Quantitative Identification of Detrital Minerals by Mineral Characteristic Automatic Analysis System and Error Analysis with Traditional Microscopic Identification
-
摘要:
碎屑矿物分析被广泛应用于沉积物物源和物质扩散研究中,对分析沉积动力环境和海洋动力特征方面具有重要意义,然而长期以来碎屑矿物数据的获取主要以光学显微镜为工具,依靠人工鉴定来完成,工作量大、效率低。为使科研人员及时获得科学有效的矿物鉴定数据,本文基于热场发射扫描电镜-X射线能谱仪,利用矿物特征自动定量分析系统(简称AMICS),运用矿物表面微形貌观察和化学成分分析技术,通过实测数据自主建立的一套碎屑矿物标准库为分类依据,实现了对碎屑矿物的定量识别。AMICS系统对第一个样品共识别出矿物种类25种,人工实体显微镜-偏光显微镜法鉴定出25种;AMICS系统对第二个样品共识别出矿物种类26种,人工实体显微镜-偏光显微镜法鉴定出27种,两种方法鉴定出的碎屑矿物种类基本相同,且每一种矿物含量的误差绝对值均小于5%。该系统识别氧化物(褐铁矿、铬铁矿等),磷酸盐(磷灰石等),硫酸盐(重晶石等),硫化物(黄铁矿等),碳酸盐(方解石、白云石等),部分硅酸盐(锆石、榍石、橄榄石、石英、钾长石、钠长石、石榴石族等)相对准确,但仅依靠矿物化学成分很难准确识别同质多象和类质同象系列碎屑矿物,层状硅酸盐矿物在制样时容易逐层脱落的问题需要进一步解决。
-
关键词:
- 矿物特征自动定量分析系统(AMICS) /
- 背散射法 /
- 碎屑矿物 /
- 扫描电镜-能谱仪
Abstract:The analysis of detrital minerals is widely used in the study of sediment sources and material diffusion, and is of great significance in analyzing sedimentary dynamic environment and oceanic dynamic characteristics. However, for a long time, the acquisition of detrital mineral data has relied mainly on optical microscopes as tools and manual identification, which is labor-intensive and inefficient. In order to obtain scientific and effective mineral identification data in a timely fashion, a thermal field emission scanning electron microscopy with energy dispersive spectroscopy attached and an automated mineral identification and characterization system (AMICS) were used. For the first sample, 25 mineral species were identified by the AMICS system and 25 mineral species were identified by artificial identification with stereomicroscope and polarizing microscope. For the second sample, 26 mineral species were identified by the AMICS system, and 27 mineral species were identified by artificial identification. The two methods identified similar types of detrital minerals, and the absolute error of each mineral content was less than 5%. The AMICS system can be used to identify oxides (limonite, chromite, etc.), phosphates (apatite, etc.), sulfates (barite, etc.), sulfides (pyrite, etc.), carbonates (calcite, dolomite, etc.), and some silicates (zircon, titanite, olivine, quartz, potassium feldspar, sodium feldspar, garnet group, etc.) accurately but it is difficult to accurately identify polymorphic and isomorphic detrital minerals based solely on mineral chemical composition. The problem of layered silicate minerals easily falling off layer by layer during sample preparation needs to be solved.
-
-
表 1 沉积物样品处理结果
Table 1 Processing results of sediment samples
参数 1号样品前处理结果(g) 2号样品前处理结果(g) 沉积物质量 79.955 74.977 粒级质量 33.875 52.312 缩分 7.368 6.194 重矿物质量 0.371 0.303 表 2 重矿物检测结果统计
Table 2 Statistics of testing results for heavy minerals
矿物种类 1号样品检测结果(%) 2号样品检测结果(%) 实体显微镜-偏光显微镜法 X射线能谱-背散射法 误差 实体显微镜-偏光显微镜法 X射线能谱-背散射法 误差 磁铁矿 0.78 1.66 −0.88 偶见 0.90 −0.90 钛铁矿 8.31 4.28 4.03 7.48 5.89 1.59 赤、褐铁矿 2.60 1.88 0.72 0.70 0.83 −0.13 白钛石 1.56 0.53 1.03 1.81 0.35 1.46 锆石 0.52 0.11 0.41 1.04 0.36 0.68 独居石 − − − − − − 榍石 0.52 3.56 −3.04 1.29 4.08 −2.79 磷灰石 1.56 2.41 −0.85 1.41 1.82 −0.41 金红石 − − − 偶见 0.29 −0.29 电气石 0.52 0.49 0.03 0.47 0.06 0.41 石榴石 5.71 5.32 0.39 4.02 4.23 −0.21 斜方辉石 0.26 0.01 0.25 − − − 普通辉石 0.78 2.15 −1.37 2.06 4.85 −2.79 透辉石 0.52 4.25 −3.73 0.25 0.17 0.08 普通角闪石 23.38 21.15 2.23 25.40 28.26 −2.86 阳起石 2.60 5.19 −2.59 3.12 2.99 0.13 透闪石 0.52 1.33 −0.81 1.78 0.50 1.28 蓝闪石 0.52 2.30 −1.78 0.98 2.63 −1.65 绿帘石 25.97 24.56 1.41 26.67 23.73 2.94 (斜)黝帘石 3.90 1.42 2.48 4.30 2.17 2.13 十字石 − − − − − − 蓝晶石 − − − 0.27 0.16 0.11 红柱石 0.26 0.48 −0.22 0.23 0.17 0.06 矽线石 − − − − − − 黄玉 − − − − − − 硬绿泥石 − − − 0.54 − 0.54 绿泥石 偶见 1.12 −1.12 偶见 1.78 −1.78 黑云母 0.26 0.12 0.14 偶见 0.53 −0.53 白云母 0.52 0.19 0.33 0.66 0.06 0.6 风化云母 偶见 0.01 −0.01 0.88 0.01 0.87 自生黄铁矿 − − − − − − 碳酸盐 4.94 0.28 4.66 2.40 0.24 2.16 未知矿物 13.51 15.19 −1.68 12.22 12.96 −0.74 -
[1] 高建华, 李军, 汪亚平, 等. 鸭绿江河口及近岸海域沉积物中重矿物组成、分布及其沉积动力学意义[J]. 海洋学报, 2009, 31(3): 84−94. doi: 10.3321/j.issn:0253-4193.2009.03.010 Gao J H, Li J, Wang Y P, et al. Heavy mineral distribution sand their implications for sediment dynamics in the Yalu Estuary and its adjacent sea area[J]. Acta Ceanoiogica Sinica, 2009, 31(3): 84−94. doi: 10.3321/j.issn:0253-4193.2009.03.010
[2] 李超, 杨守业, 毕磊, 等. “从源到汇”的时间尺度——根据U系同位素计算海洋沉积物的搬运时间[J]. 海洋地质前沿, 2015, 31(2): 26−31. Li C, Yang S Y, Bi L, et al. Time scale of “south to sink” process-sediment transport time calculation based on U-series isotopes[J]. Marine Geology Frontiers, 2015, 31(2): 26−31.
[3] 范代读, 王扬扬, 吴伊婧. 长江沉积物源示踪研究进展[J]. 地球科学进展, 2012, 27(5): 515−528. Fan D D, Wang Y Y, Wu Y J. Advances in provenance studies of Changjiang riverine sediments[J]. Advances in Earth Science, 2012, 27(5): 515−528.
[4] 董晋琨, 杨眉, 吴志远, 等. 系统矿物学数据特征分析及数据库建设[J]. 吉林大学学报(地球科学版), 2019, 49(3): 727−736. Dong J K, Yang M, Wu Z Y, et al. Systematic mineralogy data characteristics and database construction[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(3): 727−736.
[5] 张文, 田承涛, 翁孝卿, 等. 矿物解离分析系统在磷石膏工艺矿物学研究中的应用[J]. 矿产综合利用, 2022, 2(1): 205−210. doi: 10.3969/j.issn.1000-6532.2022.01.030 Zhang W, Tian C T, Weng X Q, et al. Research on the process mineralogy of phosphogypsum using mineral liberation analysis system[J]. Multipurpose Utilization of Mineral Resources, 2022, 2(1): 205−210. doi: 10.3969/j.issn.1000-6532.2022.01.030
[6] 温利刚, 贾木欣, 付强, 等. 基于扫描电子显微镜-X射线能谱的矿物自动分析系统(BPMA)测定高纯石英砂中杂质矿物[J]. 中国无机分析化学, 2023, 13(8): 845−850. doi: 10.3969/j.issn.2095-1035.2023.08.009 Wen L G, Jia M X, Fu Q, et al. Determination of impurity minerals high-purity quartz by SEM-EDS-based automated process mineralogy analyzing system (BPMA)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 845−850. doi: 10.3969/j.issn.2095-1035.2023.08.009
[7] 邓宇林, 郭绪磊, 罗明明, 等. 基于扫描电镜和CT成像技术的碳酸盐岩溶蚀作用微观结构和变化规律研究[J]. 中国岩溶, 2022, 41(5): 698−707. doi: 10.11932/karst20220503 Deng Y L, Guo X L, Luo M M, et al. Study on the microstructure and variation law of carbonate rock dissolution based on scanning electron microscopy and CT imaging technology[J]. Carsologica Sinica, 2022, 41(5): 698−707. doi: 10.11932/karst20220503
[8] Gottlieb P, Wilkie G, Sutherland D, et al. Using quantitative electron microscopy for process mineralogy applications[J]. JOM, 2000, 52(4): 24−25. doi: 10.1007/s11837-000-0126-9
[9] Ying G. Automated scanning electron microscope based mineral liberation analysis an introduction to JKMRC/FEI mineral liberation analyser[J]. Journal of Minerals and Materials Characterization and Engineering, 2003, 2(1): 33−41. doi: 10.4236/jmmce.2003.21003
[10] Fandrich R, Ying G, Burrows D, et al. Modern SEM-based mineral liberation analysis[J]. International Journal of Mineral Processing, 2007, 84(1−4): 310−320. doi: 10.1016/j.minpro.2006.07.018
[11] Krolop P, Jantschke A, Gilbricht S, et al. Mineralogical imaging for characterization of the per Geijer apatite iron ores in the Kiruna district, Northern Sweden: A comparative study of mineral liberation analysis and Raman imaging[J]. Multidisciplinary Digital Publishing Institute, 2019, 9(9): 544.
[12] Hrstka T, Gottlieb P, Skála R, et al. Automated mineralogy and petrology—Applications of TESCAN integrated mineral analyzer (TIMA)[J]. Journal of Geosciences, 2018, 63(1): 47−63.
[13] 李秋杭, 谢远云, 康春国, 等. 基于人工和TIMA自动化方法的松花江水系重矿物组成: 对源-汇物源示踪的指示[J]. 海洋地质与第四纪地质, 2022, 42(3): 170−183. Li Q H, Xie Y Y, Kang C G, et al. Heavy mineral composition of the Songhua River system identified by manual and TIMA automatic methods and implications for provenance tracing[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 170−183.
[14] 陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2): 345−368. Chen Q, Song W L, Yang J K, et al. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy: An example from TESCAN TIMA[J]. Mineral Deposits, 2021, 40(2): 345−368.
[15] 张涛, 宋文磊, 陈倩, 等. 矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用[J]. 岩矿测试, 2023, 42(4): 748−759. Zhang T, Song W L, Chen Q, et al. Application of automated quantitative mineral analysis system in process mineralogy of low-grade copper slag[J]. Rock and Mineral Analysis, 2023, 42(4): 748−759.
[16] Keulen N, Malkki S N, Graham S. Automated quantitative mineralogy applied to metamorphic rocks[J]. Minerals, 2020, 10(1): 1−29.
[17] Graham S, Keulen N. Nanoscale automated quantitative mineralogy: A 200-nm quantitative mineralogy assess-ment of fault gouge using mineralogic[J]. Minerals, 2019, 9(11): 665. doi: 10.3390/min9110665
[18] Hou X Z, Yang Z F, Wang Z J. The occurrence characteristics and recovery potential of middle-heavy rare earth elements in the Bayan Obo deposit, Northern China[J]. Acta Geochim, 2020, 39(1): 139−154. doi: 10.1007/s11631-019-00331-3
[19] Zhou J, Gu Y. Geometallurgical characterization and automated mineralogy of gold ores[M]. Elsevier, 2016: 95−111.
[20] 朴海善, 杨勇, 唐云, 等. 低品位碳酸锰矿工艺矿物学研究[J]. 矿物学报, 2023, 43(2): 191−200. doi: 10.16461/j.cnki.1000-4734.2022.42.100 Piao H S, Yang Y, Tang Y, et al. Process mineralogy of the low-grade manganese carbonate ore[J]. Acta Mineralogica Sinica, 2023, 43(2): 191−200. doi: 10.16461/j.cnki.1000-4734.2022.42.100
[21] 张瀚之, 鹿化煜, 周亚利, 等. 渭河流域沉积矿物组合定量分析及示踪[J]. 沉积学报, 2022, 40(4): 944−956. doi: 10.14027/j.issn.1000⁃0550.2022.021 Zhang H Z, Lu H Y, Zhou Y L, et al. Quantitative analysis of the clastic mineral composition in sediments from the Weihe River Basin by scanning electron microscope and its implication for provenance[J]. Acta Sedimentologica Sinica, 2022, 40(4): 944−956. doi: 10.14027/j.issn.1000⁃0550.2022.021
[22] 朱丹, 桂博艺, 王芳, 等. AMICS测试技术在铌矿中的应用——以竹溪铌矿为例[J]. 有色金属(选矿部分), 2021(3): 1−7. doi: 10.3969/j.issn.1671-9492.2021.03.001 Zhu D, Gui B Y, Wang F, et al. Application of the advanced mineral identification and characterization system (AMICS) in the Nb deposit: A case study of the Zhuxi Nb deposit[J]. Nonferrous Metals (Mineral Processing Section), 2021(3): 1−7. doi: 10.3969/j.issn.1671-9492.2021.03.001
[23] 孙晓旭, 冯坚, 李超, 等. 自动矿物识别和表征系统在辽东吉祥峪稀土矿矿物鉴定和赋存状态研究中的应用[J]. 岩矿测试, 2023, 42(6): 1120−1131. doi: 10.15898/j.ykcs.202203270061 Sun X X, Feng J, Li C, et al. Application of automated mineral identification and characterization system to identify minerals and occurrences of elements in Jixiangyu rare earth deposit of Eastern Liaoning[J]. Rock and Mineral Analysis, 2023, 42(6): 1120−1131. doi: 10.15898/j.ykcs.202203270061
[24] 曹玉璐, 曾宇轲, 张元元. 基于扫描电子显微镜的重矿物物源分析方法对比[J]. 现代地质, 2023, 37(2): 475−485. doi: 10.19657/j.geoscience.1000-8527.2022.032 Cao Y L, Zeng Y K, Zhang Y Y. Comparison of heavy mineral provenance analysis methods based on SEM[J]. Geoscience, 2023, 37(2): 475−485. doi: 10.19657/j.geoscience.1000-8527.2022.032
[25] 邓刘敏, 葛祥坤, 范光, 等. 基于扫描电镜-能谱仪的矿物定量分析——以AMICS为例[J]. 世界核地质科学, 2023, 40(1): 98−105. doi: 10.3969/j.issn.1672-0636.2023.01.010 Deng L M, Ge X K, Fan G, et al. Quantitative analysis of minerals based on scanning electron microscopy and energy dispersive spectrometry[J]. World Nuclear Geoscience, 2023, 40(1): 98−105. doi: 10.3969/j.issn.1672-0636.2023.01.010
[26] 王濮, 潘兆橹, 翁玲宝. 系统矿物学[M]. 北京: 地质出版社, 1982. Wang P, Pan Z L, Weng L B. Systematic mineralogy[M]. Beijing: Geological Publishing House, 1982.
[27] 潘兆橹. 结晶学及矿物学[M]. 北京: 地质出版社, 1993. Pan Z L. Crystallography and mineralogy[M]. Beijing: Geological Publishing House, 1993.
[28] 常丽华, 陈曼云, 金巍. 透明矿物薄片鉴定手册[M]. 北京: 地质出版社, 2006. Chang L H, Chen M Y, Jin W. Manual for identification of transparent mineral thin slices[M]. Beijing: Geological Publishing House, 2006.
[29] 刘显凡, 汪灵, 李慧, 等. 角闪石族和辉石族矿物的系统矿物学分类命名[J]. 矿物学报, 2015, 35(1): 19−28. Liu X F, Wang L, Li H, et al. Systematic mineralogical classifications and nomenclatures of amphibole and pyroxene group minerals[J]. Acta Mineralogica Sinica, 2015, 35(1): 19−28.