000±300 2007 100.35
    200 108±14 110 101.85 2000±300 1987 99.35
    210 108±14 104 96.30 2000±300 1965 98.25
    220 108±14 87 80.56 2000±300 1891 94.55
    230 108±14 76 70.37 2000±300 1874 93.70
    下载: 导出CSV

    表  3   浸泡时间的选择

    Table  3   Choice of soaking time

    标准物质编号 粗粒级主要矿物 不同浸泡时间下溶解情况
    0 h 4 h 8 h 12 h
    GBW07401 石英、长石 反应,冒泡 有少量固体 有极少量固体 基本清亮
    GBW07403 石英、长石 无明显反应 有少量固体 基本清亮 基本清亮
    GBW07407 褐铁矿、石英、高岭土 无明显反应 有少量固体 基本清亮 基本清亮
    GBW07408 碳酸盐物质、长石、石英、黑云母、白云母、褐铁矿、贝壳 反应剧烈,大量冒泡 有少量白色、黑色固体 有极少量固体 基本清亮
    下载: 导出CSV

    表  4   国家标准物质中硫含量的分析结果

    Table  4   Analytical results of sulfur in national standard references

    标准物质编号 硫含量(μg/g) 相对误差(%) RSD (%)
    标准值 本法测定平均值(n=12)
    GBW07446 108±14 108.4 0.37 4.05
    GBW07447 (7000) 7041.94 0.60 0.50
    GBW07448 (816) 820.06 0.50 2.00
    GBW07449 27000±2900 26995.59 -0.02 0.47
    GBW07450 (167) 171.17 2.50 3.66
    GBW07451 440±42 442.96 0.67 1.12
    GBW07452 (420) 422.02 0.48 1.46
    GBW07453 2000±300 2000.51 0.03 1.63
    GBW07454 170±22 170 0.00 3.02
    GBW07455 162±10 157.25 -2.93 3.59
    GBW07456 254±12 254.93 0.37 2.58
    GBW07457 281±21 281.36 0.13 2.04
    注:括号内数据为参考值。
    下载: 导出CSV

    表  5   三种分析方法的结果比较

    Table  5   A comparison of the three analytical methods

    样品编号 XRF法 管式炉碘量法 本法(四酸溶样ICP-OES法)
    硫含量三次测定平均值(μg/g) RSD(%) 硫含量三次测定平均值(μg/g) RSD(%) 硫含量三次测定平均值(μg/g) RSD(%)
    1 112* 5.63 83.1 11.46 78.3 6.42
    2 143 2.42 124 8.97 136.7 3.82
    3 266 2.41 270 5.43 274.2 2.33
    4 355 1.62 349 4.32 343.1 2.67
    5 527 1.74 534 3.66 536.3 1.82
    6 832 0.86 827 4.22 816.4 0.69
    7 966 2.42 933 5.21 946.6 1.11
    8 1386 1.57 1276 4.14 1233 0.68
    9 5233 2.44 4320 3.12 4362 2.43
    10 5604* 1.87 7465 4.17 7654 3.26
    11 28335* 1.52 21364 3.13 21362 2.03
    12 55027* 1.62 42187 1.86 43227 2.74
    13 176 2.87 188 7.33 182.4 3.11
    14 256 2.11 263 4.87 261.2 2.46
    15 687 1.14 693 3.22 684.2 2.03
    16 778 1.06 786 4.16 781.4 1.06
    17 1125 1.68 1139 3.55 1132 0.97
    18 7864* 1.93 8546 3.68 8574 1.33
    19 29365* 1.44 24652 4.15 24468 2.36
    20 43225* 1.67 40271 2.87 40298 1.93
    下载: 导出CSV
  • 孙建中, 戴昭华, 盛学斌.华北地区土壤中硫的赋存特征[J].环境科学学报, 1997, 17(2):187-192. http://www.actasc.cn/hjkxxb/ch/reader/create_pdf.aspx?file_no=19970210

    Sun J Z, Dai Z H, Sheng X B.Occurrence of sulfur in soil in Northern China[J].Acta Scientiae Circumstantiae, 1997, 17(2):187-192. http://www.actasc.cn/hjkxxb/ch/reader/create_pdf.aspx?file_no=19970210

    刘潇潇, 王钧, 曾辉.中国温带草地土壤硫的分布特征及其与环境因子的关系[J].生态学报, 2016, 36(24):7919-7928. http://d.old.wanfangdata.com.cn/Periodical/stxb201624003

    Liu X X, Wang J, Zeng H.Spatial variation in surface soil sulfur in the temperate grasslands of China and environmental constraints[J].Acta Ecologica Sinica, 2016, 36(24):7919-7928. http://d.old.wanfangdata.com.cn/Periodical/stxb201624003

    黎卫亮, 王鹏.直接燃烧-红外吸收光谱法测定土壤、水系沉积物中的碳和硫[J].理化检验(化学分册), 2013, 49(10):1268-1269. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200811016.htm

    Li W L, Wang P.Determination of carbon and sulfur in soil and stream sediments by direct combustion infrared absorption spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2013, 49(10):1268-1269. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200811016.htm

    施善林, 李东麟, 李晓晗.高频燃烧红外吸收法测定镍铁合金中硫含量[J].有色矿冶, 2015, 31(3):52-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysky201503016

    Shi S L, Li D L, Li X H.Determination of sulfur in ferro-nickel alloy by high frequency-infrared absorption method[J].Non-ferrous Mining and Metallurgy, 2015, 31(3):52-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysky201503016

    王世芳, 韩平, 王纪华, 等.X射线荧光光谱分析法在土壤重金属检测中的应用研究进展[J].食品安全质量检测学报, 2016, 7(11):4394-4400. http://www.doc88.com/p-9032859830297.html

    Wang S F, Han P, Wang J H, et al.Application of X-ray fluorescence spectrometry on the detection of heavy metals in soil[J].Journal of Food Safety and Quality, 2016, 7(11):4394-4400. http://www.doc88.com/p-9032859830297.html

    Sanina N B, Aisueva T S, Chuparina E V, et al. Toxic and radioactive elements in soils and vegetation of natural and technogenic geosystems of Pribaikalye (Lake Baikal region)[J].Chinese Journal of Geochemistry, 2006, 25(6):245. http://www.cnki.com.cn/Journal/A-A5-DQHB-2006-S1.htm

    Doyle A, Saavedra A, Tristao M, et al.Determination of S, Ca, Fe, Ni and V in crude oil by energy dispersive X-ray fluorescence spectrometry using direct sampling on paper substrate[J].Fuel, 2015, 162:39-46. doi: 10.1016/j.fuel.2015.08.072

    沈亚婷, 李迎春, 孙梦荷, 等.波长与能量色散复合式X射线荧光光谱仪特性研究及矿区土壤分析[J].光谱学与光谱分析, 2017, 37(7):2216-2224. http://www.opticsjournal.net/Articles/abstract?aid=OJ170710000199UqWtZw

    Shen Y T, Li Y C, Sun M H, et al.Studies on characteristics on a combined wavelength and energy dispersion X-ray fluorescence spectrometer and determinations of major, minor and trace elements in soils around a mining area[J].Spectroscopy and Spectral Analysis, 2017, 37(7):2216-2224. http://www.opticsjournal.net/Articles/abstract?aid=OJ170710000199UqWtZw

    张莉娟, 刘义博, 李小莉, 等.超细粉末压片法-X射线荧光光谱测定水系沉积物和土壤中的主量元素[J].岩矿测试, 2014, 33(4):517-522. http://www.ykcs.ac.cn/article/id/0e710f2f-4494-4aac-a125-852875024d56

    Zhang L J, Liu Y B, Li X L, et al.Determination of major elements in stream sediments and soils by X-ray fluorescence spectrometry using pressed-superfine powder pellets[J].Rock and Mineral Analysis, 2014, 33(4):517-522. http://www.ykcs.ac.cn/article/id/0e710f2f-4494-4aac-a125-852875024d56

    黄元.XRF-ICP-AES法测定土壤中的主次元素[J].化学分析计量, 2015, 24(6):73-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxfxjl201506019

    Huang Y.Determination of major and minor elements in soil by X-ray fluorescence spectrometry and inductively coupled plasma-atomic emission spectrometry[J].Chemical Analysis and Meterage, 2015, 24(6):73-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxfxjl201506019

    马光强, 谢辉.硫酸钡重量法测定冰铜中总硫[J].冶金分析, 2014, 34(3):73-76. http://www.cqvip.com/QK/90283X/201403/49541994.html

    Ma G Q, Xie H.Determination of total sulfur in copper matte barium sulfate gravimetry[J].Metallurgical Analysis, 2014, 34(3):73-76. http://www.cqvip.com/QK/90283X/201403/49541994.html

    刘晓峰, 李子尚, 张志勇, 等.半熔分解硫酸钡重量法测定各类含重晶石矿样中的硫[J].矿冶工程, 2015, 35(1):101-102. http://d.wanfangdata.com.cn/Periodical_kygc201501027.aspx

    Liu X F, Li Z S, Zhang Z Y, et al.Determining sulfur in various ore samples containing barite by semi-molten decomposition barium sulfate gravimetric method[J].Mining and Metallurgical Engineering, 2015, 35(1):101-102. http://d.wanfangdata.com.cn/Periodical_kygc201501027.aspx

    Busman L M, Dick R P, Tabatabai M A.Determination of total sulfur and chlorine in plant materials by ion chromatography[J].Soil Science Society of America Journal, 1983, 47:1167-1170. doi: 10.2136/sssaj1983.03615995004700060022x

    Poznic M, Gabrovsek R, Novic M.Ion chromatography determination of chloride and sulphate in cement[J].Cement and Concrete Research, 1999, 29:441-443. doi: 10.1016/S0008-8846(98)00234-8

    陈梅芹, 杨成方, 吴景雄, 等.矿区河流沉积物中硫的总量测定及过程控制[J].冶金分析, 2015, 35(5):20-24. http://d.wanfangdata.com.cn/Periodical_yjfx201505004.aspx

    Chen M Q, Yang C F, Wu J X, et al.Determination of total sulfur in river sediments from mining area and the process control[J].Metallurgical Analysis, 2015, 35(5):20-24. http://d.wanfangdata.com.cn/Periodical_yjfx201505004.aspx

    陈静, 高志军, 陈冲科, 等.X射线荧光光谱法分析地质样品的应用技巧[J].岩矿测试, 2015, 34(1):91-98. doi: 10.15898/j.cnki.11-2131/td.2015.01.012

    Chen J, Gao Z J, Chen C K, et al.Application skills on determination of geological sample by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2015, 34(1):91-98. doi: 10.15898/j.cnki.11-2131/td.2015.01.012

    叶家瑜, 江宝林.区域地球化学勘查样品分析方法[M].北京:地质出版社, 2004.

    Ye J Y, Jiang B L.Methods for Analysis of Regional Geochemical Exploration Samples[M].Beijing:Geological Publishing House, 2004.

    苏凌云.低温逆王水溶样-电感耦合等离子体原子发射光谱法测定铁矿石中硫和磷[J].冶金分析, 2014, 34(11):69-72. http://d.wanfangdata.com.cn/Periodical_yjfx201411014.aspx

    Su L Y.Determination of sulfur and phosphorus in iron ore by inductively coupled plasma atomic emission spectrometry after sample dissolution with inverse aqua reqia in low temperature[J].Metallurgical Analysis, 2014, 34(11):69-72. http://d.wanfangdata.com.cn/Periodical_yjfx201411014.aspx

    李清昌, 薛静.ICP-AES测定矿物中硫的前处理方法的对比[J].有色矿冶, 2013, 29(1):57-58. http://d.old.wanfangdata.com.cn/Periodical/ysky201301019

    Li Q C, Xue J.Comparison of pretreatment methods for determination of sulfur in minerals by ICP-AES[J].Non-Ferrous Mining and Metallurgy, 2013, 29(1):57-58. http://d.old.wanfangdata.com.cn/Periodical/ysky201301019

    张文丽, 龙萍, 吴鉴, 等.ICP-AES法测定磷矿浆烟气脱硫剂固液相中硫含量的研究[J].光谱学与光谱分析, 2017, 37(5):1535-1539. http://manu13.magtech.com.cn/gpx/CN/abstract/abstract4379.shtml

    Zhang W L, Long P, Wu J, et al.Determination of sulfur in solid and solution of phosphate ore pulp flue gas desulfurization agent with ICP-AES[J].Spectroscopy and Spectral Analysis, 2017, 37(5):1535-1539. http://manu13.magtech.com.cn/gpx/CN/abstract/abstract4379.shtml

    聂西度, 谢华林.柴油中微量硫的发射光谱研究[J].光谱学与光谱分析, 2016, 36(5):1464-1467. http://www.cqvip.com/QK/90993X/201605/668756247.html

    Nie X D, Xie H L.Study on the detection of trace sulphur in diesel with inductively coupled plasma optical emission spectroscopy[J].Spectroscopy and Spectral Analysis, 2016, 36(5):1464-1467. http://www.cqvip.com/QK/90993X/201605/668756247.html

    李清彩, 赵庆令, 荀红梅.电感耦合等离子体原子发射光谱法测定多金属矿石中砷镉铟硫锑[J].冶金分析, 2015, 35(2):61-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201502013

    Li Q C, Zhao Q L, Xun H M.Determination of arsenic, cadmium, indium, sufer and antimony in polymetallic ore by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2015, 35(2):61-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201502013

    高小山, 倪文山, 姚明星, 等.电感耦合等离子体原子发射光谱法测定黑钨精矿中痕量硫磷[J].冶金分析, 2012, 32(6):30-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201206007

    Gao X S, Ni W S, Yao M X, et al.Determination of trace sulfur and phosphorus in wolframite concentrate by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2012, 32(6):30-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201206007

    张穗忠, 李杰.电感耦合等离子体原子发射光谱法测量萤石中硫含量[J].武汉工程职业技术学院学报, 2013, 25(4):1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-WGZG201304002.htm

    Zhang S Z, Li J.Measuring of sulfur content in fluorite by inductively coupled plasma atomic emission spectrometry[J].Journal of Wuhan Engineering Institute, 2013, 25(4):1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-WGZG201304002.htm

    胡璇, 石磊, 张炜华.碱熔融-电感耦合等离子体发射光谱法测定高硫铝土矿中的硫[J].岩矿测试, 2017, 36(2):124-129. doi: 10.15898/j.cnki.11-2131/td.2017.02.005

    Hu X, Shi L, Zhang W H.Determination of sulfur in high-sulfur bauxite by alkali fusion-inductively coupled plasma-optical emission spectrometry[J].Rock and Mineral Analysis, 2017, 36(2):124-129. doi: 10.15898/j.cnki.11-2131/td.2017.02.005

    马生凤, 温宏利, 马新荣, 等.四酸溶样-电感耦合等离子体原子发射光谱法测定铁、铜、锌、铅等硫化物矿石中22个元素[J].矿物岩石地球化学通报, 2011, 30(1):65-72. https://www.wenkuxiazai.com/doc/3b86c674f242336c1eb95eb0-3.html

    Ma S F, Wen H L, Ma X R, et al.Determination of 22 elements in iron, copper, zinc, and lead sulphide ores by ICP-AES with four acids digestion[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1):65-72. https://www.wenkuxiazai.com/doc/3b86c674f242336c1eb95eb0-3.html

    年季强, 顾锋, 朱春要, 等.微波消解-电感耦合等离子体原子发射光谱法测定萤石中硅铁镁钾钠磷硫[J].冶金分析, 2015, 35(4):39-43. http://d.wanfangdata.com.cn/Periodical_yjfx201504008.aspx

    Nian J Q, Gu F, Zhu C Y, et al.Determination of silicon, ferric, magnesium, potassium, sodium, phosphorus and sulphur in fluorite by microwave digestion-inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2015, 35(4):39-43. http://d.wanfangdata.com.cn/Periodical_yjfx201504008.aspx

    Cruz S M, Tirk P, Nora F M, et al.Feasibility of sulfur determination in diesel oil by inductively coupled plasma optical emission spectrometry after micro wave induced combustion using flame retardant[J].Fuel, 2015, 160:108-113. doi: 10.1016/j.fuel.2015.07.069

    刘峰, 秦樊鑫, 胡继伟, 等.不同混合酸消解样品对电感耦合等离子体原子发射光谱法测定土壤中重金属含量的影响[J].理化检验(化学分册), 2011, 47(8):951-954. http://www.cqvip.com/QK/96266X/201108/39040877.html

    Liu F, Qin F X, Hu J W, et al.Effects of different acid mixtures for sample digestion on the ICP-AES determination of heavy metal elements in soil[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2011, 47(8):951-954. http://www.cqvip.com/QK/96266X/201108/39040877.html

    郭春. 真空紫外光学薄膜制备及其性能检测技术研究[D]. 成都: 中国科学院光电技术研究所, 2014.

    Guo C. Study on Preparation and Characterization of Optical Coatings for Vacuum Ultraviolet Applications[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2014.

  • 期刊类型引用(7)

    1. 李志雄,刘振超,陆迁树,和成忠,张松,杨金江,张连凯. 氢氧化物系离子液体在碱性土壤有效磷含量测定中的应用. 岩矿测试. 2024(05): 802-811 . 本站查看
    2. 于汀汀,朱云,郭琳. 溴酚蓝作酸碱指示剂分光光度法测定土壤中有效磷. 岩矿测试. 2023(01): 213-219 . 本站查看
    3. 朱志刚,李美丽,井永军,阿拉木斯,董天姿. 单提取法-动能甄别型碰撞模式-电感耦合等离子体质谱(ICP-MS)法测定土壤中8种有效态元素的含量. 中国无机分析化学. 2023(06): 590-597 . 百度学术
    4. 杨友亮. 环境温度对土壤中有效磷前处理效果的影响分析. 皮革制作与环保科技. 2023(23): 113-115 . 百度学术
    5. 贾双琳,李长安. 土壤中重金属有效态分析技术研究进展. 贵州地质. 2021(01): 79-84 . 百度学术
    6. 程祎,王琳,张芳,刘军,陈浩凤,张帆. 高压密闭消解-电感耦合等离子体质谱法测定钛铁矿中39种主次元素. 冶金分析. 2021(09): 24-33 . 百度学术
    7. 郑伟. 土壤中重金属铅的检测技术研究进展. 辽宁化工. 2021(10): 1598-1600 . 百度学术

    其他类型引用(0)

表(5)
计量
  • 文章访问数:  12848
  • HTML全文浏览量:  5205
  • PDF下载量:  146
  • 被引次数: 7
出版历程
  • 收稿日期:  2017-04-09
  • 修回日期:  2017-12-21
  • 录用日期:  2018-03-20
  • 发布日期:  2018-02-28

目录

/

返回文章
返回