• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用

周亮亮, 魏均启, 王芳, 仇秀梅

周亮亮, 魏均启, 王芳, 仇秀梅. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J]. 岩矿测试, 2017, 36(4): 350-359. DOI: 10.15898/j.cnki.11-2131/td.201701160007
引用本文: 周亮亮, 魏均启, 王芳, 仇秀梅. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J]. 岩矿测试, 2017, 36(4): 350-359. DOI: 10.15898/j.cnki.11-2131/td.201701160007
Liang-liang ZHOU, Jun-qi WEI, Fang WANG, Xiu-mei QIU. Optimizationof the Working Parameters of LA-ICP-MS and Its Application to Zircon U-Pb Dating[J]. Rock and Mineral Analysis, 2017, 36(4): 350-359. DOI: 10.15898/j.cnki.11-2131/td.201701160007
Citation: Liang-liang ZHOU, Jun-qi WEI, Fang WANG, Xiu-mei QIU. Optimizationof the Working Parameters of LA-ICP-MS and Its Application to Zircon U-Pb Dating[J]. Rock and Mineral Analysis, 2017, 36(4): 350-359. DOI: 10.15898/j.cnki.11-2131/td.201701160007

LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用

基金项目: 

湖北省国土资源厅行业科研专项——LA-ICP-MS锆石U-Pb定年技术在鄂东南多金属矿床成因中的应用研究 ETZ2016A12

湖北省国土资源厅行业科研专项——LA-ICP-MS锆石U-Pb定年技术在鄂东南多金属矿床成因中的应用研究(ETZ2016A12)

详细信息
    作者简介:

    周亮亮, 助理工程师, 地质学专业。E-mail:704276326@qq.com

  • 中图分类号: O657.63;P597.3

Optimizationof the Working Parameters of LA-ICP-MS and Its Application to Zircon U-Pb Dating

  • 摘要: 将激光器(LA)和电感耦合等离子体质谱仪(ICP-MS)联用避免了溶液分析繁琐、耗时的前处理操作,减少了样品制备过程中可能带来的污染,同时又具备分析成本低、测试速度快、分析数据精度高等优势。本文将LA与ICP-MS联接使用,通过激光能量密度和剥蚀频率组合来讨论较低的元素分馏效应,同时匹配RF功率、采样深度、载气及He气流速等主要工作参数以获得较高的元素信号灵敏度和稳定性,从而得到仪器最优工作参数组合,建立了可靠的锆石U-Pb定年方法。通过对锆石标样91500、GJ-1及Plešovic互测结果表明,其206Pb/238U加权平均年龄分别为1063.9±6.0 Ma(2σn=20)、600.3±2.6 Ma(2σn=27)及337.6±1.7 Ma(2σn=20),测试结果准确度和精度均在1%范围内,与前人报道的误差范围一致。使用优化后的仪器参数对来自鄂东南铜绿山矿区石英正长闪长玢岩岩体中的实际锆石样品进行测试,获得其206Pb/238U年龄与前人研究结果基本一致,表明本法能准确地对锆石进行定年分析。
  • 水(H2O)是自然岩浆体系中最主要的挥发组分,显著影响岩浆的黏度、熔点和结晶行为,从而控制岩浆分异演化的趋势1-3。而熔体包裹体是在岩浆活动过程中捕获在结晶矿物晶格缺陷中的岩浆熔体4-5,一定程度上保留了所捕获岩浆的组分状态,可以提供岩浆作用过程的直接信息6-8。前人通过大量研究证实了应用熔体包裹体确定岩浆挥发份的可靠性28-10。借助熔体包裹体研究岩浆中的挥发份含量,不仅可以揭示岩浆的分异演化过程,还能为理解岩浆活动特征提供重要依据。

    目前应用于测定硅酸盐熔体包裹体中的H2O的原位分析技术主要有11-12:电子探针(EPMA)、离子探针(SIMS)、傅里叶变换红外光谱和显微激光拉曼光谱。相较于其他方法,显微激光拉曼光谱分析具有高空间分辨率、快速、无损分析、样品制备简单等优点13-15,可应用于分析暴露在表面或包裹于内部的样品,并且能够在0%~20%(含水量)浓度范围内精确测定16-19。Thomas16利用显微激光拉曼光谱技术研究了26个已知成分的人工合成玻璃和天然硅酸盐熔体包裹体样品,在水含量0%~16%范围内获得与实测值基本一致的结果;Chabiron等17通过显微激光拉曼光谱法测试熔体包裹体水含量,该方法得到的结果与红外光谱测试结果基本一致;王玉琪等12使用显微激光拉曼光谱快速标定了花岗质玻璃样品,其测试结果与红外光谱水含量结果的相对误差小于10%;Tu等19建立了一种基于激光共聚焦拉曼光谱测定硅酸盐熔体中总溶解水及不同形态水含量的方法。上述研究进一步证实了显微激光拉曼光谱技术在测定熔体包裹体水含量方面的独特优势和可靠性。

    髫髻山组火山岩是燕山造山带中生代最具代表性的钙碱性火山岩之一,代表了燕山期大规模火山喷发的开始20。前人的研究主要集中在燕山造山带中生代火山岩的地球化学特征21-25,而水作为影响岩浆形成及演化的重要因素,目前对髫髻山组火山岩中的水含量尚不清楚。柳江盆地向斜核部出露了中侏罗统髫髻山组(J2t)下部的凝灰岩2426,作为火山活动早期产物,研究其岩浆中的水含量对于了解火山活动有重要意义。因此,对该凝灰岩开展岩石地球化学分析和岩浆水含量定量研究,可以为深入认识和理解该地区的岩浆活动提供重要依据。本文以柳江盆地侏罗系髫髻山组下部凝灰岩为研究对象,以岩石学、岩石地球化学和包裹体岩相学分析为基础,应用显微激光拉曼光谱法定量测定了凝灰岩中熔体包裹体的水含量,并讨论了岩浆中的水对火山喷发行为的影响。

    柳江盆地位于河北省秦皇岛市,其大地构造位置位于华北陆块北缘中朝地块燕山褶皱造山带东段(图1a)。盆地是一个近南北向不对称的短轴向斜(图1b),西翼地层紧凑且直立倒转,东翼地层舒展而平缓,主要构造线偏于盆地西部,其走向大致为南北向。

    图  1  研究区地质简图
    (a)研究区大地构造位置,据郑亚东等27修编;(b)研究区地质简图,据吴孔友等26修编。
    Figure  1.  Geological diagrams of the research area (Figure a is modified after Zheng, et al27; Figure b is modified after Wu, et al [26)

    柳江盆地髫髻山组地层岩性特征26表现为:下部主要发育灰绿色、浅黄色的安山质、流纹质火山集块岩夹凝灰岩和火山熔岩;中部发育灰绿色安山质、角闪安山质、粗安山质火山熔岩与集块岩、角砾岩互层;上部发育黑绿色、紫红色、青灰色玄武质、玄武安山质、辉石安山质火山熔岩与熔结集块岩、集块岩互层,夹有少量的火山角砾岩及凝灰岩。由下向上,岩性由偏酸性逐渐过渡为中性、中基性。

    本文所采集的凝灰岩样品取自河北省秦皇岛市柳江盆地髫髻山组下部野外露头。将采集的新鲜凝灰岩样品分别制备成厚约0.03mm的普通岩石薄片和厚约0.1mm双面抛光的流体包裹体薄片多张,用于显微观察和显微激光拉曼光谱测试。挑选新鲜的凝灰岩样品2块,用于全岩主量和微量元素分析。

    样品的显微观察在中国石油大学(华东)深层油气全国重点实验室完成。镜下观察使用仪器为徕卡DM2700P显微镜,在透光条件下观察和记录样品的岩石学特征和熔体包裹体岩相学特征,并在镜下挑选、标记保存完好的熔体包裹体,以备显微激光拉曼光谱测试。

    样品全岩主量和微量元素分析测试在中国石油大学(华东)深层油气全国重点实验室完成。全岩主量元素采用IRIS Intrepid Ⅱ XSP电感耦合等离子体发射光谱仪(ICP-OES)进行测试;微量元素和稀土元素使用ELAN9000电感耦合等离子体质谱仪(ICP-MS)进行测试。用于本次测试的凝灰岩样品为TJS-1和TJS-2,对每块样品分别进行两次测试,以保证数据可靠性,测试偏差小于1%。

    人工合成硅酸盐玻璃标准样品和髫髻山组熔体包裹体样品的显微激光拉曼光谱测试在中国石油大学(华东)深层油气全国重点实验室完成。用于测试的人工合成玻璃标样依次命名为标样1~标样4,熔体包裹体则按照MI-1至MI-9顺序依次编号。为降低实际样品薄片中的黏合剂对实验的干扰,测试前使用丙酮溶液浸泡清洗薄片,风干后进行实验测试分析。实验仪器为LABRAM HR EVO型激光拉曼光谱仪(法国HORIBA FRANCE SAS公司),使用的激光光源波长为532nm,光栅1800gr/mm,光谱分辨率≤0.65cm−1,测试精度小于±0.1cm−1,实验环境温度为20℃,湿度为50%。

    显微激光拉曼光谱法定量熔体包裹体水含量的准确性会受到拉曼光谱仪参数、拉曼图谱数据处理方法、标准样品、标定参数等方面的影响。因此,本文在使用该方法进行熔体包裹体水含量定量分析时,对上述四个方面的影响因素进行了优化,从而提高实验测试结果的准确度和精度。

    由于过高的激光功率和积分时间可能会导致玻璃中水的丢失11-1219,通过比较不同条件下的水峰强度,最终采用的实验条件为激光功率30mW,积分时间30s,积分次数3次。在使用激光拉曼光谱仪对包裹体进行测试之前,用单晶硅标准样对该仪器进行校正以确保实验结果的准确性。

    由于拉曼光谱在测试过程中会受到硅酸盐成分、仪器及测试环境等方面的影响,需要对测试得到的拉曼光谱进行数据处理。本文结合强度校正和基线校正对实验获得的拉曼光谱进行校正,以消除上述影响。具体校正程序见2.4.2节。

    为尽可能地提高测试结果准确性,在建立熔体包裹体中水的特征峰强度与浓度之间的线性关系时,首先需要借助标准物质建立实验室标定曲线。本文通过对中国科学技术大学壳幔物质与环境重点实验室人工合成的11个不同水含量的含水玻璃标准样品测试结果进行校正(包括11个参考样品19和4个实测样品),建立了实验室水含量标定曲线。

    拉曼光谱仪定量限定硅酸盐玻璃水含量的校正方法包括外标法和内标法1116。相较于外标法,内标法在标定含水硅酸盐玻璃中水含量时更为准确且可靠,可以通过选取合适的标定参数和公式消除硅酸盐玻璃成分差异产生的影响11。样品的岩石学和地球化学特征表明,髫髻山组凝灰岩为酸性火山岩,而酸性硅酸盐玻璃具有较强的LF470拉曼峰高度/强度比(图2),优先选择AWF/ALF作为最佳标定参数1119

    图  2  不同水含量人工合成流纹质玻璃的拉曼光谱
    红色实线为5.27% H2O人工合成标准样品的拉曼谱图;橙色实线为4.09% H2O人工合成标准样品的拉曼谱图;绿色实线为2.26% H2O人工合成标准样品的拉曼谱图;蓝色实线为1.48% H2O人工合成标准样品的拉曼谱图。LF-250cm−1~700cm−1为低波段谱带;HF-850cm−1~1300cm−1为高波段谱带;WF-3000cm−1~3800cm−1为总水谱带。
    Figure  2.  Raman spectra of artificially synthesized rhyolitic glasses with different water content

    人工合成含水玻璃标准样品由中国科学技术大学壳幔物质与环境重点实验室提供,标样1~标样4分别为5.27% H2O、4.09% H2O、2.26% H2O 和1.48% H2O的实际测试样品,分别对应Tu等19的样品RH-8、RH-7、RH-5和RH-4。对人工合成含水玻璃标准样品进行显微激光拉曼光谱测试,拉曼光谱图显示,含水玻璃拉曼光谱具有三个特征谱带(图2),与前人实验结果一致16-1719。在硅酸盐玻璃的低波段谱带中,最明显的谱带在470cm−1处,这是由于桥氧(T—O—T;T=Si,Al)的弯曲振动引起的16-17。而高波段谱带则与非桥氧(T—O;T=Si,Al)的拉伸振动有关28-32。在总水谱带中,在3540~3620cm−1的宽带则是因为O—H和H2Om伸缩振动的共同作用33-34

    使用Origin 2018软件对拉曼光谱图进行以下光谱处理。

    第一步:强度校正。对原始拉曼光谱进行Long35校正以获得真实的光谱强度,校正方程表示为:

    $$ I=I_{{\mathrm{o b s}}}\left\{\dfrac{v_{0}^{3}\left[1-\exp \left(-\dfrac{h c v}{K T}\right)\right] v}{\left(v_{\mathrm{0}}-v\right)^{4}}\right\} $$ (1)

    式中:Iobs为测量强度;v0为入射激光的波数(v0=18797cm−1);h为普朗克常数(6.62607×10−34J·s);c为光速(2.9979×1010cm/s);K为玻尔兹曼常数(1.38065×10−23J/K);T为绝对温度。

    第二步,基线校正。根据样品的光谱特征分段式固定部分基线,而后使用三次样条插值法扣除基线。

    第三步,谱带积分。含水玻璃拉曼光谱具有三个特征谱带,即LF、HF、WF(图2),对基于前两步得到的拉曼光谱进行峰面积积分,分别得到LF、HF、WF的积分面积,简写为ALFAHFAWF

    前人研究证明,硅酸盐玻璃的水含量与其拉曼参数之间存在良好的线性关系16-1719,但由于不同激光拉曼光谱仪的效率因子不同,其线性关系的系数会存在差异。因此,不同仪器的AWF/ALF值之间也存在良好的线性关系。通过4个人工合成标准样品确定本文实际测量值AWF/ALF与Tu等19测得的AWF/ALF*之间的线性关系,可以得到11个标准样品的AWF/ALF值(表1),然后使用Origin 2018软件对标准样品进行AWF/ALF-CH2O线性拟合,得到的熔体包裹体水含量(CH2O)标定曲线如图3所示,其方程表示如下:

    表  1  不同水含量人工合成含水硅酸盐玻璃标准样品的积分面积等参数测量结果
    Table  1.  Measurement results of integrated area and other parameters of artificially synthesized water-containing silicate glasses standard samples with different water content
    人工合成含水玻璃
    标准样品编号
    ALF AWF AWF/ALF*
    (Tu等19测量值)
    AWF/ALF
    (转换值或实测值)
    CH2O
    (%)
    RH-1(Tu等,2023) / / 1.0700 0.3726 0.33
    RH-2(Tu等,2023) / / 1.3300 0.4631 0.41
    RH-3(Tu等,2023) / / 1.8400 0.6407 0.58
    RH-4(Tu等,2023) / / 3.2600 1.1351 1.48
    RH-5(Tu等,2023) / / 4.9400 1.7201 2.26
    RH-6(Tu等,2023) / / 6.3100 2.1971 3.01
    RH-7(Tu等,2023) / / 8.5100 2.9632 4.09
    RH-8(Tu等,2023) / / 11.7800 4.1018 5.27
    RH-9(Tu等,2023) / / 14.3000 4.9793 6.35
    RH-10(Tu等,2023) / / 15.4400 5.3762 6.84
    RH-11(Tu等,2023) / / 21.3100 7.4201 9.05
    标准样品1 292.6424 1264.846 / 4.3222 5.27
    标准样品2 244.9186 776.2908 / 3.1696 4.09
    标准样品3 229.9241 374.9651 / 1.6308 2.26
    标准样品4 189.5898 250.3734 / 1.3206 1.48
    注:RH-1至RH-11为Tu等19测试样品;标样1至标样4为本文中的实际测试样品,分别对应Tu等19的样品RH-8、RH-7、RH-5、RH-4。“/”代表本文未使用的数据。
    下载: 导出CSV 
    | 显示表格
    图  3  含水流纹质玻璃水含量标定曲线
    Figure  3.  Calibration curve for total water content in hydrous rhyolitic glasses
    $$ C_{\mathrm{H}_2\mathrm{O}_t}=1.26\times\left(\frac{A_{\mathrm{WF}}}{A_{\mathrm{LF}}}\right)\quad R^2=0.998 $$ (2)

    样品新鲜面呈灰白色,具凝灰结构、块状构造。岩石主要由晶屑(35%)、岩屑(25%)和基质(40%)组成。晶屑成分以石英、长石为主,粒径可达1.8mm;岩屑以流纹岩岩屑为主,粒径约0.5~2mm;基质由尘屑和火山灰构成。镜下观察表明,岩石发育凝灰结构、假流纹构造,发生轻微蚀变。岩石定名为流纹质岩屑-晶屑凝灰岩。

    柳江盆地髫髻山组凝灰岩样品全岩主量元素分析结果见表2。样品中SiO2含量为75.18%~77.14%,Fe2O3含量1.06%~2.28%,Al2O3含量12.61%~13.02%,CaO含量0.14%~1.10%,MgO含量0.65%~1.29%,TiO2含量0.14%,全碱(Na2O+K2O)含量4.04%~4.24%,Na2O/K2O值为0.56~0.65。里特曼指数(σ)为0.51~0.53,属钙碱性系列。TAS图解投图落点在流纹岩区域中(图4a),符合样品中流纹质岩屑发育的岩石学特征,表明研究区髫髻山组下部凝灰岩的形成与酸性岩浆活动之间存在密切联系。

    表  2  髫髻山组凝灰岩全岩主量元素测试结果
    Table  2.  Analytical results of major elements in tuff of the Tiaojishan Formation
    凝灰岩样品
    编号
    Na2O
    (%)
    MgO
    (%)
    Al2O3
    (%)
    SiO2
    (%)
    P2O5
    (%)
    K2O
    (%)
    CaO
    (%)
    TiO2
    (%)
    MnO
    (%)
    Fe2O3
    (%)
    烧失量
    (%)
    Na2O+K2O
    (%)
    主量元素含量
    合计(%)
    TJS-11.451.2913.0275.180.032.601.100.140.042.283.384.04100.48
    TJS-21.670.6512.6177.140.022.580.140.140.031.063.044.2499.07
    注:为确保测试结果的可靠性,实验数据取同一样品两次测试结果的平均值。
    下载: 导出CSV 
    | 显示表格
    图  4  髫髻山组凝灰岩岩石地球化学特征
    (a)火山岩TAS图解;(b)微量元素原始地幔标准化蛛网图;(c)球粒陨石标准化稀土元素配分模式图;(d) Ta/Yb-Th/Yb图解(火山岩TAS图解据Irvine 等 [36;标准化所用原始地幔数据和球粒陨石数据引自Sun等37;Ta/Yb-Th/Yb图解据Pearce38)。
    Figure  4.  Lithogeochemical characteristics of the tuff of the Tiaojishan Formation

    柳江盆地髫髻山组凝灰岩样品全岩微量元素分析结果见表3。原始地幔标准化蛛网图(图4b)显示,大离子亲石元素(Rb、Th、U、K)富集,高场强元素(Ta、Nb、Ti、Zr、P)亏损,具明显Pb正异常,Sr负异常,弱Ba、La、Ce负异常;稀土元素球粒陨石标准化曲线(图4c)呈海鸥式展布,具明显Eu负异常,说明岩浆演化过程中存在明显的斜长石分离结晶作用;稀土元素配分模式为右倾型,呈现轻稀土富集、重稀土亏损的特点。(La/Sm)N平均值为6.77,(Gd/Yb)N平均值为1.88,表明轻稀土分馏程度高而重稀土分馏程度较低;(La/Yb)N平均值为15.65,轻重稀土分馏明显。李伍平等21对燕山造山带中-晚侏罗世髫髻山期火山岩进行研究发现,冀北髫髻山期流纹岩样品具有轻稀土元素强烈富集、重稀土元素强烈亏损、负Eu异常、Sr含量低(94~135μg/g)等特征,与本研究中凝灰岩样品的岩石地球化学特征相似。Ta/Yb-Th/Yb图解(图4d)投点落在活动大陆边缘,指示该时期研究区受洋壳俯冲的影响,岩浆活动强烈。(La/Nb)N平均值为1.06[原始地幔(La/Nb)N值约为0.96,平均大陆壳(La/Nb)N值为2.539],指示成岩过程中受到一定地壳混染作用。上述地球化学特征与前人的研究结果2040-41一致,即实验样品可以在一定程度上反映研究区髫髻山期早期的岩浆活动特征。

    表  3  髫髻山组凝灰岩全岩微量元素测试结果
    Table  3.  Analytical results of trace elements in tuff of the Tiaojishan Formation
    凝灰岩样品
    编号
    Li
    (μg/g)
    Be
    (μg/g)
    B
    (μg/g)
    Sc
    (μg/g)
    V
    (μg/g)
    Cr
    (μg/g)
    Co
    (μg/g)
    Ni
    (μg/g)
    Cu
    (μg/g)
    Zn
    (μg/g)
    Ga
    (μg/g)
    Ge
    (μg/g)
    As
    (μg/g)
    Rb
    (μg/g)
    Sr
    (μg/g)
    TJS-1 29.75 4.72 17.15 3.84 6.09 7.14 1.26 3.90 2.57 36.30 19.25 1.68 0.41 76.35 139.50
    TJS-2 10.46 3.78 15.55 4.89 6.59 4.43 0.72 1.69 2.39 18.56 17.55 0.80 0.47 74.13 97.87
    凝灰岩样品
    编号
    Y
    (μg/g)
    Zr
    (μg/g)
    Nb
    (μg/g)
    Mo
    (μg/g)
    Cd
    (μg/g)
    Cs
    (μg/g)
    Ba
    (μg/g)
    La
    (μg/g)
    Ce
    (μg/g)
    Pr
    (μg/g)
    Nd
    (μg/g)
    Sm
    (μg/g)
    Eu
    (μg/g)
    Gd
    (μg/g)
    Tb
    (μg/g)
    TJS-1 16.75 112.50 26.30 2.24 0.09 1.39 451.50 32.45 63.90 7.16 23.90 4.84 0.31 4.04 0.61
    TJS-2 13.50 100.77 27.64 1.80 0.04 0.99 386.05 24.29 52.86 5.53 17.92 3.56 0.24 2.80 0.45
    凝灰岩样品
    编号
    Dy
    (μg/g)
    Ho
    (μg/g)
    Er
    (μg/g)
    Tm
    (μg/g)
    Yb
    (μg/g)
    Lu
    (μg/g)
    Hf
    (μg/g)
    Ta
    (μg/g)
    W
    (μg/g)
    Tl
    (μg/g)
    Pb
    (μg/g)
    Bi
    (μg/g)
    Th
    (μg/g)
    U
    (μg/g)
    TJS-1 2.95 0.63 1.65 0.27 1.91 0.31 3.97 2.02 0.51 0.63 24.40 0.16 22.40 6.35
    TJS-2 2.45 0.50 1.44 0.25 1.70 0.27 3.68 2.04 0.70 0.60 20.70 0.10 21.60 5.50
    注:为确保测试结果的可靠性,实验数据取同一样品两次测试结果的平均值。
    下载: 导出CSV 
    | 显示表格

    对采集样品的包裹体薄片进行镜下显微观察,熔体包裹体较发育,呈孤立状随机分布在石英斑晶的晶格缺陷中,未见到边界层、破裂或泄露等明显的成分改造现象,表现出原生成因的岩相学特征742。熔体包裹体颜色复杂,呈无色或淡黄色,其形态具有多样性,发育多边形(图5中a,b)、橄榄球形(图5中c,d)及椭圆形(图5e),直径为30~165μm。根据熔体包裹体相态特征,可将其划分为三类:①玻璃质+结晶质熔体包裹体(图5a);②玻璃质+气泡熔体包裹体(图5中b,d);③玻璃质熔体包裹体(图5中c,e)。熔体包裹体内部不含或只含少量真空气泡,属于冷却速率较快的喷发火山岩相643-44。其中,呈孤立状分布在石英晶屑中、无破裂和泄露现象、不含或仅含单个气泡的熔体包裹体是岩浆迅速淬火冷凝而成,所捕获的熔体没有发生物理或化学成分改造,能代表矿物结晶时周围的熔体特征。

    图  5  熔体包裹体镜下照片及熔体包裹体显微激光拉曼光谱图
    a为玻璃质+结晶质熔体包裹体;b、d、g、h为玻璃质+气泡熔体包裹体;c、e、f为玻璃质熔体包裹体;i为熔体包裹体MI-1减基线后的拉曼光谱图。
    Figure  5.  Microscopic photos showing characteristics of the melt inclusions and Raman spectrum of the melt inclusions

    髫髻山组凝灰岩中9个熔体包裹体样品的显微激光拉曼光谱测试结果显示:各熔体包裹体在3100~3800cm−1处均检测到水峰,未检测到CO2等其他挥发组分(图5f)。根据鲍文反应序列45,石英形成于岩浆分离结晶作用晚期,其捕获的熔体包裹体组成接近于喷发前的熔浆成分,熔体包裹体中挥发份含量可以代表喷发前岩浆中挥发份含量2

    按照2.3.2节所述步骤对9个熔体包裹体样品的显微激光拉曼图谱进行处理,并将处理结果(即AWFALF)代入建立的水含量标定曲线方程,即2.4.3中的方程(2),使用Excel进行计算,得到的熔体包裹体水含量结果列于表4。测定结果显示,柳江盆地髫髻山组凝灰岩石英晶屑中熔体包裹体水含量为0.99%~4.98%,平均含量为2.62%(表4)。

    表  4  髫髻山组凝灰岩中熔体包裹体LF、WF积分面积及水含量计算结果
    Table  4.  Integrated areas of LF and WF, and water content of the melt inclusions in tuff of the Tiaojishan Formation
    包裹体样品编号 熔体包裹体类型 ALF AWF AWF/ALF 峰位(cm−1) CH2Ot (%)
    MI-1 玻璃质 120.2732 203.0257 1.6880 3631 2.13
    MI-2 玻璃质 119.9589 208.9559 1.7419 3631 2.19
    MI-3 玻璃质 297.2329 233.0028 0.7839 3643 0.99
    MI-4 玻璃质 198.5294 276.1755 1.3911 3636 1.75
    MI-5 玻璃质 180.3690 306.9109 1.7016 3631 2.14
    MI-6 玻璃质+气泡 78.6287 288.6345 3.6709 3636 4.63
    MI-7 玻璃质+气泡 222.9093 237.9510 1.0675 3637 1.35
    MI-8 玻璃质+气泡 526.2989 1446.2396 2.7479 3541 3.46
    MI-9 玻璃质+结晶质 186.4130 737.1156 3.9542 3568 4.98
    下载: 导出CSV 
    | 显示表格

    根据李福春等1的熔体包裹体水含量统计数据,大多数超基性基性岩浆中的水含量在0~0.8%;大部分中性岩浆水含量为0.4%~2.8%,平均为2.26%;酸性岩浆水含量范围主要集中在0.8%~5.6%,平均为2.712%。对比测定结果与统计数据可以看出,柳江盆地髫髻山组下部凝灰岩中熔体包裹体呈现高水含量的特点,反映了岩浆演化后期为酸性岩浆,这与岩石地球化学特征反映的岩浆性质一致,进一步验证了该时期研究区存在由地壳浅部酸性岩浆活动引发的火山爆发。

    柳江盆地位于燕山褶皱造山带东段(图1a),在中侏罗世(160±5Ma前后)受到燕山造山运动的影响强烈,研究区处于大陆边缘活动阶段(图4d),上地幔发生部分熔融2540-41,形成的岛弧拉斑玄武质岩浆随着基性矿物的分离结晶,逐渐向富硅、富水的酸性岩浆演化。水含量的增加促进了斜长石等矿物的分离结晶,导致负Eu异常(图4c)的形成46;高含水量的岩浆也可以促进流体相的形成,使得大离子亲石元素更容易在岩浆中富集,而高场强元素则因难以进入流体相而在残余熔体中表现为亏损47(图4b),从而使其形成的火山岩具有特定的地球化学特征。此外,水作为岩浆中最主要的挥发份,控制着岩浆的脱气过程,从而显著影响了岩浆系统的喷发动力4348。根据样品的熔体包裹体水含量测定结果,可以推测,高水含量岩浆是研究区髫髻山期早期爆发性火山喷发的重要驱动因素之一。

    柳江盆地髫髻山组下部发育流纹质岩屑-晶屑凝灰岩,在地球化学上表现出富水酸性岩浆的特征:大离子亲石元素(LILEs)富集,高场强元素(HFSEs)亏损,稀土元素(REEs)配分模式呈现轻稀土(LREEs)富集、重稀土(HREEs)亏损的特点,并出现负Eu异常和明显Pb正异常、Sr负异常,代表了研究区髫髻山期早期的岩浆特征。基于人工合成标样,本文建立了显微激光拉曼光谱定量熔体包裹体水含量标定曲线,并对柳江盆地髫髻山组下部凝灰岩石英斑晶内的熔体包裹体开展了水含量定量分析。测定结果表明,该凝灰岩中熔体包裹体水含量为0.99%~4.98%,平均为2.62%,介于酸性岩浆水含量范围,指示了研究区髫髻山期早期为富水酸性岩浆。凝灰岩地球化学特征和熔体包裹体水含量测定结果均反映了柳江盆地髫髻山早期岩浆具有富水、富硅的特点。结合样品的熔体包裹体水含量测定结果和大规模火山喷发背景,推测高水含量岩浆可能是导致此次爆发性火山喷发的重要条件之一。

    今后的研究中,可利用显微激光拉曼光谱法对研究区髫髻山期不同阶段的火山岩开展水含量系统分析,这对于探讨燕山造山带髫髻山期火山岩成因和岩浆演化具有重要意义。

    致谢:感谢中国科学技术大学壳幔物质与环境重点实验室(合肥)高晓英教授团队提供的帮助。

    致谢: 中国地质调查局西安地质调查中心实验测试中心微区同位素地球化学实验室主任李艳广、汪双双博士及靳梦琪在本文实验设计过程中给予了多方面指导和帮助。在此,作者对他们表示衷心的感谢!
  • 图  1   有无匀化器装置进样信号稳定性对比

    Figure  1.   A comparison of signal stability with and without smoothing unit

    图  2   不同激光参数条件剥蚀NIST 610的206Pb-238U分馏指数和238U灵敏度

    Figure  2.   206Pb-238U fractional index and 238U sensitivity of NIST 610 denudated under different laser parameters

    图  3   不同He气流速条件对应的238U的计数值及RSD值

    Figure  3.   The 238U count and RSD value in different He gas velocity conditions

    图  4   系列锆石标样的206Pb/238U谐和图及加权平均年龄

    Figure  4.   The 206Pb/238U harmonic diagrams and weighted average ages of series of zircon samples

    图  5   铜绿山矿区石英正长闪长玢岩锆石样品的206Pb/238U谐和图及加权平均年龄

    Figure  5.   The 206Pb/238U harmonic diagrams and weighted average ages of zircon samples in the quartz-orthoclase diorite porphyrite from the Tonglushan Orefield

    表  1   LA-ICP-MS主要工作参数

    Table  1   Main working parameters of LA-ICP-MS

    激光剥蚀系统(LA)电感耦合等离子体质谱仪(ICP-MS)
    分析参数工作条件分析参数工作条件
    单脉冲能量(mJ)80RF功率(W)1450
    能量密度(J/cm2)6RF匹配(V)1.80
    剥蚀频率(Hz)7采样深度(mm)6.0
    束斑直径(μm)32载气流速(L/min)1.10
    He气流速(mL/min)750信号采集模式TRA
    下载: 导出CSV
  • Cook N, Ciobanu C L, George L, et al.Trace element analysis of minerals in magmatic-hydrothermal ores by laser ablation inductively-coupled plasma mass spectrometry:Approaches and opportunities[J].Minerals, 2016, 6(4):111. doi: 10.3390/min6040111

    Norman M, Robinson P, Clark D.Major-and trace-element analysis of sulfide ores by laser-ablation ICP-MS, solution ICP-MS, and XRF:New data on international reference materials[J].The Canadian Mineralogist, 2003, 41(2):293-305. doi: 10.2113/gscanmin.41.2.293

    Danyushevsky L, Robinson P, Gilbert S, et al.Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS:Standard development and consideration of matrix effects[J].Geochemistry:Exploration, Environment, Analysis, 2011, 11(1):51-60. doi: 10.1144/1467-7873/09-244

    Ding L, Yang G, Xia F, et al.A LA-ICP-MS sulphide calibration standard based on a chalcogenide glass[J].Mineralogical Magazine, 2011, 75(2):279-287. doi: 10.1180/minmag.2011.075.2.279

    吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J].岩矿测试, 2015, 34(5):503-511.

    Wu S T, Wang Y P, Xu C X.Research progress on reference materials for in situ elemental analysis by laser ablation-inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2015, 34(5):503-511. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展

    肖志斌, 柳小明, 李正辉, 等.激光剥蚀-电感耦合等离子体质谱准确测定锆石中钛的含量[J].岩矿测试, 2012, 31(2):229-233. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20120206&flag=1

    Xiao Z B, Liu X M, Li Z H, et al.Accurate determination of Ti in zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2012, 31(2):229-233. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20120206&flag=1

    宗克清, 陈金勇, 胡兆初, 等.铀矿fs-LA-ICP-MS原位微区U-Pb定年[J].中国科学(地球科学), 2015, 45(9):1304-1315. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509005.htm

    Zong K Q, Chen J Y, Hu Z C, et al.In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J].Science China (Earth Sciences), 2015, 45(9):1304-1315. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509005.htm

    陈春飞, 刘先国, 胡兆初, 等.LA-ICP-MS微区原位准确分析含水硅酸盐矿物主量和微量元素[J].地球科学——中国地质大学学报, 2014, 39(5):525-536. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201405003.htm

    Chen C F, Liu X G, Hu Z C, et al.In situ analysis of major and trace element compositions of hydrous silicate minerals by LA-ICP-MS[J].Earth Science-Journal of China University of Geosciences, 2014, 39(5):525-536. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201405003.htm

    吴石头, 王亚平, 詹秀春, 等.CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究[J].岩矿测试, 2016, 35(6):612-620. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20160607&flag=1

    Wu S T, Wang Y P, Zhan X C, et al.Study on the elemental fractionation effect of CGSG reference materials and the related within-unit homogeneity of major and trace elements[J].Rock and Mineral Analysis, 2016, 35(6):612-620. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20160607&flag=1

    孟郁苗, 黄小文, 高剑峰, 等.无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成[J].岩矿测试, 2016, 35(6):584-594. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20160604&flag=1

    Meng Y M, Huang X W, Gao J F, et al.Determination of trace elements in magnetite by laser ablation-inductively coupled plasma-mass spectrometry using multiple external standards without an internal standard calibration[J].Rock and Mineral Analysis, 2016, 35(6):584-594. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20160604&flag=1

    王岚, 杨理勤, 王亚平, 等.锆石LA-ICP-MS原位微区U-Pb定年及微量元素的同时测定[J].地球学报, 2012, 33(5):763-772. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201205011.htm

    Wang L, Yang L Q, Wang Y P, et al.In situ U-Pb dating and trace element simultaneity determination of zircon by LA-ICP-MS[J].Acta Geoscientica Sinica, 2012, 33(5):763-772. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201205011.htm

    涂湘林, 张红, 邓文峰, 等.RESOlution激光剥蚀系统在微量元素原位微区分析中的应用[J].地球化学, 2011, 40(1):83-98. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201101009.htm

    Tu X L, Zhang H, Deng W F, et al.Application of resolution in-situ laser ablation ICP-MS in trace element analyses[J].Geochimica, 2011, 40(1):83-98. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201101009.htm

    李凤春, 侯明兰, 栾日坚, 等.电感耦合等离子体质谱仪与激光器联用测量条件优化及其在锆石U-Pb定年中的应用[J].岩矿测试, 2016, 35(1):17-23. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20160104&flag=1

    Li F C, Hou M L, Luan R J, et al.Optimization of analytical conditions for LA-ICP-MS and its application to zircon U-Pb dating[J].Rock and Mineral Analysis, 2016, 35(1):17-23. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20160104&flag=1

    吴石头, 王亚平, 许春雪, 等.193nm ArF准分子激光剥蚀系统高空间分辨率下元素分馏研究[J].分析化学, 2016, 44(7):1035-1041. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201607006.htm

    Wu S T, Wang Y P, Xu C X, et al.Elemental fractionation studies of 193nm ArF excimer laser ablation system at high space resolution mode[J].Chinese Journal of Analytical Chemistry, 2016, 44(7):1035-1041. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201607006.htm

    刘勇胜, 胡兆初, 李明, 等.LA-ICP-MS在地质样品元素分析中的应用[J].科学通报, 2013, 58(36):3753-3769. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201336003.htm

    Liu Y S, Hu Z C, Li M, et al.Applications of LA-ICP-MS in the elemental analyses of geological samples[J].Chinese Science Bulltin, 2013, 58(36):3863-3878. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201336003.htm

    李凤春. LA-ICP-MS联用条件优化及在锆石U-Pb测年中的应用[D]. 成都: 成都理工大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10616-2010218463.htm

    Li F C.Optimization of Combined with Conditions of LA-ICP-MS and Its Application in the Zircon U-Pb Dating[D].Chengdu:Chengdu University of Technology, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10616-2010218463.htm

    李艳广, 汪双双, 刘民武, 等.斜锆石LA-ICP-MS U-Pb定年方法及应用[J].地质学报, 2015, 89(12):2400-2418. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201512015.htm

    Li Y G, Wang S S, Liu M W, et al.U-Pb dating study of baddeleyite by LA-ICP-MS:Technique and application[J].Acta Geologica Sinica, 2015, 89(12):2400-2418. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201512015.htm

    汪双双, 韩延兵, 李艳广, 等.利用LA-ICP-MS在16μm和10μm激光束斑条件下测定独居石U-Th-Pb年龄[J].岩矿测试, 2016, 35(4):349-357. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20160404&flag=1

    Wang S S, Han Y B, Li Y G, et al.U-Th-Pb dating of monazite by LA-ICP-MS using ablation spot sizes of 16μm and 10μm[J].Rock and Mineral Analysis, 2016, 35(4):349-357. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20160404&flag=1

    Eggins S M, Kinsley L P J, Shelley J M G.Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS[J].Applied Surface Science, 1998, 127:278-286. http://www.deepdyve.com/lp/elsevier/deposition-and-element-fractionation-processes-during-atmospheric-ym0ReIjAGB

    Günther D, Heinrich C A.Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier[J].Journal of Analytical Atomic Spectrometry, 1999, 14(9):1363-1368. doi: 10.1039/A901648A

    范晨子, 胡明月, 赵令浩, 等.锆石铀-铅定年激光剥蚀-电感耦合等离子体质谱原位微区分析进展[J].岩矿测试, 2012, 31(1):29-46. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20120105&flag=1

    Fan C Z, Hu M Y, Zhao L H, et al.Advances in in situ microanalysis of U-Pb zircon geochronology using laser ablation-inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2012, 31(1):29-46. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20120105&flag=1

    Wiedenbeck M, Alle P, Corfu F, et al.Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J].Geostandards Newsletter, 1995, 19(1):1-23. doi: 10.1111/ggr.1995.19.issue-1

    Wiedenbeck M, Hanchar J M, Peck W H, et al.Further characterisation of the 91500 zircon crystal[J].Geostandards and Geoanalytical Research, 2004, 28(1):9-39. doi: 10.1111/ggr.2004.28.issue-1

    Lopez R, Cameron K L, Jones N W.Evidence for Paleo-proterozoic, Grenvillian, and Pan-African age Gondwanan crust beneath Northeastern Mexico[J].Precambrian Research, 2001, 107(3):195-214. http://www.academia.edu/6806524/Evidence_for_Paleoproterozoic_Grenvillian_and_Pan-African_age_Gondwanan_crust_beneath_northeastern_Mexico

    Paquette J L, Pin C.A new miniaturized extraction chro-matography method for precise U-Pb zircon geochronology[J].Chemical Geology, 2001, 176(1):311-319. http://www.ingentaconnect.com/content/els/00092541/2001/00000176/00000001/art00408

    Amelin Y, Zaitsev A N.Precise geochronology of phos-corites and carbonatites:The critical role of U-series disequilibrium in age interpretations[J].Geochimica et Cosmochimica Acta, 2002, 66(13):2399-2419. doi: 10.1016/S0016-7037(02)00831-1

    Chen F, Siebel W, Satir M.Zircon U-Pb and Pb-isotope fractionation during stepwise Hf acid leaching and geochronological implications[J].Chemical Geology, 2002, 191(1):155-164. http://www.sciencedirect.com/science/article/pii/S0009254102001547

    Nebel-Jacobsen Y, Scherer E E, Münker C, et al.Sepa-ration of U, Pb, Lu, and Hf from single zircons for combined U-Pb dating and Hf isotope measurements by TIMS and MC-ICPMS[J].Chemical Geology, 2005, 220(1):105-120. http://www.academia.edu/14496571/2_Lu_Hf_and_Sm_Nd_isotope_systems_in_zircon

    侯可军, 李延河, 田有荣.LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质, 2009, 28(4):481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm

    Hou K J, Li Y H, Tian Y R.In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J].Mineral Deposits, 2009, 28(4):481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm

    Jackson S E, Pearson N J, Griffin W L, et al.The app-lication of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J].Chemical Geology, 2004, 211(1):47-69. http://minerva.mq.edu.au:8080/vital/access/manager/Repository/mq:2028

    Sláma J, Košler J, Condon D J, et al.Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J].Chemical Geology, 2008, 249(1):1-35. http://www.princeton.edu/geosciences/people/schoene/pdf/8.%20Slama_CG08.pdf

    黄圭成, 夏金龙, 丁丽雪, 等.鄂东南地区铜绿山岩体的侵入期次和物源:锆石U-Pb年龄和Hf同位素证据[J].中国地质, 2013, 40(5):1392-1408. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201305005.htm

    Huang G C, Xia J L, Ding L X, et al.Stage division and origin of Tonglushan pluton in Southeast Hubei Province:Evidence from zircon U-Pb ages and Hf isotopes[J].Geology in China, 2013, 40(5):1392-1408. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201305005.htm

    Li X H, Li W X, Wang X C, et al.SIMS U-Pb zircon geochronology of porphyry C-Au-(Mo) deposits in the Yangtze River Metallogenic Belt, Eastern China:Magmatic response to early Cretaceous lithospheric extension[J].Lithos, 2010, 119:427-438. doi: 10.1016/j.lithos.2010.07.018

    Xie G, Mao J, Zhao H, et al.Timing of skarn deposit formation of the Tonglushan ore district, Southeastern Hubei Province, middle-lower Yangtze River Valley metallogenic belt and its implications[J].Ore Geology Reviews, 2011, 43(1):62-77. doi: 10.1016/j.oregeorev.2011.05.005

    Yuan H L, Gao S, Dai M N, et al.Simultaneous deter-minations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J].Chemical Geology, 2008, 247(1):100-118. http://www.doc88.com/p-9149559709618.html

  • 期刊类型引用(0)

    其他类型引用(2)

图(5)  /  表(1)
计量
  • 文章访问数:  2741
  • HTML全文浏览量:  615
  • PDF下载量:  75
  • 被引次数: 2
出版历程
  • 收稿日期:  2017-01-15
  • 修回日期:  2017-07-18
  • 录用日期:  2017-07-23
  • 发布日期:  2017-03-31

目录

/

返回文章
返回