Determination of Harmful Elements in Flotation Products of a Gold Mine by ICP-MS with the Matrix-Matching Method
-
摘要:
与金元素品位同级别或含量更高的有害元素(如镍、铜、镉和铅)在定量分析时,金矿的复杂基体会产生抑制效应,削弱离子化率和信号响应而影响测试结果。本文采用基体匹配-电感耦合等离子体质谱法(ICP-MS),与纯试剂有害元素标准溶液相比,复杂基体有害元素标准溶液可减少与样品消解液间的基体差异,在基体匹配与内标法联合校正非质谱干扰后实现对有害元素的准确定量。在确定金矿各浮选样品主要基体元素后,采用盐酸-硝酸-氢氟酸体系配合微波消解方法溶解样品。500μg/mL和1000μg/mL单一和混合基体元素溶液中10μg/L有害元素定量结果的相对偏差小于±10%,高浓度基体对痕量有害元素定量结果的影响较小。在基体浓度1000μg/mL条件下,单一和两种基体元素的有害元素标准溶液对不同基体种类的金矿浮选样品中有害元素定量结果偏差小于20%,因此采用铁硫基体的有害元素标准溶液实现金矿浮选样品的有害元素定量。利用该标准溶液测试代表性样品的加标回收实验中,元素加标回收率为92.08%~106.05%;对代表性样品进行6次平行测试,各元素相对标准偏差(RSD)为1.21%~4.69%。表明基体匹配ICP-MS法可作为金矿浮选样品有害元素的定量方法。
-
关键词:
- 电感耦合等离子体质谱法 /
- 金矿浮选样品 /
- 基体匹配 /
- 定量分析 /
- 有害元素
要点(1)溶液浓度及基体元素种类对痕量有害元素定量结果的影响较小。
(2)不同种类基体元素与纯试剂有害元素标准溶液对金矿浮选样品有害元素定量结果RSD值小于8%;基体匹配法内标回收率相对稳定,平均差较无基体匹配测试低24.07%。
(3)基体匹配ICP-MS法定量金矿浮选样品有害元素的加标回收率为92.08%~106.65%,平行实验精密度(RSD)小于5%。
HIGHLIGHTS(1) Solution concentration and types of maxtrix elements show little effect on the determination of trace harmful elements.
(2) RSDs of quantitative results of harmful elements in gold ore flotation samples using different types of matrix elements and pure reagent harmful element standard solutions were less than 8%. Internal standard recovery rate of the matrix matching method was relatively stable, with an average difference of 24.07% lower than that of the non-matrix matching test.
(3) Spiked recovery rates of harmful elements in gold flotation samples using ICP-MS method with matrix matching were 92.08%−106.65%, and RSDs of determination results of parallel experiments were less than 5%.
Abstract:For the quantification analysis of harmful elements (such as Ni, Cu, Cd and Pb), which may have the same grade or high content as gold, the complex matrix of gold ore can produce inhibitory effects, weaken the ionization rate and signal response, and show a negative effect on measurement results. In the work described here, inductively coupled plasma-mass spectrometry (ICP-MS) with matrix-matching was applied. Compared with the standard solution of harmful elements with pure reagent, a standard solution of harmful elements in a complex matrix reduced the difference in the matrix when the solution of the sample was dissolved. The accurate determination of harmful elements was achieved with the calibration of non mass spectrometry interference by the internal standard solution and matrix-matching. Main matrix elements of each flotation product of gold ore were determined by the mineralogical analysis, and sample dissolution was conducted by the microwave digestion with HCl-HNO3-HF. Recovery rate of 10μg/L harmful element were 90%−110% in 500μg/mL and 1000μg/mL matrix solution of single and multiple types of matrix elements. Quantitative deviation of harmful elements in flotation samples of various matrix types was less than 20%, which was measured by harmful elements standard solution with single and two types of matrix elements of 1000μg/mL. Hence, the harmful element standard solution with the Fe-S matrix was applied for the determination of harmful elements in flotation products of gold ore. For the spiked recovery experiment of representative samples measured by the standard solution, the elemental spiked recovery rate ranged from 92.08% to 106.65%. Six parallel tests were conducted on representative samples, and the relative standard deviation (RSD) of each element was 1.21%−4.69%. ICP-MS with matrix matching method is suitable for quantification determination of harmful elements in flotation samples of gold ore.
-
Keywords:
- ICP-MS /
- gold ore floatation product /
- substrate matching /
- quantitative analysis /
- harmful elements
-
-
表 1 电感耦合等离子体质谱仪测试条件
Table 1 Measurement parameters of ICP-MS instrument
工作参数 设定值 工作参数 设定值 射频功率 1550W 截取锥直径 0.45mm 取样深度 8mm 扫描方式 跳峰方式 等离子气体(Ar)流速 15L/min 每峰点数 1 辅助气体(Ar)流速 0.80L/min 扫描次数 100 载气(Ar)流速 1.05L/min Cd元素积分时间 1s 镍采样锥直径 1mm Ni、Cu、Pb等
元素积分时间0.30s 表 2 金矿浮选样品的主量基体元素种类及含量
Table 2 Major matrix elements in flotation samples of gold ore
样品编号 基体类型 主要元素及含量 样品编号 基体类型 主要元素及含量 1 铝基体 Si (29.75%) 5 铁铝基体 Si (27.66%); Fe (10.60%); Al (10.27%) 7 Si (29.84%); Al (9.78%) 6 Si (28.66%); Fe (8.27%); Al (10.58%) 14 Si (31.27%); Al (10.43%) 9 Si (27.93%); Fe (9.35%); Al (11.02%) 22 Si (30.47%); Al (9.63%) 11 Si (24.76%); Fe (15.85%); Al (10.99%) 2 铁硫基体 Si (14.92%); Fe (22.87%); S (12.76%) 15 Si (26.64%); Fe (10.74%); Al (10.23%) 3 Si (19.06%); Fe (22.36%); S (13.52%) 16 Si (28.45%); Fe (10.33%); Al (10.95%) 8 Si (13.16%); Fe (23.50%) 17 Si (27.75%); Fe (10.97%); Al (10.60%) 10 Si (14.08%); Fe (20.57%); S (17.27%) 18 Si (25.64%); Fe (10.92%); Al (10.17%) 12 Si (13.59%); Fe (26.39%); S (22.35%) 19 Si (28.27%); Fe (11.21%); Al (10.71%) 13 Fe (30.48%); S (24.16%) 20 Si (26.96%); Fe (9.39%); Al (10.38%) 4 铁铝基体 Si (25.89%); Fe (14.46%); Al (10.37%) 21 Si (27.43%); Fe (10.62%); Al (10.84%) 表 3 不同浓度/种类基体元素溶液中痕量有害元素定量的相对偏差
Table 3 Relative deviation of each hazardous element after adding different concentrations/types of matrix elements
基体元素及浓度
(μg/mL)各有害元素测定值与理论值的相对偏差(%) Ni Cu Cd Pb 铝(500) −0.85 7.96 −0.74 3.00 铁(500) −4.62 6.74 −2.31 −0.79 硫(500) −5.22 3.46 −3.85 6.29 铁硫(500) 0.97 9.72 −9.32 2.03 铁硫(1000) −1.97 8.31 −7.07 1.22 铁铝(1000) 5.74 −5.42 −2.70 −2.48 表 4 不同基体有害元素标准溶液对部分金矿浮选样品中有害元素定量分析结果
Table 4 Quantification results of harmful elements in some gold ore flotation products using standard solutions of harmful elements in various matrixes
样品编号 有害元素标准溶液
基体元素Ni测定值
(μg/g)Cu测定值
(μg/g)Cd测定值
(μg/g)Pb测定值
(μg/g)8号样品
(铁硫基体)铁硫 363.38 596.78 24.61 1540.22 铁 344.59 547.18 23.88 1569.77 硫 372.52 564.39 24.15 1611.48 纯试剂 356.31 574.64 23.50 1625.51 RSD(%) 3.28 3.63 1.94 2.46 9号样品
(铁铝基体)铁铝 112.66 186.65 2.32 263.37 铁 113.77 196.41 2.52 292.44 铝 117.31 210.64 2.57 294.22 纯试剂 115.64 194.62 2.32 264.84 RSD(%) 1.79 5.07 5.41 6.06 13号样品
(铁硫基体)铁硫 336.18 311.63 17.54 1135.47 铁 294.45 315.54 19.18 1199.29 硫 301.20 321.80 19.05 1145.17 纯试剂 317.10 366.45 18.89 1322.70 RSD(%) 5.95 7.73 4.07 7.17 17号样品
(铝基体)铝 124.75 303.10 2.23 275.80 2%硝酸 118.06 288.17 2.20 257.33 RSD(%) 3.90 3.57 0.96 4.90 表 5 不同基体有害元素标准溶液对铝基体和铁铝基体金矿浮选样品中有害元素测试结果
Table 5 Quantification results of harmful elements in gold ore flotation samples with Al- and Fe-Al matrix using standard solutions of harmful elements in various matrixes.
样品编号 有害元素标准溶液基体元素 Ni
(μg/g)Cu
(μg/g)Cd
(μg/g)Pb
(μg/g)有害元素标准溶液基体元素 Ni
(μg/g)Cu
(μg/g)Cd
(μg/g)Pb
(μg/g)1 铝 58.62 67.33 1.60 102.58 铁硫 57.22 63.85 1.61 90.96 7 44.56 102.80 0.71 96.42 42.56 98.20 0.63 96.06 14 59.10 125.33 1.00 108.18 59.10 116.57 0.82 119.4 22 34.18 63.03 0.32 70.24 36.13 65.14 0.34 66.88 4 铁铝 160.93 282.57 5.40 497.02 160.93 267.77 5.41 513.4 5 94.30 249.38 5.21 436.7 116.83 206.86 5.89 377.65 6 82.92 159.46 2.45 265.68 92.34 140.05 2.24 254.67 9 112.66 186.65 2.32 263.37 120.39 161.81 2.05 225.93 11 197.97 340.82 6.22 697.57 197.97 290.04 6.31 663.41 15 105.21 428.65 2.25 303.61 111.45 365.18 1.86 303.45 16 107.84 338.23 1.87 186.06 96.84 297.13 1.55 183.48 17 124.75 303.10 2.23 275.8 115.88 297.02 2.10 264.64 18 149.36 422.74 2.51 266.65 136.23 441.74 2.15 268.78 19 68.25 384.89 1.85 256.20 56.95 341.4 1.74 263.90 20 86.69 250.90 1.99 152.05 95.12 253.08 1.83 173.13 21 94.00 349.36 2.40 282.20 92.33 358.58 2.30 276.88 表 6 消解和测试加标回收实验结果
Table 6 Results of spiked recovery experiment for the dissolution and measurement
样品名称 Ni测定值
(μg/g)Cu测定值
(μg/g)Cd测定值
(μg/g)Pb测定值
(μg/g)14号样品 59.10 116.57 0.82 119.40 14号样品+10μg各元素(消解) 161.72 221.93 97.55 211.48 加标回收率(%) 102.62 105.36 96.73 92.08 6号样品 92.34 140.05 2.24 254.67 6号样品+等体积标液(测试) 97.08 122.16 50.22 177.92 加标回收率(%) 101.82 104.27 98.20 101.17 13号样品 336.18 311.63 17.54 1135.47 13号样品+等体积标液(测试) 215.93 208.84 57.71 619.26 加标回收率(%) 95.68 106.05 97.88 103.05 表 7 加标回收实验结果
Table 7 Results of spiked recovery experiments
样品编号 元素 6次平行实验检测值(μg/g) 平均值
(μg/g)RSD
(%)5号样品 Ni 116.83 119.04 114.52 121.75 118.08 111.61 116.97 3.04 Cu 206.86 208.96 212.57 204.88 210.73 209.09 208.85 1.31 Cd 5.89 5.98 5.66 5.42 6.07 6.15 5.86 4.69 Pb 377.65 360.19 384.57 366.42 379.76 359.97 371.43 2.86 12号样品 Ni 330.05 344.47 327.59 335.04 338.73 349.62 337.58 2.50 Cu 356.31 347.87 342.46 360.93 354.52 361.42 353.92 2.11 Cd 20.18 18.25 18.57 19.62 19.74 20.09 19.41 4.16 Pb 1227.43 1268.87 1239.15 1241.06 1251.53 1231.50 1243.26 1.21 -
[1] 陈艳波, 李光胜, 朱幸福, 等. 甘肃某含砷高硫金矿浮选实验[J]. 矿产综合利用, 2024(3): 206−210. doi: 10.3969/j.issn.1000-6532.2024.03.032 Chen Y B, Li G S, Zhu X F, et al. Flotation of an arsenic bearing high sulfur gold mine in Gansu Province[J]. Multipurpose Utilization of Mineral Resources, 2024(3): 206−210. doi: 10.3969/j.issn.1000-6532.2024.03.032
[2] 郭威, 谭巧义, 高立强, 等. 两矿法氧化难处理金矿中的黄铁矿[J]. 有色金属工程, 2024, 14(5): 73−80. doi: 10.3969/j.issn.2095-1744.2024.05.101 Guo W, Tan Q Y, Gao L Q, et al. Pre-oxidation of pyrite in refractory gold ore using MnO2 as oxidant[J]. Nonferrous Metals Engineering, 2024, 14(5): 73−80. doi: 10.3969/j.issn.2095-1744.2024.05.101
[3] 谢卫宁, 冯培忠, 张碧兰, 等. 基体匹配-电感耦合等离子体质谱(ICP-MS)法测定萤石精矿中痕量有害元素[J]. 中国无机分析化学, 2023, 13(8): 775−782. doi: 10.3969/j.issn.2095-103 Xie W N, Feng P Z, Zhang B L, et al. Determination of trace harmful elements in fluorite concentrate by matrix matching-inductively coupled plasma mass spectrometry (ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 775−782. doi: 10.3969/j.issn.2095-103
[4] 沈恬恬, 张兵, 李烨, 等. ICP-MS基体匹配法测定酮咯酸氨丁三醇注射液中11种元素杂质迁移量[J]. 药物分析杂志, 2024, 44(2): 316−323. doi: 10.16155/j.0254-1793.2024.02.15 Shen T T, Zhang B, Li Y, et al. Determination of migration of eleven elemental impurities in ketorolac tromethamine injection by ICP-MS with matrix-matching method[J]. Chinese Journal of Pharmaceutical Analysis, 2024, 44(2): 316−323. doi: 10.16155/j.0254-1793.2024.02.15
[5] 常学东, 杜晶, 孙文明, 等. 碱熔-电感耦合等离子体质谱法测定铍矿石中的铍和锡[J]. 岩矿测试, 2024, 43(5): 783−792. doi: 10.15898/j.ykcs.202403310073 Chang X D, Du J, Sun W M, et al. Determination of beryllium and tin in beryllium ore by inductively coupled plasma-mass spectrometry with alkali fusion[J]. Rock and Mineral Analysis, 2024, 43(5): 783−792. doi: 10.15898/j.ykcs.202403310073
[6] 严鹏飞, 臧旭, 宋体杰, 等. 电感耦合等离子体原子发射光谱法测定Ti65 高温钛合金中16 种元素[J]. 分析测试学报, 2024, 43(9): 1348−1355. doi: 10.12452/j.fxcsxb.240626173 Yan P F, Zang S, Song T J, et al. Determination of 16 elements in Ti65 high temperature titanium alloy by inductively coupled plasma atomic emission spectrometry[J]. Journal of Instrumental Analysis, 2024, 43(9): 1348−1355. doi: 10.12452/j.fxcsxb.240626173
[7] Zhou X, Gui L Y, Lu Z Y, et al. Trace rare earth elements analysis in atmospheric particulates and cigar smoke by ICP-MS after pretreatment with magnetic polymers[J]. Analytica Chimica Acta, 2024, 7: 343003. doi: 10.1016/j.aca.2024.343003
[8] Dong J H, Liu J Z, Xing P J, et al. High-efficiency miniaturized ultrasonic nebulization sample introduction system for elemental analysis of microvolume biological samples by inductively coupled plasma quadrupole mass spectrometry[J]. Analytical Chemistry, 2023, 95(15): 6271−6278. doi: 10.1021/acs.analchem.2c04789
[9] Mitsuru E, Kazuki H, Naoki S. Determination of trace rare earth elements in rock samples including meteorites by ICP-MS coupled with isotope dilution and comparison methods[J]. Analytica Chimica Acta, 2020, 1101: 81−89. doi: 10.1016/j.aca.2019.12.031
[10] 李维涵, 李鹰, 李剑, 等. 三重四极杆电感耦合等离子体质谱(ICP-MS)法测定氧化铕中 13 种稀土杂质元素[J]. 中国无机分析化学, 2024, 14(3): 343−349. doi: 10.3969/j.issn.2095-10 Li W H, Li Y, Li J, et al. Determination of 13 rare earth impurity elements in europium oxide by triple quadrupole inductively coupled plasma mass spectrometry (ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(3): 343−349. doi: 10.3969/j.issn.2095-10
[11] 徐芝亮, 吴海燕, 张智怡, 等. ICP-MS/MS直接测定高纯 Eu2O3中超痕量的铥、砷、硅[J]. 中国稀土学报, 2016, 34(4): 453−459. doi: 10.11785/S1000-4343.20160410 Xu Z L, Wu H Y, Zhang Z Y, et al. Direct determination of super-trace levels of thulium, arsenic and silicon in high-purity Eu2O3 by ICP-MS/MS[J]. Journal of Chinese Journal of Rare Earths, 2016, 34(4): 453−459. doi: 10.11785/S1000-4343.20160410
[12] Hu S H, Hu Z C, Liu Y S. Determination of sub-trace Sc, Y and Ln in carbonate by ICP-MS with inter-element matrix-matched technique[J]. Journal of Rare Earth, 2023, 21(2): 124−128.
[13] 唐一川, 冯媛媛, 周涛, 等. 在线加标-电感耦合等离子体质谱法测量纯钼中痕量杂质元素[J]. 岩矿测试, 2023, 42(6): 1142−1155. doi: 10.15898/j.ykcs.202304020042 Tang Y C, Feng Y Y, Zhou T, et al. Rapid determination of trace impurity elements in pure molybdenum by inductively coupled plasma-mass spectrometry based on the online-standard-addition method[J]. Rock and Mineral Analysis, 2023, 42(6): 1142−1155. doi: 10.15898/j.ykcs.202304020042
[14] 韩弢, 高颂, 张轶波, 等. 辉光放电质谱法对粉状高温合金中14 种痕量元素的相对灵敏度因子校正方法探究[J]. 分析测试学报, 2024, 43(9): 1356−1361. doi: 10.12452/j.fxcsxb.240628177 Han T, Gao S, Zhang Y B, et al. Investigation on the relative sensitivity factor correction method of 14 trace elements in powdered superalloy by glow discharge mass spectrometry[J]. Journal of Instrumental Analysis, 2024, 43(9): 1356−1361. doi: 10.12452/j.fxcsxb.240628177
[15] 李晓旭, 王长春, 李辉, 等. 辉光放电质谱法测定高温合金中的氧氮元素[J]. 分析测试学报, 2024, 43(9): 1370−1375. doi: 10.12452/j.fxcsxb.240619149 Li X X, Wang C C, Li H, et al. determination of oxygen and nitrogen elements in nickel-based superalloys by glow discharge mass spectrometry[J]. Journal of Instrumental Analysis, 2024, 43(9): 1370−1375. doi: 10.12452/j.fxcsxb.240619149
[16] 汤云腾. 辉光放电质谱法测定合金钢中各元素的相对灵敏度因子[J]. 中国测试, 2024, 50(3): 84−89. doi: 10.11857/j.issn.1674-5124.2021110130 Tang Y T. Determination of relative sensitivity factors of elements in alloy steel by glow discharge mass spectrometry[J]. China Measurement & Test, 2024, 50(3): 84−89. doi: 10.11857/j.issn.1674-5124.2021110130
[17] Wang C Q, Li W, Chen D, et al. Chemometric assessment of electronic cigarettes based on the ICP-MS determination of metal concentrations[J]. Chinese Journal of Analytical Chemistry, 2024, 52(5): 100396. doi: 10.1016/j.cjac.2024.100396
[18] 高树峰, 张海岩, 张玉平, 等. X射线荧光光谱法测定氮化钒铁中铁、钒、硅的含量[J]. 理化检验(化学分册), 2014, 50(6): 681−684. Gao S F, Zhang H Y, Zhang Y P, et al. XRFS determination of iron, vanadium and silicon in ferrovanadium nitride[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(6): 681−684.
[19] 张馨元, 胡净宇, 侯艳霞, 等. 碰撞反应池-电感耦合等离子体质谱法测定镍基高温合金中痕量铜锌钡[J]. 冶金分析, 2022, 42(5): 15−20. doi: 10.13228/j.boyuan.issn1000-7571.0116 Zhang X Y, Hu J Y, Hou Y X, et al. Determination of trace copper, zinc and barium in nickel-based superalloy by inductively coupled plasma mass spectrometry with collision reaction cell[J]. Metallurgical Analysis, 2022, 42(5): 15−20. doi: 10.13228/j.boyuan.issn1000-7571.0116
[20] 沈健, 王兵, 徐倩茹, 等. 微波消解-基体匹配高分辨电感耦合等离子体质谱法测定煤中钽铀镱[J]. 冶金分析, 2022, 42(6): 30−36. doi: 10.13228/j.boyuan.issn1000-7571.011677 Shen J, Wang B, Xu Q R, et al. Determination of tantalum, uranium and ytterbium in coal by microwave digestion and high resolution inductively coupled plasma mass spectrometry based on matrix matching[J]. Metallurgical Analysis, 2022, 42(6): 30−36. doi: 10.13228/j.boyuan.issn1000-7571.011677
[21] 冯媛媛, 周涛, 唐一川, 等. 氧气反应模式-四极杆ICP-MS定量高温合金中痕量元素及质谱干扰消除机理研究[J]. 质谱学报, 2024, 45(4): 531−539. doi: 10.7538/zpxb.2024.0001 Feng Y Y, Zhou T, Tang Y C, et al. Quantification of trace elements in superalloy by quadrupole ICP-MS based on oxygen reaction mode and study on the elimination mechanism of spectral interference[J]. Journal of Chinese Mass Spectrometry Society, 2024, 45(4): 531−539. doi: 10.7538/zpxb.2024.0001
[22] 李晓敬, 胡艳巧, 张金明, 等. 微波消解-电感耦合等离子体质谱法测定石墨矿中16种稀土元素[J]. 冶金分析, 2024, 44(8): 18−26. doi: 10.13228/j.boyuan.issn1000-7571.012330 Li X J, Hu Y Q, Zhang J M, et al. Determination of 16 rare earth elements in graphite ore by inductively coupled plasma mass spectrometry with microwave digestion[J]. Metallurgical Analysis, 2024, 44(8): 18−26. doi: 10.13228/j.boyuan.issn1000-7571.012330
[23] 范俊楠, 张钰, 李国坡, 等. 基于不同前处理方式ICP-MS法测定土壤中22种金属元素[J]. 分析科学学报, 2024, 40(4): 454−460. doi: 10.13526/j.issn.1006-6144.2024.04.012 Fan J N, Zhang Y, Li G P, et al. Determination of 22 metals in soil by ICP-MS based on different pretreatment methods[J]. Journal of Analytical Science, 2024, 40(4): 454−460. doi: 10.13526/j.issn.1006-6144.2024.04.012
[24] 刘洁, 谭胜楠, 戚振南, 等. 电感耦合等离子体原子发射光谱基体匹配校准法测定镍基合金中铬含量[J]. 光谱学与光谱分析, 2024, 44(8): 2250−2255. doi: 10.3964/j.issn.1000-0593(2024)08-2250-06 Liu J, Tan S N, Qi Z N, et al. Determination of chromium content in nickel base alloy by matrix matching calibration method of inductively coupled plasma atomic emission spectrometry[J]. Spectroscopy and Spectral Analysis, 2024, 44(8): 2250−2255. doi: 10.3964/j.issn.1000-0593(2024)08-2250-06