Risk Assessment and Influencing Factors Analysis of Heavy Metals in Soil of Non-Surface Coal Mines in Southern Hebei Province
-
摘要:
非露天煤矿开采是获取煤炭资源的重要手段,研究非露天煤矿土壤重金属含量影响因素及生态风险,对矿区生态环境保护和治理至关重要。当前冀南非露天煤矿——峰峰煤矿土壤重金属相关研究多聚焦于对局部区域土壤污染程度的评估以及对影响因素的线性作用分析,难以为整个区域土壤重金属的有效治理提供科学依据。为综合评价整个峰峰煤矿土壤重金属污染程度,并深入分析其主要影响因素及非线性作用机制,本文在峰峰煤矿采集49处表层土壤样品测定7种重金属元素As、Cd、Cr、Cu、Ni、Pb、Zn含量;运用单项污染指数法和潜在生态风险评价法评估矿区土壤重金属污染程度和潜在生态风险,并利用地理探测器分析矿区土壤重金属含量空间分布的主要影响因素。结果表明:矿区内土壤7种重金属含量表现出一定的空间异质性,总体呈北高南低的分布格局,样品中仅有Cd元素平均含量超过国家自然背景值。土壤潜在生态风险综合指数为45.70~132.77,处于轻度到中度风险等级之间,其中各重金属单项污染指数呈现Cd(1.818)>Pb(0.744)>Cu(0.715)>Ni(0.714)>Cr(0.701)>Zn(0.684)>As(0.656)。矿山开采、矸石山等人为因素及降水、土壤湿度等自然因素共同影响着峰峰煤矿区土壤重金属含量的空间格局,其中企业分布和交通运输活动是Ni空间分异性的主要影响因素;矿山开采是Cu、Cd、Cr、Pb和Zn的主要影响因素;土壤侵蚀和土壤湿度是As的主要影响因素。
Abstract:Non-surface coal mining is an important means to obtain coal resources. It is crucial to study the influencing factors and ecological risks of soil heavy metal contents of non-surface coal mines for the protection and management of mine area ecosystems. The current study on soil heavy metals in the Fengfeng coal mine, a non-surface mine located in southern Hebei Province, primarily focuses on assessing local soil pollution levels and analyzing the linear effects of influencing factors, which makes it difficult to provide a scientific basis for the effective treatment of soil heavy metals in the entire region. To comprehensively evaluate the pollution level of soil heavy metal of the Fengfeng coal mine and deeply analyze the main influencing factors and their nonlinear mechanisms, 49 surface soil samples were collected and the contents of seven heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) were determined. The single pollution index method and potential ecological risk assessment method were employed to evaluate the soil heavy metal pollution level and potential ecological risks of the mine area, and the geographic detector was utilized to analyze the main influencing factors of the spatial distribution of soil heavy metal content. The results indicated that the soil heavy metal contents of seven types in the mine area exhibited certain spatial heterogeneity, with an overall distribution pattern of high in the north and low in the south. Only the average content of Cd in the samples exceeded the national natural background value. The comprehensive index of soil potential ecological risk was between 45.70 and 132.77, ranging from mild to moderate risk levels. The single heavy metal pollution indices were ranked as Cd (1.818)>Pb (0.744)>Cu (0.715)>Ni (0.714)>Cr (0.701)>Zn (0.684)>As (0.656). The spatial pattern of soil heavy metal content in the Fengfeng coal mine was influenced by human factors such as mining activities and gangue hills, as well as natural factors such as precipitation and soil moisture. Among them, enterprise distribution and transportation activities were the main influencing factors of the spatial differentiation of heavy metal Ni; mining activities were the main influencing factor of heavy metals Cu, Cd, Cr, Pb, and Zn; soil erosion and soil moisture were the main influencing factors of heavy metal As.
-
-
图 6 不同土壤重金属及生态风险指数主导因素的相互作用
D-mine代表距矿区距离;DEM代表高程;PRE代表降水;SM代表土壤湿度;Erosion代表土壤侵蚀;D-river代表距河流距离;TEM代表温度;Hillock代表矸石山;PM2.5代表细颗粒物;D-POI代表距企业距离;Road代表路网密度;RI为研究区潜在生态风险指数。
Figure 6. Interaction of dominant factors of different soil heavy metals and ecological risk indice (D-mine represents the distance from the mining area; DEM represents elevation; PRE represents precipitation; SM represents soil moisture; Erosion represents soil erosion; D-river represents the distance from the river; TEM represents temperature; Hillock represents a gangue hill; PM2.5 represents fine particulate matter; D-POI represents the distance from the enterprise; Road represents the density of the road network; RI is the potential ecological risk index of the study area).
表 1 两个自变量对因变量交互作用的类型
Table 1 The type of interaction between two independent variables and the dependent variable
交互作用五种类型图示 判断依据 交互作用类型 q(X1∩X2) < Min[q(X1),q(X2)] 非线性减弱 Min[q(X1),q(X2)] < q(X1∩X2) < Max[q(X1),q(X2)] 双线性减弱 q(X1∩X2) > Max[q(X1),q(X2)] 双线性增强 q(X1∩X2)=q(X1)+q(X2) 相互独立 q(X1∩X2)>q(X1) +q(X2) 非线性增强 注: ● 代表Min[q(X1),q(X2)],取q(X1)和q(X2)间的最小值;● 代表Max[q(X1),q(X2)],取q(X1)和q(X2)间的最大值;● 代表q(X1)+q(X2),取q(X1)和q(X2)两者之和;▼ 代表q(X1∩X2),取q(X1)和q(X2)两者交互作用大小。Note: ● Represents Min[q(X1), q(X2)], taking the minimum value between q(X1) and q(X2);● Represents Max[q(X1), q(X2)], taking the maximum value between q(X1) and q(X2);● Represents q(X1)+q(X2), taking the sum of q(X1) and q(X2);▼ Represents q(X1∩X2), taking the magnitude of the interaction between q(X1) and q(X2).表 2 土壤重金属含量统计分析
Table 2 Statistical analysis of heavy metals content in soil
重金属元素 含量最大值
(mg/kg)含量最小值
(mg/kg)含量平均值
(mg/kg)偏度 峰度 变异系数
CV(%)背景值a
(mg/kg)百分比b
(%)样品含量
分布类型Cr 69.175 30.253 45.092 0.327 2.898 19.47 64.300 4.08 对数正态分布 Ni 30.675 10.605 19.847 0.917 4.306 19.59 27.800 6.12 正态分布 Cu 52.201 8.708 16.492 1.457 6.923 40.07 23.100 8.16 对数正态分布 Zn 98.060 24.596 47.554 0.341 3.944 26.34 69.500 4.08 对数正态分布 As 12.876 3.014 6.625 0.024 2.320 37.81 10.100 10.20 对数正态分布 Cd 0.480 0.173 0.273 0.134 3.363 20.39 0.150 100.00 对数正态分布 Pb 38.035 10.766 16.748 1.046 6.604 24.61 22.500 4.08 对数正态分布 注:a为邯郸市表层土壤重金属的自然背景值[37];b为超过自然背景值的土壤样品比例。 Note: a is the natural background value of heavy metals in surface soil of Handan City[37]; b is the proportion of soil samples exceeding the natural background value. -
[1] Ma B, Yang X, Yu Y, et al. Investigation of vegetation changes in different mining areas in Liaoning Province, China, using multisource remote sensing data[J]. Remote Sensing, 2021, 13(24): 5168. doi: 10.3390/rs13245168
[2] Yan T, Zhao W, Yu X, et al. Evaluating heavy metal pollution and potential risk of soil around a coal mining region of Tai’an City, China[J]. Alexandria Engineering Journal, 2022, 61(3): 2156−2165. doi: 10.1016/j.aej.2021.08.013
[3] 张永康, 曹耀华, 冯乃琦, 等. 某废弃煤矿区土壤重金属污染风险评价[J]. 煤炭学报, 2024, 49(7): 3188−3198. doi: 10.13225/j.cnki.jccs.2023.0693 Zhang Y K, Cao Y H, Feng N Q, et al. Risk assessment of heavy metals in the soil of an abandoned coal mine area[J]. Journal of China Coal Society, 2024, 49(7): 3188−3198. doi: 10.13225/j.cnki.jccs.2023.0693
[4] Li F, Li X, Hou L, et al. Impact of the coal mining on the spatial distribution of potentially toxic metals in farmland tillage soil[J]. Scientific Reports, 2018, 8(1): 14925. doi: 10.1038/s41598-018-33132-4
[5] Saljnikov E, Mrvić V, Čakmak D, et al. Pollution indices and sources appointment of heavy metal pollution of agricultural soils near the thermal power plant[J]. Environmental Geochemistry and Health, 2019, 41: 2265−2279. doi: 10.1007/s10653-019-00281-y
[6] Sukiasyan R A, Kirakosyan A A, Pirumyan P G. Evaluation of heavy metal pollution in the vicinity of the Shnokh River by the geoaccumulation index[J]. Russian Journal of General Chemistry, 2020, 90(13): 2659−2663. doi: 10.1134/s1070363220130204
[7] 赵红坤, 唐世新, 付燕刚, 等. 海南琼中岩-土体系重金属迁移特征及表土环境质量评价[J]. 岩矿测试, 2024, 43(1): 137−151. doi: 10.15898/j.ykcs.202308040122 Zhao H K, Tang S X, Fu Y G, et al. Migration characteristics and environmental quality assessment of heavy metal elements in the rock-soil system in Qiongzhong, Hainan Island[J]. Rock and Mineral Analysis, 2024, 43(1): 137−151. doi: 10.15898/j.ykcs.202308040122
[8] 杨振宇, 廖超林, 邹炎, 等. 湘东北典型河源区土壤重金属分布特征、来源解析及潜在生态风险评价[J]. 环境科学, 2023, 44(9): 5288−5298. doi: 10.13227/j.hjkx.202209145 Yang Z Y, Liao C L, Zou Y, et al. Distribution characteristics, source analysis and potential ecological risk assessment of soil heavy metals in typical river source areas of northeastern Hunan Province[J]. Environmental Science, 2023, 44(9): 5288−5298. doi: 10.13227/j.hjkx.202209145
[9] Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 1980, 14(8): 975−1001. doi: 10.1016/0043-1354(80)90143-8
[10] 胡旭刚, 谭继勇, 覃兴涛, 等. 广西天峨主要耕地区农作物中重金属元素富集特征与影响因素[J]. 现代地质, 2024, 38(3): 784−792. doi: 10.19657/j.geoscience.1000-8527.2023.123 Hu X G, Tan J Y, Qin X T, et al. Enrichment characteristics and influencing factors of heavy metal elements in crops from the primary cultivated areas of Tian’e county, Guangxi[J]. Geoscience, 2024, 38(3): 784−792. doi: 10.19657/j.geoscience.1000-8527.2023.123
[11] 李文明, 孙朝, 陈霄燕, 等. 青海省典型高山农业区域土壤重金属污染评价及来源探析[J]. 岩矿测试, 2023, 42(3): 598−615. doi: 10.15898/j.ykcs.202209170174 Li W M, Sun C, Chen X Y, et al. Evaluation and source of heavy metal pollution in surface soils in typical alpine agricultural areas of Qinghai Province[J]. Rock and Mineral Analysis, 2023, 42(3): 598−615. doi: 10.15898/j.ykcs.202209170174
[12] Zhong X, Chen Z, Li Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J]. Journal of Hazardous Materials, 2020, 400: 123289. doi: 10.1016/j.jhazmat.2020.123289
[13] 孙建伟, 贾煦, 刘向东, 等. 豫西金矿集区矿业活动对周边农田土壤重金属影响研究[J]. 岩矿测试, 2023, 42(1): 192−202. doi: 10.15898/j.cnki.11-2131/td.202203280062 Sun J W, Jia X, Liu X D, et al. Influence of mining activities in the gold ore concentration area in Western Henan on the heavy metals in surrounding farmland soil[J]. Rock and Mineral Analysis, 2023, 42(1): 192−202. doi: 10.15898/j.cnki.11-2131/td.202203280062
[14] Ma Y, Li Y, Fang T, et al. Analysis of driving factors of spatial distribution of heavy metals in soil of non-ferrous metal smelting sites: Screening the geodetector calculation results combined with correlation analysis[J]. Journal of Hazardous Materials, 2023, 445: 130614. doi: 10.1016/j.jhazmat.2022.130614
[15] 管祥楠, 董士伟, 刘玉, 等. 土壤重金属含量变化的影响因素多目标识别方法[J]. 环境科学, 2024, 45(8): 4791−4801. doi: 10.13227/j.hjkx.202308194 Guan X N, Dong S W, Liu Y, et al. Multi-objective identification method for influencing factors of soil heavy metal content change[J]. Environmental Science, 2024, 45(8): 4791−4801. doi: 10.13227/j.hjkx.202308194
[16] Wu Y, Zhou L, Meng Y, et al. Influential topographic factor identification of soil heavy metals using GeoDetector: The effects of DEM resolution and pollution sources[J]. Remote Sensing, 2023, 15(16): 4067. doi: 10.3390/rs15164067
[17] Jiang Y, Sun Y, Zhang L, et al. Influence factor analysis of soil heavy metal Cd based on the GeoDetector[J]. Stochastic Environmental Research and Risk Assessment, 2020, 34: 921−930. doi: 10.1007/s00477-020-01806-z
[18] Huang S, Xiao L S, Zhang Y C, et al. Interactive effects of natural and anthropogenic factors on heterogenetic accumulations of heavy metals in surface soils through geodetector analysis[J]. Science of the Total Environment, 2021, 789: 147937. doi: 10.1016/j.scitotenv.2021.147937
[19] Liu H, Qu M, Chen J, et al. Heavy metal accumulation in the surrounding areas affected by mining in China: Spatial distribution patterns, risk assessment, and influencing factors[J]. Science of the Total Environment, 2022, 825: 154004. doi: 10.2139/ssrn.3992728
[20] Zhang R, Chen T, Zhang Y, et al. Health risk assessment of heavy metals in agricultural soils and identification of main influencing factors in a typical industrial park in Northwest China[J]. Chemosphere, 2020, 252: 126591. doi: 10.1016/j.chemosphere.2020.126591
[21] Zhen B W, Shu Y L, Yuchen Z, et al. Exploring the relative importance and interactive impacts of explanatory variables of the built environment on ride-hailing ridership by using the optimal parameter-based geographical detector (OPGD) model[J]. Applied Sciences, 2023, 13: 2180. doi: 10.3390/app13042180
[22] Duque J C, Laniado H, Polo A. S-maup: Statistical test to measure the sensitivity to the modifiable areal unit problem[J]. PloSONE, 2018, 13(11): e0207377. doi: 10.1371/journal.pone.0207377
[23] 季建万, 姜琳琳, 刘文亮, 等. 基于多参数优选地理探测器的京津冀城市群地质灾害影响因子分析[J]. 地理与地理信息科学, 2023, 39(2): 39−45. doi: 10.3969/j.issn.1672-0504.2023.02.006 Ji J W, Jiang L L, Liu W L, et al. Analysis on influence factors of geological hazards in Beijing—Tianjin—Hebei urban agglomeration based on multi-parameters optimized by GeoDetector[J]. Geography and Geo-information Science, 2023, 39(2): 39−45. doi: 10.3969/j.issn.1672-0504.2023.02.006
[24] Song Y, Wang J, Ge Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data[J]. GIScience & Remote Sensing, 2020, 57(5): 593−610. doi: 10.1080/15481603.2020.1760434
[25] 刘敏, 郝春明. 峰峰矿区矿井水污灌区重金属污染评价及定量源解析[J]. 科学技术与工程, 2021, 21(17): 7377−7384. doi: 10.3969/j.issn.1671-1815.2021.17.057 Liu M, Hao C M. Evaluation and quantitative source analysis of heavy metal pollution in Fengfeng mine drainage irrigation area[J]. Science Technology and Engineering, 2021, 21(17): 7377−7384. doi: 10.3969/j.issn.1671-1815.2021.17.057
[26] 叶洪岭, 张金尧. 资源枯竭区不同地貌类型土壤重金属污染特征及风险评价[J]. 环境污染与防治, 2023, 45(3): 346−351. doi: 10.15985/j.cnki.1001-3865.2023.03.012 Ye H L, Zhang J Y. Pollution characteristics and risk assessment of heavy metals in soils of different landform types in resource exhausted areas[J]. Environmental Pollution & Control, 2023, 45(3): 346−351. doi: 10.15985/j.cnki.1001-3865.2023.03.012
[27] Zhang Y, Zhang H, Meng L, et al. Spatial distribution and evaluation of heavy metal pollution in soil around coal gangue in Fengfeng mining area[C].IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2019, 371(3): 032080.
[28] 孙涛, 宋世杰, 常青, 等. 煤矸石堆积区土壤重金属形态组成与生物有效性的空间变化特征——以峰峰矿区为例[J]. 煤田地质与勘探, 2022, 50(10): 85−95. doi: 10.12363/issn.1001-1986.22.03.0159 Sun T, Song S J, Chang Q, et al. Spatial variation characteristics of soil heavy metal speciation and bioavailability in coal gangue accumulation area—Taking Fengfeng mining area as an example[J]. Coal Geology & Exploration, 2022, 50(10): 85−95. doi: 10.12363/issn.1001-1986.22.03.0159
[29] 马鹏飞. 基于改进遥感生态指数的峰峰矿区生态环境监测及影响因素分析[D]. 邯郸:河北工程大学, 2022. Ma P F. Ecological environment monitoring and driving factors analysis of Fengfeng mining area based on improved remote sensing ecological index[D]. Handan: Hebei University of Engineering, 2022.
[30] 梁樑, 郭晓淞, 陈汉杰, 等. 乌鲁木齐市核心城区绿地土壤重金属累积特征及生态风险[J]. 干旱区地理, 2023, 46(11): 1868−1878. doi: 10.12118/j.issn.1000-6060.2023.061 Liang L, Guo X S, Chen H J, et al. Accumulation characteristics and ecological risks of heavy metals in green land soils in core urban area of Urumqi City[J]. Arid Land Geography, 2023, 46(11): 1868−1878. doi: 10.12118/j.issn.1000-6060.2023.061
[31] 何博, 赵慧, 王铁宇, 等. 典型城市化区域土壤重金属污染的空间特征与风险评价[J]. 环境科学, 2019, 40(6): 2869−2876. doi: 10.13227/j.hjkx.201810057 He B, Zhao H, Wang T Y, et al. Spatial distribution and risk assessment of heavy metals in soils from a typical urbanized area[J]. Environmental Science, 2019, 40(6): 2869−2876. doi: 10.13227/j.hjkx.201810057
[32] Gupta S K, Chabukdhara M, Kumar P, et al. Evaluation of ecological risk of metal contamination in River Gomti, India: A biomonitoring approach[J]. Ecotoxicology and Environmental Safety, 2014, 110: 49−55. doi: 10.1016/j.ecoenv.2014.08.008
[33] 马建华, 韩昌序, 姜玉玲. 潜在生态风险指数法应用中的一些问题[J]. 地理研究, 2020, 39(6): 1233−1241. doi: 10.11821/dlyj020190632 Ma J H, Han C X, Jiang Y L. Some problems in the application of potential ecological risk index[J]. Geographical Research, 2020, 39(6): 1233−1241. doi: 10.11821/dlyj020190632
[34] Yang J, Wang J, Liao X, et al. Chain modeling for the biogeochemical nexus of cadmium in soil–rice–human health system[J]. Environment International, 2022, 167: 107424. doi: 10.1016/j.envint.2022.107424
[35] Li W, Yan D, Weng B, et al. Nonlinear effects of surface soil moisture changes on vegetation greenness over the Tibetan Plateau[J]. Remote Sensing of Environment, 2024, 302: 113971. doi: 10.1016/j.rse.2023.113971
[36] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116−134. doi: 10.11821/dlxb201701010 Wang J F, Xu C D. GeoDetector: Principle and prospect[J]. Acta Geographica Sinica, 2017, 72(1): 116−134. doi: 10.11821/dlxb201701010
[37] 张丽婷, 成杭新, 谢伟明, 等. 河北省土壤化学元素的背景值与基准值[J]. 环境科学, 2023, 44(5): 2817−2828. doi: 10.13227/j.hjkx.202206205 Zhang L T, Cheng H X, Xie W M, et al. Geochemical background and baseline value of soil chemical elements in Hebei Province[J]. Environmental Science, 2023, 44(5): 2817−2828. doi: 10.13227/j.hjkx.202206205
[38] 杨昱莹, 刘亮, 陈明, 等. 长三角地区南京市表土重金属污染特征及源解析[J]. 中国环境科学, 2024, 44(7): 3910−3918. doi: 10.19674/j.cnki.issn1000-6923.20231207.002 Yang Y Y, Liu L, Chen M, et al. Characterization and source analysis of topsoil heavy metal pollution in Nanjing, Yangtze River Delta Region[J]. China Environmental Science, 2024, 44(7): 3910−3918. doi: 10.19674/j.cnki.issn1000-6923.20231207.002
[39] 陈艺, 蔡海生, 曾君乔, 等. 袁州区表层土壤重金属污染特征及潜在生态风险来源的地理探测[J]. 环境化学, 2021, 40(4): 1112−1126. doi: 10.7524/j.issn.0254-6108.2020092702 Chen Y, Cai H S, Zeng J Q, et al. Characteristics of heavy metal pollution in surface soil and geographical detection of potential ecological risk sources in Yuanzhou District[J]. Environmental Chemistry, 2021, 40(4): 1112−1126. doi: 10.7524/j.issn.0254-6108.2020092702
[40] 祁志, 丁超, 韩兴, 等. 沟坡侵蚀汇水区黑土水分和养分的空间异质性[J]. 水土保持通报, 2020, 40(5): 79−87, 96. doi: 10.13961/j.cnki.stbctb.2020.05.013 Qi Z, Ding C, Han X, et al. Spatial heterogeneity of soil moisture and nutrients in valley-slope erosion watershed in black soil area[J]. Bulletin of Soil and Water Conservation, 2020, 40(5): 79−87, 96. doi: 10.13961/j.cnki.stbctb.2020.05.013
[41] Wang C C, Zhang Q C, Yan C A, et al. Heavy metal (loid)s in agriculture soils, rice, and wheat across China: Status assessment and spatiotemporal analysis[J]. Science of the Total Environment, 2023, 882: 163361. doi: 10.1016/j.scitotenv.2023.163361
[42] 曹淑珍, 母悦, 崔敬鑫, 等. 稻田土壤Cd污染与安全种植分区: 以重庆市某区为例[J]. 环境科学, 2021, 42(11): 5535−5544. doi: 10.13227/j.hjkx.202101111 Cao S Z, Mu Y, Cui J X, et al. Cd pollution and safe planting zoning in paddy soils: A case study in a district of Chongqing[J]. Environmental Science, 2021, 42(11): 5535−5544. doi: 10.13227/j.hjkx.202101111
[43] 张行, 吴运东, 郭旭丽, 等. 峰峰矿区九龙口煤矿矸石山周边土壤重金属调查和分析[J]. 农业科学, 2019, 9(6): 461−467. doi: 10.12677/HJAS.2019.96069 Zhang X, Wu Y D, Guo X L, et al. Investigation and evaluation of heavy metal pollution in soil around the coal gangue mountain of Jiulongkou coalmine in Fengfeng mining area, Handan City[J]. Hans Journal of Agricultural Sciences, 2019, 9(6): 461−467. doi: 10.12677/HJAS.2019.96069
[44] 张昊然, 张玉玲, 张艳杰, 等. 峰峰矿区典型煤矸石山周边土壤重金属污染生态风险评估[J]. 绿色科技, 2019(24): 88−89. doi: 10.16663/j.cnki.lskj.2019.24.030 Zhang H R, Zhang Y L, Zhang Y J, et al. Ecological risk assessment of heavy metal pollution in soil around typical coal gangue hills in Fengfeng mining area[J]. Journal of Green Science and Technology, 2019(24): 88−89. doi: 10.16663/j.cnki.lskj.2019.24.030
[45] 邱雨荷, 王森, 刘婉玉, 等. 西安市大气PM2.5中元素的污染特征及其来源分析[J]. 环境科学与技术, 2023, 46(1): 161−170. doi: 10.19672/j.cnki.1003-6504.1712.22.338 Qiu Y H, Wang S, Liu W Y, et al. Characteristics and sources of elements in PM2.5 in Xi’an City[J]. Environmental Science & Technology, 2023, 46(1): 161−170. doi: 10.19672/j.cnki.1003-6504.1712.22.338
[46] 滕吉艳. 上海城市中心区不同类型绿地土壤重金属污染特征[J]. 土壤通报, 2021, 52(4): 927−933. doi: 10.19336/j.cnki.trtb.2020071301 Teng J Y. Contamination characteristics of heavy metals in soils from urban green space in Central Shanghai[J]. Chinese Journal of Soil Science, 2021, 52(4): 927−933. doi: 10.19336/j.cnki.trtb.2020071301
[47] Qiao Y, Wang X, Han Z, et al. GeoDetector based identification of influencing factors on spatial distribution patterns of heavy metals in soil: A case in the upper reaches of the Yangtze River, China[J]. Applied Geochemistry, 2022, 146: 105459. doi: 10.1016/j.apgeochem.2022.105459
[48] 尚誉, 桑楠. 煤矸石堆积区周边土壤重金属污染特征与植物毒性[J]. 环境科学, 2022, 43(7): 3773−3780. doi: 10.13227/j.hjkx.202106016 Shang Y, Sang N. Pollution characteristics and phytotoxicity of heavy metals in the soil around coal gangue accumulation area[J]. Environmental Science, 2022, 43(7): 3773−3780. doi: 10.13227/j.hjkx.202106016
[49] Wang X, Sun Y, Zhang L, et al. Spatial variation and influence factor analysis of soil heavy metal As based on GeoDetector[J]. Stochastic Environmental Research and Risk Assessment, 2021, 35(10): 1−10. doi: 10.1007/s00477-021-01976-4